
ar
X

iv
:1

41
2.

25
82

v1
 [

m
at

h.
G

R
]

 8
 D

ec
 2

01
4

A notion of effectiveness for subshifts on finitely

generated groups.

Nathalie Aubrun∗, Sebastián Barbieri∗

and Mathieu Sablik†

nathalie.aubrun@ens-lyon.fr

sebastian.barbieri@ens-lyon.fr

sablik@latp.univ-mrs.fr

Abstract

We define a notion of effectiveness for subshifts on finitely generated

groups. The set of effective subshifts forms a conjugacy class that contains

the class of sofic subshifts. We prove that the inclusion is strict for several

groups, including amenable groups and groups with more than two ends.

Introduction

Symbolic dynamics were originally defined on Z in the highly influential article
of Morse and Hedlund [15] in order to study discretization of dynamical systems,
and were later generalized to higher dimensions. Multidimensional subshifts of
finite type (Zd-SFT) and sofic Z

d-subshifts are the central objects in symbolic
dynamics on Z

d. They are sets of configurations that respect some local con-
straints, and can be described by a finite amount of information. When d ≥ 2 it
turns out that they enjoy interesting computational properties, among which is
the undecidability of the emptiness problem, also known as the domino prob-
lem [5, 26]. This problem can be naturally generalized to any group, nevertheless
no characterization of the groups where the domino problem is undecidable is
yet known even if some partial results have arisen [25, 2, 4]. This example il-
lustrates how computational problems may depend on properties of the group
considered. These latter can also modify dynamical properties, the most famous
example being the property of being sofic [14, 28]. These two observations justify
the study of symbolic dynamics on finitely generated groups.

More recently, the use of computability theory has become essential in the
study of multidimensional subshifts of finite type. For example the possible

∗LIP, ENS de Lyon – CNRS – INRIA – UCBL – Université de Lyon
†Aix-Marseille Université, CNRS, Centrale Marseille, I2M UMR 7373 – 13453 Marseille,

France

Keywords: 37B10 Symbolic dynamics, 03D10 Turing machines, 20F10 Word problems.

1

http://arxiv.org/abs/1412.2582v1

entropies of these systems are characterized as right recursively enumerable
numbers [17]. This type of results comes from the possibility to encode Turing
machines inside multidimensional SFT. The study of such results led to intro-
duce the class of effective Zd-subshifts, defined by a recognizable set of forbidden
patterns. This class was introduced by M. Hochman [16] who showed that they
can be realized as subsystems of sofic Z

d+2-subshifts. The construction was
improved with two different techniques [3, 11] to get a realization in sofic Z

d+1-
subshifts. Thus with an increase of one of the dimension, effective Z

d-subshifts
are very close to sofic subshifts. Hochman’s result suggests that if we play with
the structure on which subshifts are defined, some strong links between sofic
and effective subshifts may emerge.

In this direction we investigate subshifts defined on infinite finitely generated
groups and define a notion of effectiveness. The difficulty for this task relies on
the possibility, even for a finitely presented group, to have an undecidable word
problem [21, 6] – no algorithm can decide whether a word on the generators
and their inverses represents the identity element. We overcome this problem
by defining a notion of effectiveness based on G-machines, that are roughly
speaking Turing machines having the group G as the calculation tape.

The paper is organized as follows. The first section introduces basic notions
of combinatorial group theory, including the word problem for a finitely gen-
erated group (Section 1.1), and general settings about symbolic dynamics on
finitely generated groups (Section 1.2). The content of this last section is very
similar to any standard introduction to classical symbolic dynamics on Z [18] or
Z
d. Nonetheless as there is almost no literature treating symbolic dynamics in

this setting it is necessary to state the definitions and fix the notations. In Sec-
tion 2 we present two definitions of effectiveness for G-subshifts: Z-effectiveness
and G-effectiveness, that coincide if and only if the finitely generated group
G considered has decidable word problem (Theorem 2.10). Section 3 exhibits
classes of groups with G-effective subshifts which are not sofic. This is the case
for the three following classes of finitely generated groups:

1. recursively presented groups with undecidable word problem – Theorem 3.1,

2. infinite amenable groups – Theorem 3.4,

3. groups which have two or more ends – Theorem 3.6.

Particularly, we prove that the G-subshift X≤1 on {0,1} consisting of configura-
tions that contain at most one symbol 1 cannot be sofic in the first case. This
example complements results of [10] where the property of X≤1 being sofic is re-
lated to geometric properties of the group, and answers an open question [9, 29].

1 Generalities

1.1 Finitely generated groups and computational aspects

Let G be a group and 1G be its identity element. The group G is finitely

generated if there is a finite subset S ⊂ G which generates G or equivalently if it

2

has a presentation such that G ≃ ⟨S∣R⟩ with ∣S∣ < ∞ (see [19] for an introduction
to group presentations). In a presentation ⟨S∣R⟩, S is the set of generators of the
group, and R is the set of relators and is made of words on the alphabet S∪S−1

(where S−1 the set of inverses of generators) that represent the identity of the
group. A group has infinitely many presentations and determining whether two
presentations define two isomorphic groups is an undecidable problem [24].

Let G be a group generated by a finite set S ⊂ G. Two words u, v in (S∪S−1)∗
are equivalent in G, and this equivalence is denoted u =G v, if u and v are equal
as elements of G. We use words to represent elements of the group if the context
is clear enough.

Example For BS(1,2) the Baumslag-Solitar group with presentation ⟨a, b∣ab =
ba2⟩, the words abab−1 and bab−1a are equivalent since we have the following:

bab−1a = bab−1(ab)b−1 = bab−1(ba2)b−1 = (ba2)ab−1 = abab−1.
Let G be a group and 1G ∉ S ⊂ G. The Cayley graph of G given by S,

denoted by Γ(G,S) = (VΓ,EΓ), is an undirected vertex transitive graph such
that VΓ = G and EΓ = {{g, gs} ∣ g ∈ G,s ∈ S}. This graph is usually defined as
directed but for our purposes it suffices to consider it as a standard graph. If
S is a finite set of generators of G then Γ(G,S) is connected and locally finite.
For g ∈ G we denote ∣g∣ the length of the shortest path from 1G to g in Γ(G,S).
We also define the ball of size n ≥ 0 as Bn = {g ∈ G ∣ ∣g∣ ≤ n}. Also for F ⊂ G
a finite set we define its interior F̊ ∶= {g ∈ F ∣∀s ∈ S, gs ∈ F} and its boundary

∂F ∶= F ∖ F̊ .
Naturally, the definitions above depend on the choice of generating set S,

nevertheless all the metrics generated by the distance in Γ(G,S′), where S′ is
a finite set of generators, are equivalent.

Example The Cayley graph of Z2 with presentation ⟨a, b∣ab = ba⟩ is the bi-
infinite grid. The Cayley graph of the free group with two generators ⟨a, b∣∅⟩ is
the 4-regular infinite tree.

We use some basic concepts of computability theory, a good introduction
can be found in [1]. We recall here two fundamental notions. Let A∗ be the
set of all words over a finite alphabet A. A subset L ⊂ A∗ is decidable if there
exists a Turing machine that accepts if a sequence w ∈ A∗ is in L and rejects
otherwise. A subset of L ⊂ A∗ is recognizable if there is a Turing machine that
lists its elements (in no particular order). It is equivalent to say that there exists
a Turing machine that accepts when a sequence w ∈ A∗ is in L, and may give
no answer otherwise. A language L is decidable if and only if both L and its
complement are recognizable (we say that L is co-recognizable).

Given a group G with a finite set of generators S ⊂ G, the word problem

of G asks whether two words on S ∪ S−1 are equivalent in G. In other terms,
is there a Turing machine that decides whether two words w1,w2 ∈ (S ∪ S−1)∗
satisfy w1 =G w2. We adopt here the notation:

WP (G) = {w ∈ (S ∪ S−1)∗ ∣ w =G 1G} .

3

The word problem can thus be reformulated as: is WP (G) decidable? The
decidability of the word problem is independent of the set of generators cho-
sen for G, thus the notation WP (G) is appropriate. A fundamental result of
Novikov [21] and Boone [6] exhibits finitely presented groups (the set of relators
is also finite) with undecidable word problem.

1.2 Symbolic dynamics and subshifts

Let A be a finite alphabet and G a group. We say that the set AG = {x ∶ G→A}
equipped with the left group action σ ∶ G×AG → AG such that (σg(x))h = xg−1h
is the G-fullshift. The elements a ∈ A and x ∈ AG are called symbols and
configurations respectively.

By taking the discrete topology on A we obtain by Tychonoff’s theorem
that the product topology in AG is compact. This topology is generated by
a clopen basis given by the cylinders [a]g = {x ∈ AG∣xg = a ∈ A}. If G is
countable, then AG is metrizable and the compacity of the product topology
can be proven directly without using Tychonoff’s theorem. In the case of a
finitely generated group G, an ultrametric which generates the product topology
is given by d(x, y) = 2− inf{∣g∣ ∣ g∈G∶ xg≠yg}.

Definition A subset X of AG is a G-subshift if it is σ-invariant – σ(X) ⊂X –
and closed for the cylinder topology.

Example Let G be a group and consider the alphabet {0,1}. Define X≤1 as
the set of configurations that contain at most one symbol 1.

X≤1 = {x ∈ {0,1}G ∣ ∣{g ∈ G ∶ xg = 1}∣ ≤ 1} .
One can easily check that X≤1 is both closed and σ-invariant. Thus X≤1 is a
G-subshift, called the one-or-less subshift.

A support is a finite subset F ⊂ G. Given a support F , a pattern with support

F is an element P of AF , i.e. a finite configuration and we write supp(P) = F .
One says that a pattern P ∈ AF appears in a configuration x ∈ AG if there exists
g ∈ G such that for any h ∈ F , xgh = Ph, in this case we write P ⊏ x. We denote
the set of finite patterns over G as A∗G ∶= ⋃F⊂G,∣F ∣<∞AF . For P ∈ A∗G and g ∈ G
the cylinder generated by P on g is [P]g ∶= ⋂h∈supp(P)[Ph]gh. For a G-subshift

X ⊂ AG the set of patterns of support F is LF (X) ∶= {P ∈ AF ∣ ∃x ∈ X,P ⊏ x}
and the language of X is L(X) ∶= ⋃F⊂G,∣F ∣<∞LF (X).

By using the cylinder nature of patterns it is easy to show the following
combinatorial characterization of G-subshifts:

Proposition 1.1. A subset X of AG is a G-subshift if and only if there exists

a set of forbidden patterns F ⊂ A∗G that defines it.

X =XF ∶= { x ∈ AG ∣ ∀P ∈ F , P /⊏ x} .

4

Let X,Y be two G-subshifts over alphabets AX ,AY and F a finite subset
of G. We say that φ ∶ X → Y is a sliding block code if there exists a local
function Φ ∶ AF

X → AY such that F ⊂ G is finite and φ(x)g ∶= Φ(σg−1(x)∣F), that
is denoted φ = Φ∞. A famous theorem by Curtis, Lyndon and Hedlund – see for
example [7] – identifies the class of sliding block codes – called cellular automata
in the reference – with the class of continuous shift commuting functions. We
say that a sliding block code φ is a factor code if it is surjective, and we say it
is a conjugacy if it is bijective.

Whenever there is a factor code φ ∶ X ↠ Y we will write X ↠ Y and say
that Y is a factor of X and that X is an extension of Y . Furthermore, if φ is
a conjugacy we will write X ≃ Y and say they are conjugated. The conjugacy
is an equivalence relation which preserves most of the topological dynamics of
a system.

Example LetG be a group andX ⊂ AG aG-subshift. Given a finite subset 1G ∈
F ⊂ G consider the sliding block code βF ∶ X → (LF (X))G where (βF (x))g =
σg−1(x)∣F ∈ LF (X). Denote X[F] ∶= βF (X) the F -higher block presentation

of X . We claim βF is a conjugacy. Indeed, by defining φ ∶ X[F] → X with
φ = Φ∞ where Φ(F) = F1G we observe that φ○βF = idX and so βF is a conjugacy
and X ≃X[F].

If φ ∶X → Y is a sliding block code defined by a local function Φ ∶ AX →AY

then we will say that φ is a 1-block code. For every sliding block code φ ∶ X → Y

it is possible to find a conjugacy ψ ∶ X → X̂ and a 1-block code φ̂ ∶ X̂ → Y such
that φ = φ̂ ○ ψ. This means that for every extension of a given G-subshift Y we
can ask for a conjugate version X̂ of X which extends Y by a 1-block code. To
see this, note that if Φ is defined over AF

X , then X̂ ∶= X[F] ≃ X and Φ̂ = Φ is
now a 1-block code.

X̂

X Y

φ̂
ψ

φ

We say that a G-subshift X ⊂ AG is a G-subshift of finite type – G-SFT for
short – if it can be defined by a finite set of forbidden patterns, that is, ∣F ∣ <∞
and X = XF . We say that a G-subshift Y is sofic if there exists a G-SFT X

and a factor code φ such that φ(X) = Y . The class of sofic G-subshifts is the
smallest class closed under factor codes that contains every G-SFT. Both classes
are conjugacy invariants, that is, the property of belonging to them is preserved
under conjugacy.

Example Let G be a group S ⊂ G a finite set of generators. The generalized
S-Fibonacci shift is the set Xfib = XF ⊂ {0,1}G such that P ∈ F if and only
if supp(P) = {1g, s} with s ∈ S and P1G = Ps = 1. The S-Fibonacci shift is a

5

G-SFT for every finitely generated group G. The name comes from the original
definition where G = Z and S = {+1} as

∣L[0,n](Xfib)∣ = ∣L[0,n−1](Xfib)∣ + ∣L[0,n−2](Xfib)∣.
Example The subshift X≤1 is not a G-SFT for every infinite group G. If it were
consider the finite set K ∶= ⋃P ∈F supp(P) and as both the pattern consisting
only of 0, and the one containing a single 1 surrounded by 0 are in L(X≤1) then
by choosing g ∈ G such that g(K2) ∩ (K2) = ∅ (where K2 ∶= {k1k2 ∣ k1, k2 ∈K})
then x ∈ {0,1}G such that x1G = xg = 1 and xh = 0 otherwise, contains no
forbidden patterns.

Example Consider Fk the free group on k ≥ 1 generators. The Fk-subshift
X≤1 is sofic. Indeed, suppose S = {s1, . . . , sk} the generators of Fk and considerB ∶= B1. We construct X = XF ⊆ BFk which is an Fk-SFT extension of X≤1.
The set of forbidden patterns F is given by all P such that supp(P) = {1G, s}
with s ∈ S and satisfying that either P1G = 1G and Ps ≠ s or P1G = s

′, Ps ≠ s
and s ≠ s′−1. By projecting with φ = Φ∞ where Φ(1G) = 1 and Φ(B1∖{1G}) = 0
then φ(X) =X≤1.

s1

s2

1Gs−11 s1

s2

s−12

s−11

s2

s−12

s1

s2

s−12

s2

s−11 s1

s−12

s−11 s1

s1

s2

10 0

0

0

0

0

0

0

0

0

0

0 0

0

0 0

φ

Figure 1: The extension showing that X≤1 is F2-sofic.

Let G be a group generated by a finite set S ⊂ G. We say a G-SFT is
S-nearest neighbor if there is a finite set of forbidden patterns F such that
X =XF and every P ∈ F has support supp(P) = {1G, s} where s ∈ S. Not every
G-SFT is S-nearest neighbor, but every G-SFT admits a conjugated version
which satisfies the property.

Indeed, if X ⊂ AG is a G-SFT then X = XF for a finite set of forbidden
patterns F . Consider F = ⋃P ∈F supp(P) and X[F] ≃ X the F -higher block
representation of X . We claim that X[F] = XG where P ∈ G if and only if

6

supp(P) ∈ {1G, s} with s ∈ S and P1G ∣F∩sF ≠ Ps∣s−1F∩F . Just note that y ∈X[F]
if and only if ∃x ∈X such that yg = σg−1(x)∣F and thus

yg ∣F∩sF = σg−1(x)∣F∩sF = σs−1g−1(x)∣s−1F∩F = ygs∣s−1F∩F .
As S is finite, then G is a finite set of forbidden patterns and thus X[F] is a

S-nearest neighbor G-SFT.
By mixing the proofs of the previous results we obtain the following property

that will be used many times in this work.

Proposition 1.2. Let G be a group generated by a finite set S, then for every

sofic G-subshift Y there is a S-nearest neighbor G-SFT extension X given by a

1-block factor code φ ∶ X ↠ Y .

2 Effectiveness on finitely generated groups

We say a Z-subshift X ⊂AZ is effective if there is a recognizable set of forbidden
patterns F ⊂ A∗ such that X = XF . Equivalently, a Z-subshift is effective if it
can be written as the complement of a computable union of cylinders. We intend
to generalize this definition to the class of finitely generated groups. On Z

d, a
finite pattern is no longer a word, but it can be easily coded as a word – via any
recursive bijection between Z

d and Z – then effective Z
d-subshifts correspond

to subshifts which can be defined by a set of forbidden patterns that admits a
recognizable coding. In general groups, this recursive bijection might not exist.

In this section we first take the previous ideas of codings to the context of
finitely generated groups and explore their limitations with regards to the word
problem of the group. Next we define a general notion of effectiveness which has
better properties than the interpretation via codings. Finally we show where
these two effectiveness notions match, exhibit some stability properties for the
classes they define and compare them with sofic G-subshifts and G-SFTs.

2.1 Z-Effectiveness

Let G be a group generated by a finite set S ⊂ G and A a finite alphabet.
A pattern coding c is a finite set of tuples c = (wi, ai)1≤i≤n with n ∈ N where
wi ∈ (S ∪ S−1)∗ and ai ∈ A. We say that a pattern coding is consistent if for
every pair of tuples such that wi =G wj then ai = aj. For a consistent pattern
coding c we define the pattern Π(c) ∈ A∗G such that supp(Π(c)) = ⋃i∈I wi and
Π(c)wi

= ai.

Example Let G be the Baumslag-Solitar group BS(1,2) given by the finite
presentation ⟨a, b ∣ ab = ba2⟩, and consider the finite alphabet A = {0,1}. Then
the pattern coding

(ǫ,0) (b,1) (a,1)(ab,0) (ba2,0) (ba,1)

7

is consistent, since all the words above on {a, b, a−1, b−1} represent different
elements in G except for ab and ba2 that are assigned the same symbol 0. The
pattern Π it defines is:

Π1G
=0 Πa=1

Πb=1 Πba=1 Πba2=Πab=0

But the pattern coding

(ǫ,0) (a2,1) (bab−1a,1)(a,1) (ba,1) (abab−1,0)
is inconsistent since words abab−1 and bab−1a represent the same element in G
but are assigned different symbols.

The specific choice of the set of generators S is irrelevant as one can easily
traduce one in terms of the other. In order to recognize whether a pattern
codified as above belongs to a given set of forbidden patterns it is first necessary
to recognize if the pattern coding is consistent. A finitely generated group is
said to be recursively presented if there is a presentation G ≃ ⟨S,R⟩ such that∣S∣ <∞ and R is a recognizable set.

Proposition 2.1. Let G be a finitely generated group and A be an alphabet with

at least two symbols. The following are equivalent:

1. G is recursively presented.

2. The word problem of G is recognizable.

3. The set of inconsistent pattern codings is recognizable.

Proof. The equivalence between the two first statements is trivial. Let G have
recognizable word problem. As wi =G wj ⇔ wi(wj)−1 =G 1G then checking
whether wi =G wj is recognizable and so the inconsistency of the pattern codings
is recognizable. Conversely for input w in order to recognize if w =G 1G it suffices
to give as input to the machine deciding the inconsistency of the pattern codings
the coding {(ǫ, a), (w, b)} with a ≠ b ∈ A.
Definition We say a G-subshift X ⊂AG is Z-effective if there exist a finite set
of generators S of G, a set of forbidden patterns F ⊂A∗G such that X =XF and
a Turing machine T that accepts a pattern coding c if and only if it is either
inconsistent or Π(c) ∈ F .
Proposition 2.2. In the definition above it is possible to choose F to be a

maximal – for inclusion – set of forbidden patterns.

8

Proof. Suppose we are given a Turing machine T , that defines a Z-effective
subshift as above, and a pattern coding c = (wi, ai)1≤i≤k. Note that it is possible
to see if a translation σg(P) of a pattern P ∶= Π(c) is in F : enumerate each word
u ∈ (S ∪ S−1)n and run T up to n steps on the pattern coding (uwi, ai)1≤i≤k of
uP . If the procedure accepts on an input (uwi, ai)1≤i≤k, accept the pattern P .
If not, iterate with n ← n + 1. It is also easy to see if P contains a forbidden
pattern: run the previous algorithm with every subset of the pattern coding.

Also, by enumerating all m ∈ N and possible extensions of c having for
support all the words in (S ∪S−1)m and accepting if every extension of a given
length is accepted (one of the translations of them contains a forbidden pattern)
it is possible to detect if Π(c) cannot be extended to an infinite configuration.

The notion of Z-effectiveness does not work very well on groups which are
not recursively presented. In fact, the recognizability of inconsistent patterns
is equivalent to the group being recursively presented by Proposition 2.1. This
means that for groups which are not recursively presented even the G-fullshift
on two symbols is not Z-effective. Furthermore, the class of Z-effective subshifts
consists uniquely of the empty subshift and subshifts on one symbol.

Even if this definition is restrained to the class of recursively presented
groups, there are simple G-subshifts which are not Z-effective. Recall that
the one-or-less subshift X≤1 defined in Section 1.2 is the set of configurations on
alphabet {0,1} containing at most one symbol 1.

Proposition 2.3. Let G be a finitely generated group with undecidable word

problem. Then X≤1 is not Z-effective.

Proof. As {0,1} has two symbols, the case where G is not recursively presented
is deduced from Proposition 1.2, thus we suppose G is recursively presented.

Let G be generated by the finite set S. We proceed by contradiction by
showing that if X≤1 is Z-effective then the word problem is decidable in G. As
G is recursively presented, the word problem is already recognizable. It suffices
to show it is co-recognizable.

Let F be a maximal set of forbidden patterns with X≤1 = XF . Given w ∈(S ∪ S−1)∗ consider the pattern coding c = {(ǫ,1), (w,1)}. Then P ∶= Π(c) is
the pattern such that P1G = Pw = 1. If w ≠G 1G then the pattern coding is
consistent and P ∈ F and so the Turing machine T – given by Z-effectiveness
of X≤1 – accepts. Conversely if w =G 1G then T does not accept as the pattern
coding is consistent and P ∈ L(X). This means the word problem is also co-
recognizable and thus decidable.

2.2 G-Effectiveness

The class of Z-effective G-subshifts does not work very well for groups with
undecidable word problem, as shown by the example of X≤1.

We propose an alternative definition of effectiveness which makes sense even
for groups which are not recursively presented, and we show that it coincides

9

with Z-effectiveness for groups with decidable word problem. The idea is to
adapt the classical model of Turing machines, which receives a finite word as
input, so that it receives a pattern P ∈ A∗G as input. To do so, we replace the
classical tape by a finitely generated group G. Turing machines using Cayley
graph as tape have already been mentioned in [12] and studied in depth in [8],
but these latter machines take as input a word w ∈ A∗ and not a pattern P ∈ A∗G.
Definition Let G be a finitely generated group. A G-machine is a 7-tuple(Q,Σ,⊔, q0, F,S, δ) where Q is a finite set of states, Σ is a finite alphabet, ⊔ ∈ Σ
is the blank symbol, q0 ∈ Q is the initial state, F ⊂ Q is the set of final states
– accepting or rejecting states – S is a finite set such that G is generated by S
and δ ∶ Q ×Σ→ Q ×Σ × (S ∪ S−1 ∪ {1G}) is the transition function.

A G-machine M is a Turing machine whose bi-infinite tape has been iden-
tified as the set of integers Z and replaced by a finitely generated group G. A
configuration of M is a tuple (q, c) in Q×ΣG such that there is at most a finite
set of g ∈ G such that cg ≠ ⊔. The calculation proceeds as in a usual Turing
machine except that the computation head writes over the group G, and moves
can be made in any direction of S ∶= S ∪ S−1. For the definition of calculation
we adopt the convention that the computation head is always located at the
identity of the group 1G and that the whole tape is shifted, though this can be
adapted to suit the occasion.

The G-machine computes configuration (q′, c′) from configuration (q, c) if
state q′ and tape c′ are given by δ(q, c1G) = (q′, b, s) where tape c′ is obtained
by putting a symbol b at the identity in c and applying the shift σs−1 . In this
case we denote

(q, c) δ(q,c1G)=(q
′,b,s)Ð→ (q′, c′)

or (q, c) Ð→ (q′, c′) for short (see Figure 2). For a pattern P ∈ A∗G denote cP
configuration uniformly filled with blank symbol ⊔ except on supp(P) where
P appears. We say that a G-machine accepts (resp. rejects) a pattern P ∈
A∗G if starting from the initial configuration (q0, cP) the machines computes
successively (q0, cP) Ð→ (q1, c1) Ð→ . . . Ð→ (qn, cn) and reaches in a finite
number of steps a configuration with an accepting state qn ∈ F (resp. rejecting
state qn ∈ F).

G-decidable and G-recognizable languages L ⊂ Σ∗G are defined analogously
to the standard case.

Proposition 2.4. Let G be a finitely generated group and TS a G-machine

recognizing a language L ⊂ A∗G while using a finite set of generators S. If S′ is

another finite set of generators, there is another G-machine TS′ using S
′ such

that the language recognized by TS′ is L.

Proof. Each g ∈ G can be written as g = h1 . . . hn(g) where every hi ∈ S′ ∪ S′−1.
Consider TS′ a copy of TS where for each state q ∈ Q we add a copy qsi for
s ∈ S ∪ S−1 and i ∈ {1, . . . , n(s)} and every instruction δ(q, a) = (p, b, s) in TS is
replaced with the instructions: δ(q, a) = (ps1 , b, h1) and δ(psi ,∗) = (psi+1 ,∗, hi+1)

10

s1

s2

q1

s1

s2

q2

δ(q1,) = (q2, , s1)

Figure 2: A transition in an F2-machine.

for 1 ≤ i < n(s) where ∗ is an arbitrary symbol in A and δ(psn(s) ,∗) = (p,∗,1G).
The modified machine TS′ moves with the set of generators S′ and has the same
output as TS.

The previous proposition expresses the fact that the choice of generating
set is irrelevant for the computation. The class of G-machines shares also the
robustness of Turing machines with respect to changes in its definition. For
example, we can allow multiple tapes with multiple independent writing heads.

Definition Let G be a finitely generated group. A multiple head G-machine is
the same as a G-machine, except that the machine uses Gn as a tape and the
transition function is δ ∶ Qn ×Σn → Qn ×Σn ×(S ∪ S−1 ∪ {1G})n, where n is the
number of heads of the machine.

A multiple head G-machine accepts (resp. rejects) a pattern P ∈ A∗G if start-
ing from the initial configuration (qn0 , (cP ,⊔G, . . . ,⊔G)) the machines reaches in
a finite number of steps a configuration with an accepting state qn ∈ F (resp.
rejecting state qn ∈ F) on one of its heads.

We suppose that each computation head works on its own tape, but it can
read the content of other tapes. By codifying independent movements of a tape
accordingly, we are able to read not only what each head is looking at a certain
step but what is written in the other tape in the group position which would
correspond to another head if we considered that the heads moved in each layer
and the groups don’t move.

Proposition 2.5. Let L be a language that can be decided by a multiple head

G-machine. Then L can be decided by a G-machine

11

Proof. The proof of this result can be found in Appendix A.

Now we use G-machines to give a more natural definition of effectiveness in
a finitely generated group.

Definition A G-subshift X ⊂ AG is G-effective if there exists a set of forbidden
patterns F ⊂ A∗G such that X =XF and F is G-recognizable.

Next we show that this definition extends the notion of Z-effectiveness.

Theorem 2.6. Let G be an infinite and finitely generated group and X ⊂ AG a

Z-effective G-subshift. Then X is G-effective.

Proof. Let T be a Turing machine which recognizes inconsistent pattern codings
and the ones that codify patterns in F ⊂ A∗G such that X = XF . We construct
a G-machineM which reads input P ∈ A∗G and accepts if and only if P ∈ F . By
Proposition 2.2 we can assume without loss of generality that F is a maximal
set of forbidden patterns. Moreover we can also assume that T is a one-sided
Turing machine with a reading tape and a working tape.

The construction is a multiple head G-machine which consists of the follow-
ing five layers (see Figure 3):

1. A reading layer where the input P ∈ A∗G is stored.

2. A machine MPATH which constructs an arbitrarily long one-sided non-
intersecting path starting from 1G.

3. A machineMVISIT which is able to visit iteratively all the elements of Bn

for n ∈ N starting with n initially assigned to 1 (n← 1).

4. A layer which serves as a nexus between the first layer and the fifth.

5. A layer which simulates T in the one-sided path created byMPATH.

We begin by describing MPATH. Let S ⊂ G be a finite set of generators,
let S ∶= S ∪ S−1 = {g1, g2, . . . , gk, gk+1, . . . g2k} where gk+i = g−1i and consider
the G-machineMPATH ∶= (Q,Σ,⊔, q0, F,S, δ) where Q ∶= {I,B} ∪ (S × {←,→}),
Σ = ({⊔,⊳} ∪ S) × {⊔,×} × ({⊔} ∪ S), q0 = I, F = ∅ (we force the machine to
loop), and δ is given by the following rules where ∗ stands for an arbitrary fixed
symbol.

δ((⊔,⊔,⊔), I) = ((⊳,×, g1), g←1 , g1).
δ((⊔,⊔,⊔), g←i) = ((gi,×,⊔), g→1 ,1G).
δ((∗1,×,∗2), g→i) = ((∗1,×, gi), g←i , gi).
δ((∗1,×,∗2), g←i) = ((∗1,×,∗2),B, g−1i).

δ((gj ,×, gi),B) =
⎧⎪⎪⎨⎪⎪⎩
((gj,×, gi), g→i+1,1G), if i < 2k
((⊔,⊔,⊔),B, g−1j), if i = 2k.

12

δ((⊳,×, gi),B) = ((⊳,×, gi), g→i+1,1G), if i < 2k
The rules from δ codify a backtracking in G which marks a one-sided non-

intersecting infinite path in G. The states I and B stand for initialization and
backtracking respectively. The elements from Σ are triples (a1, a2, a3) which
indicate the following information: My left and right neighbors are a1 and a2
respectively and I belong to the path if a2 = ×. The first rule initializes the
infinite path by using the symbol ⊳ to indicate that there is no element to the
left, marks the identity of the group as part of the path by using × and sets
the next element in the direction g1. The second and third rules mark the left
and right neighbors respectively and move to the next position. Rule 4 deals
with the case of reaching a position already marked and going back. Rule 5 and
6 search the next available direction which potentially admits an infinite path
and backtrack if every position has already been searched. Rule 6 lacks a case
where i = 2k on purpose because such a state is never reached as the group is
infinite.

Next we construct MVISIT that visits all elements of every ball Bn in G.
It suffices to construct it as a multiple head G-machine with three layers as
follows: The first layer runs MPATH. The second layer makes use of the path
defined byMPATH to simulate a counter which has value n ∈ N – any one-sided
Turing machine can be simulated in the path by identifying the instructions
L,R with the first and third coordinates of Σ. The third layer runs another
copy of MPATH which is allowed only to run over words of length n. This is
achieved by using the counter in second layer to measure the length of the path
visited by the third layer and restrict it to be less than n. Each time the whole
ball Bn is visited (that is, ((⊳,×, g2k),B) is reached in the third layer) then the
counter in the second layer increments n← n+1 and the third layer starts anew.
If at a given time the first layer which constructs the one-sided path backtracks
until reaching a cell used by the counter in the second layer then the second and
third layers are erased and restart. As the group is infinite, then by choosing
an adequate number of computation steps the path generated byMPATH in the
first layer is arbitrarily long, and thus, the head of the third tape is able to visit
every element of Bn for arbitrarily big n.

Finally, we describe the functioning ofM. The second and third layers run
independently as described above. Whenever the machineMVISIT arrives at a
position where the first layer is not marked by ⊔, the head at the fourth layer
follows the path w marked from 1G by the first layer of MVISIT and writes it
along with the symbol a in the sixth layer. That is, the coding (w,a) is added to
the simulated reading tape of the fifth layer, then it marks position w as already
visited (visited symbols count as reading ⊔ in the first layer) and returns to 1G.
The fifth layer consists of a reading tape where the input written by the fourth
layer is stored and a working tape which simulates T over that input. If a given
time the fourth layer extends the pattern coding written in the reading tape of
the fifth layer, then the working tape of the fifth layer erases everything and
begins anew. If in any moment the end of the simulated path created by the
second layer backtracks until reaching a cell used by the written portion in the

13

simulated tape in the fifth layer, then the content of all the other tapes is erased
and they start anew. M accepts if and only if the simulated machine T in the
fifth layer reaches an accepting state.

AsMPATH is able to construct arbitrarily long one-sided and non-intersecting
paths, there is a finite number of computation steps such thatMVISIT will visit
all of supp(P) and thus the fourth layer will write a consistent pattern coding
c = (wi, ai)1≤i≤n which is accepted in the fifth layer if and only if P = Π(c) ∈ F .
By considering a path which has length at least two times the running time of
all the other algorithms combined we deduce that if P ∈ F then M accepts.
Conversely, if P ∉ F , as F is maximal, then P ∈ L(X). As every Q ⊏ P is also in
L(X) then in any step of the computation the machine T in the fifth layer can
not accept as it works on a coding of a pattern Q ⊏ P . And this would mean
that P belongs to F . These two statements imply thatM recognizes F .

⊳

Layer 5 T

{ ⊳ (ǫ ,) (s1 ,) ⋯
Writing tape of T .

⊳ ⋯
Working tape of T .

Layer 4 Nexus

⊳

×
Bn

Layer 3 MV ISIT

⊳ ×××
××

Layer 2 MPATH

P

Layer 1 Reading

Layer 3.1 MPATH

⊳ × × ×
× ×

Layer 3.2 Counter

⊳
n = 1{ ⊳
×

Bn

Layer 3.3 M′
PATH

Figure 3: Construction of the machineM as a multiple head G-machine.

We have shown that every Z-effective subshift is G-effective, now we show
that the class of G-effective subshifts is strictly bigger for finitely generated
groups with undecidable word problem. Recall that X≤1 is not Z-effective in
this case (Proposition 2.3)

14

Proposition 2.7. X≤1 is G-effective for every finitely generated group G.

Proof. A G-machine can be constructed that accepts all forbidden patterns. By
usingMVISIT as in the last theorem we visit all elements in Bn for n ∈ N. If one
symbol 1 is found, erase it and move to a warning state. If another symbol 1 is
found, accept the pattern as forbidden.

2.3 Groups with decidable word problem

Theorem 2.8. Let G be a finitely generated group with decidable word problem

and X ⊂ AG a G-effective subshift. Then X is a Z-effective subshift.

Proof. Let G be generated by the finite set S. As the word problem is decidable
Proposition 2.1 implies that there is a Turing machine that decides whether a
pattern coding is consistent. Thus it suffices to show there is another Turing
machine which recognizes all consistent pattern codings of forbidden patterns.

Let M the G-machine which recognizes F ⊆ A∗G such that X = XF . Using
the Turing machine which decides the word problem over all words of length
n ∈ N it is possible to codify the finite graph Bn ⊂ Γ(G,S) in the tape of a
Turing machine. It is also possible to simulate the functioning ofM on Bn by
codifying the vertex where the head is located and simulating the moves in S
by changing the position of the head accordingly.

Now let be c = (wi, ai)1≤i≤n a consistent pattern coding and consider a vari-
able N ∈ N and assign initially N ← max1≤i≤n ∣wi∣. As the pattern coding is
consistent it is possible to simulate BN and write Π(c) over it. If the simulation
ofM over this initial pattern in BN accepts it means the pattern lives in F and
thus the algorithm accepts. If the simulation eventually needs to move outside
BN then it restarts the same procedure with N ←N + 1.

Using these two machines we can construct one that accepts only if either
the pattern coding is inconsistent or if it belongs to F , thus X is Z-effective.

Remark The previous result shows that in terms of effectiveness, G-effective
subshifts are the G-subshifts defined by a set of forbidden patterns that can be
recognized – in the sense of pattern codings – by a Turing machine which has
access to an oracle for WP (G). This could have been provided as the initial
definition but it’s not as natural as using G-machines because it is needed to
code the patterns instead of just writing them on the tape. Nevertheless, this
characterization is extremely useful in order to show that a G-subshift is G-
effective.

Remark This last remark allows us to say that the G-recognizable condition
in the definition of G-effectiveness can be replaced by G-decidable. Indeed, by
replacing a pattern P ∈ AS by all patterns with support Bn, S ⊂ Bn, which
contain P , one can transform an enumeration of patterns by an increasing enu-
meration that defines the same G-subshift. Nevertheless, this new G-decidable
set is not necessarily maximal.

15

In view of this result, if the word problem of G is decidable, we will speak
simply of effective subshifts without making reference to which definition we are
using and thus recovering the original notation for effectiveness in Z.

2.4 Relation between effectiveness and other classes

It has been shown that Z-effective subshifts defined over a group G are always
G-effective, and that the reciprocal holds only for groups with decidable word
problem. The inclusion is strict as X≤1 provides an example of a G-effective
subshift which is not Z-effective. One might wonder about the relation between
other classes such as the class of G-subshifts of finite type or the class of sofic
G-subshifts. In order to study this it is necessary first to state some properties
of effectiveness.

Proposition 2.9. The classes of Z-effective and G-effective subshifts are closed

under factors.

Proof. Let X ⊂ (AX)G be a Z-effective subshift and φ ∶ X ↠ Y be a factor code.
There is then a local function Φ ∶ (AX)F → AY for F ⊂ G a finite set such that
φ = Φ∞. Consider a pattern coding c = (wi, ai)1≤i≤n with ai ∈ AY . W.l.o.g we
can assume that each symbol a ∈ AY has a preimage under Φ and thus we can
associate to each (wi, ai) a new consistent pattern coding (wif, bi,f)f∈F such
that Π((wif, bi,f)f∈F) ∈ Φ−1(ai). As F is finite and ∀a ∈ AY , ∣Φ−1(a)∣ < ∞ this
can be done algorithmically. By doing this for every pair (wi, ai) we obtain a
pattern coding of a preimage of c. Now construct algorithmically each of these
possible pattern codings – they are finite – and run on each one of them the
algorithm which recognizes either an inconsistent pattern coding or one that
codifies an elements of FX ⊂ (AX)∗G such that X = XFX

. Accept if and only if
the previous algorithm accepts in every case.

The set of patterns associated to consistent pattern codings where this al-
gorithm accepts defines a set FY and we claim Y = YFY

. If y ∈ Y there is
x ∈ X with φ(x) = y. Let P ⊏ y. then x∣supp(P)F ∉ FX is eventually codi-
fied and the algorithm cannot accept, thus P ∉ FY and y ∈ YFY

. Conversely, if
y ∈ YFY

that means that ∀n ∈ N y∣Bn
∉ FY so there exists an associated preimage

Qn ∉ FX . Consider a sequence (xn)n∈N of x ∈ (AX)G such that (xn)∣BnF = Qn.
By compacity there is a subsequence which converges to x ∈ (AX)G. As for
each n ∈ N x∣BnF ∉ FX and Bn ↗ G we have that x ∈ XFX

= X and thus as
φ(xn)∣Bn

= (yn)∣Bn
we have by continuity of φ that y = φ(x) ∈ Y .

In the case of a G-effective subshift the proof is the same as it just adds the
power of an oracle for the word problem.

This result also shows that these classes are invariant under conjugacy. Next
we show that the class of sofic G-subshifts is contained in the class of G-effective
subshifts. As effectiveness is closed under factors, it suffices to prove the inclu-
sion for G-subshifts of finite type.

Theorem 2.10. Let X be a sofic G-subshift, then X is G-effective. Moreover,

if G is recursively presented then X is Z-effective.

16

Proof. As G-effectiveness can be seen as Z-effectiveness where the Turing ma-
chine has access to an oracle for WP (G), it suffices to do the proof in the latter
case assuming just that G is recursively presented. In virtue of Proposition 2.9
we can assume X is a G-SFT and thus there is a finite set F ⊆ (AX)∗G such that
X = XF . Associate with each of these Q ∈ F a consistent pattern coding cQ
such that Q = Π(cQ) and consider the algorithm that does the following given
a pattern coding c = (wi, ai)1≤i≤n: First consider a variable N ← max1≤i≤n ∣wi∣
and simulate the algorithm which recognizes WP (G) up to N steps for each
pair of words w1,w2 in ⋃1≤j≤N (S ∪ S−1)j – that is, recognize up to N steps if
w1w2

−1 =G 1G. If this algorithm returns that w1 =G w2 in less than N steps
then write w1 ∼N w2 and close ∼N symmetrically and transitively so that it
becomes an equivalence relation. Consider ΓN ∶= ⋃1≤j≤N (S ∪ S−1)j/ ∼N and
assign to each equivalence class of wi in ΓN the symbol ai. If two different sym-
bols are assigned to a same equivalence class the pattern is inconsistent and the
algorithm accepts. If not, for each v ∈ ⋃1≤j≤N (S ∪ S−1)j and cQ = (ui, bi)1≤i≤m
for Q ∈ F consider vcQ = (vui, bi)1≤i≤m and check if every word vui is contained
in an equivalence class of ΓN . If it happens to be the case, search if for every
i the equivalence class of vui has the symbol bi assigned. If it is the case the
algorithm accepts, if not, it assigns N ← N + 1 and repeats the procedure.

This algorithm recognizes all inconsistent pattern codings and all consistent
patterns which contain a Q ∈ F . Indeed, as supp(Π(c)) ⊂ Bmax1≤i≤n ∣wi∣ and
WP (G) is recognizable there is aM ∈ N such that all the identifications amongst
elements of length at most max1≤i≤n ∣wi∣ are found and thus if there is Q ∈ F
such that Q ⊏ Π(c), then it is found before step M +1. Conversely, if Π(c) does
not contain any pattern in F the algorithm will never accept.

The previous theorem lets us construct the following diagram between these
classes.

Sofic Z-effective G-effective
r.p

decidable WP

Figure 4: Inclusion relations between different classes of G-subshifts for a finitely
generated group G. Inclusion represented by a dashed arrow only holds for
recursively presented groups, and inclusion represented by a dotted arrow only
for groups with decidable word problem.

17

3 Groups with G-effective subshifts which are

not sofic.

An interesting question with respect to Figure 4 is if the inclusion of sofic G-
subshifts with respect to G-effective subshifts is always strict. Proposition 2.3
together with Theorem 2.10 allows to give a partial answer to that question.

Theorem 3.1. For every finitely generated and recursively presented group G

with undecidable word problem the G-subshift X≤1 ⊂ {0,1}G is not sofic.

In [10], the authors define the special symbol property for a group G as the
property of the one-or-less G-subshift X≤1 being sofic. They prove that groups
satisfying special symbol property are finitely generated (Proposition 1.6) and
give several examples of groups with this property (Section 4). Theorem 3.1
provides a wide class of finitely generated groups that do not enjoy the special
symbol property: those which are recursively presented and with undecidable
word problem.

Sofic Z-subshifts admit a characterization with finite automata [18]. For
higher dimensional sofic Z

d-subshifts no characterization is known, but some
examples of effective subshifts which are not sofic are known. In this section
we do a quick review of a famous example for Z

2 and generalize the essential
part of the proof in order to construct an example of G-effective but not sofic
G-subshift for infinite amenable groups. We also construct another example to
give the same result for groups having more than two ends.

3.1 The Zd case

Let A = { , , } and consider the following set of forbidden patterns:

Fmirror ∶= { , , , } ∪ ⋃
w∈A∗

{ w , w w̃ , w w̃ } ,
where w̃ denotes the mirror image of the word w, which is the word of length∣w∣ defined by (w̃)i = w∣w∣−i+1 for all 1 ≤ i ≤ ∣w∣.
Denote by Xmirror the subshift XFmirror

⊂ AZ
2

. This Z
2-subshift, called the

mirror subshift, contains the Z
2-fullshift { , }Z2

as a subsystem, but also
all configurations that respect the following conditions: a symbol forces all
symbols in the same column to be also symbols; there is at most one column
of symbols; if a symbol is present on a row, then and symbols of
this row are arranged symmetrically with respect to the symbol.

18

Figure 5: One configuration in the two-dimensional mirror subshift Xmirror.

The column of , if it appears in a configuration, behaves as a mirror
towards the two half planes it defines, hence the name of the subshift. Obviously
this subshift is effective – we say plainly effective asWP (Z2) is decidable – since
the set of forbidden patterns Fmirror can be effectively enumerated, but one can
prove it is not sofic by a direct combinatorial argument.

Proposition 3.2. The mirror subshift Xmirror ⊂ AZ
2

is not sofic.

Proof. Consider S = {(0,1), (1,0)} and suppose that the mirror subshift is sofic

on Z
2, then there exists a S-nearest neighbor Z

2-SFT X ⊂ BZ
2

on some finite
alphabet B and a 1-block factor code φ ∶ X ↠Xmirror.

Let n be a positive integer and define Λn ∶= [−n,n]2. Notice that ˚Λn+1 = Λn

and thus ∂Λn+1 = Λn+1∖Λn. In LΛn
(Xmirror) there are exactly 2(2n+1)

2

different
patterns that do not contain a . These patterns are images of patterns of X
with support [−n,n]2 under φ and are surrounded with a crown with support
∂Λn+1. There are at most ∣B∣4(2n+2) different crowns.

Consider now all configurations x ∈ Xmirror in which a mirror appears at
the origin, that is to say x(0,j) = for all j ∈ Z. For n large enough one has

∣B∣4(2n+2) < 2(2n+1)2 , consequently there exist two distinct patterns P1 and P2

with support Λn that appear respectively in configurations y1 and y2 of Xmirror

– assume that y1 and y2 are such that (x1)∣Λn+(n2,0) = P1 and (x2)∣Λn+(n2,0) = P2

– and such that there exist two distinct configurations x1, x2 in the extension
X of Xmirror with the same crown – (x1)∣∂Λn+1+(n2,0) = (x2)∣∂Λn+1+(n2,0) – and
such that y1 = φ(x1) and y2 = φ(x2). As X is nearest neighbor we can construct

a new configuration ỹ ∈ AZ
2

defined by

ỹz = { (P2)z−(n2,0), if z ∈ Λn + (n2,0)(y1)z otherwise,

in other terms ỹ is the same configuration as y1 except that pattern P1 have been
replaced by pattern P2. On the one hand in configuration ỹ a mirror appears
at the origin, but since P1 and P2 have been chosen distinct ỹ ∉Xmirror. On the

19

other hand the configuration x̃ ∈ BZ
2

defined by

x̃z = { (x2)z−(n2,0), if z ∈ Λn + (n2,0)(x1)z otherwise,

does not contain any forbidden pattern for X – that have been chosen nearest
neighbor – and satisfies ỹ = φ(x̃), which proves that ỹ ∈ Xmirror hence raising a
contradiction.

y1 ∈Xmirror

P1P̃1

y2 ∈Xmirror

P2P̃2

ỹ ∉Xmirror

P2P̃1

x1 ∈X

Q1

x2 ∈X

Q2

x̃ ∈X

Q2

↓ φ ↓ φ ↓ φ

Figure 6: Two configurations y1 and y2 in the mirror subshift Xmirror with a
mirror at the origin, and that differ on Λn+(n2,0), but whose pre-images in the
nearest neighbor Z2-SFT extension X are the same on ∂Λn+1. If it were so, one
could construct a configuration ỹ – by replacing (y1)∣Λn+(n2,0) by (y2)∣Λn+(n2,0)

in configuration y1 – which belongs to the image φ(X) but does not belong to
Xmirror. This proves Xmirror is not sofic.

Remark One can define mirror subshifts in any dimension as the union of

the Z
d-fullshift { , }Zd

and the set of configurations x ∈ AZ
d

with the
hyperplane {i} × Zd−1 filled with symbols for some i ∈ Z, and such that
x∣{i+j}×Zd−1 = x∣{i−j}×Zd−1 for every j ∈ Z. Then Proposition 3.2 can be general-
ized to any dimension.

The key ingredients in the proof of Proposition 3.2, with the aim of general-
izing the result to a bigger class of finitely generated groups, are the following:

1. A G-effective subshift X with highly non-local conditions, that is to say
there exist arbitrarily distant elements in G that are forced to share the
same symbol;

20

2. The existence of an increasing sequence of finite sets Fn in G – in Z
2 they

are the square balls Λn – whose border ∂Fn grows slower than the sets
themselves.

3.2 Amenable groups

In this section we prove that any infinite and finitely generated amenable group
admitsG-effective subshifts that are not sofic (Theorem 3.4). A groupG is called
amenable if there exists a left-invariant finitely additive probability measure
µ ∶ P(G) → [0,1] on G. The amenability of a group has many equivalent
definitions – many of which can be found in [7]. From a combinatorial point
of view the Følner condition states that a group is amenable if and only if it
admits a Følner net, that is, a net (Fα)α∈J of non-empty finite sets Fα ⊂ G such
that ∀g ∈ G:

lim
α

∣Fα ∖Fαg∣∣Fα ∣ = 0.

In the case of a finitely generated group –as they are countable– the net
can be just taken to be a sequence and thus amenability can be shown to be
equivalent to the fact that infF⊂G,∣F ∣<∞ ∣∂F ∣/∣F ∣ = 0. There is a sequence of sets
such that their boundary grows slower than themselves.

In order to generalize the proof to this setting the mirror subshift defined
in Section 3.1 is the natural candidate, but its definition requires the existence
of a torsion free element in the group. One way to get over this constraint
would be to consider the symmetric subshift Xsym ⊂ AG defined on alphabetA = {0,1,⊠} as the set of x ∈ AG such that ∣{g ∈ G ∶ xg = ⊠}∣ ≤ 1 and if for
ḡ ∈ G xḡ = ⊠ then ∀h ∈ G we have xḡh = xḡh−1 . That is, the mirror ⊠ is now
located in only one position and it forces elements to carry the same symbol as
their inverses with respect to the position of the mirror. The problem with this
construction is that the inverse of a ball gBn is not necessarily a ball for the
same set of generators, and can behave badly. An analogous proof to the one of
Theorem 3.4 can be done using Xsym in the case that G satisfies the following
condition: ∃α ∈ [0,1) such that ∀F ⊂ G with F finite, 1G ∈ F and F = F −1 then
∃g ∈ G ∶ ∣gFg ∩ F ∣ ≤ α∣F ∣. In other words, that there is an element g ∈ G such
that the inverse of a big enough ball B centered in g does not intersect itself in
more than a bounded constant proportion.

We get rid of this additional condition by considering instead a new construc-
tion which enforces two sequences of arbitrarily disjoint balls (Bn) to mimic each
other in pairs.

Definition Let G be an infinite group generated by a finite set S and letG = (gi)i∈N ⊂ G and H = (hi)i∈N ⊂ G be two sequences such that:

• The sequences of sets (giBi)i∈N and (hiBi)i∈N are pairwise disjoint

∀i ≠ j, hiBi ∩ hjBj = giBi ∩ gjBj = hiBi ∩ gjBj = hiBi ∩ giBi = ∅.

21

• ∀i ∈ N, 1G ∉ giBi ∪ hiBi.

We define the ball mimic subshift XB(G,H) ⊂ {0,1,⊠}G as the G-subshift
such that in every configuration x ∈ XB(G,H) the symbol ⊠ appears at most
once, and if for ḡ ∈ G xḡ = ⊠ then ∀i ∈ N σ(ḡgi)−1(x)∣Bi

= σ(ḡhi)−1(x)∣Bi
.

Formally XB(G,H) ∶= XF where F = {Πg,Υi,s∣g ∈ G ∖ {1G}, i ∈ N, s ∈ Bi}
where supp(Πg) = {1G, g}, supp(Υi,s) = {1G, gis, his}, Πg

1G
= Πg

g = Υi,s
1G
= ⊠,

Υi,s
gis
≠ Υi,s

his
.

⊠

g1

h1 g2

h2

g3

h3

⋰

⋰

Figure 7: The ball mimic subshift given by two sequences (gi)i∈N and (hi)i∈N. If
the symbol ⊠ appears in position ḡ, then ∀i ∈ N, the patterns xḡgiBi

and xḡhiBi

are identical.

Proposition 3.3. Let G be an infinite group and S ⊂ G a finite set of genera-

tors. Then there are sequences Ḡ, H̄ such that XB(Ḡ, H̄) is G-effective.
Proof. We construct a G-machine which recognizes exactly the forbidden pat-
terns Πg and Υi,s given in the definition. In the previous section we showed that
G-machines are capable of running Turing machines in a 1-sided tape simulated
by MPATH and are also able via MV ISIT to visit every element in Bn for a
given set of generators S. In that sense, we can write loosely the functioning of
the G-machine as described by Algorithm 1.

In this algorithm we explicitly did two abuses of notation to simplify the
presentation. The first is that whenever MV ISIT is used to visit all the ele-
ments of a ball Bn and an instruction is carried over them, we assume we carry
the instruction only once (and thus, we never write the symbol × in the auxil-
iary pattern Q). The second abuse of notation is that whenever we check the
condition Phif ≠Qf we assume that neither of the two symbols is ⊔. If Phif or

22

Data: P ∈ {0,1,⊠}∗G
1 ḡ ← 1G, n← 1;
2 while True do

3 Visit all h ∈ Bn. If Ph = ⊠ then ḡ ← h, Break;
4 n← n + 1;
5 end

6 i← 1, Pḡ ← ×;
7 while True do

8 Visit all h ∈ ḡBi. If Ph = ⊠ Accept;

9 Q← ⊔Bi , m ← 1;
10 while True do

11 Visit all h ∈ ḡBm. if Ph ≠ × then

12 gi ← h;
13 Visit all f ∈ giBi. If ∀f ∈ giBi Pf ≠ × Break;

14 end

15 m←m + 1;

16 end

17 Visit all f ∈ Bi. Qf ← Pgif , Pgif ← ×;
18 m ← 1;
19 while True do

20 Visit all h ∈ ḡBm. if Ph ≠ × then

21 hi ← h;
22 Visit all f ∈ hiBi. If ∀f ∈ hiBi Pf ≠ × Break;

23 end

24 m←m + 1;

25 end

26 Visit all f ∈ Bi. if Phif ≠ Qf then

27 Accept;
28 else

29 Phif ← ×;
30 end

31 i← i + 1;

32 end

Algorithm 1: Recognizing translations of F

23

Qf = Pgif are ⊔ that means that the initial pattern did not contain that position
in its support and thus Phif ≠ Qf is assumed by default to be False.

The loop in line 2 backtracks over G in order to find a ⊠, if it is found,
its position is stored in the variable ḡ. In the next loop, line 8 continues to
backtrack over the group to find ⊠, if it is found the algorithm accepts, thus
identifying all translations of patterns of the form Πg. The marking of ḡ with
a × ensures that 1G does not belong to the sequence of balls. Lines 10 and 19
find sequences gi, hi satisfying the requirement that (giBi)i∈N and (hiBi)i∈N are
pairwise disjoint. Finally, line 27 accepts if giBi ≠ hiBi and thus it identifies all
patterns Υi,s as above. Also note that the loop in line 7 behaves exactly the same
after the element ḡ is found. Thus the sequences Ḡ = (ḡ−1gi)i∈N, H̄ = (ḡ−1hi)i∈N
are well defined, satisfy the requirements and in consequence XB(Ḡ, H̄) is G-
effective.

Theorem 3.4. Let G be an infinite and finitely generated amenable group.

Then for all sequences G,H as described above the ball mimic shift XB(G,H) is
not sofic.

Proof. Consider a finite set S ⊂ G which generates G.
First note that for any finite set F then ∂F = ⋃s∈S F ∖Fs, indeed, if g ∈ ∂F

then there exists s ∈ S such that gs ∉ F and thus g ∈ F ∖ Fs, conversely, if
g ∈ ⋃s∈S F ∖ Fs there is s ∈ S such that g ∈ F ∖Fs and thus gs ∉ F̊ but g ∈ F .

As explained in [7] one of the characterizations of G being amenable, is that
for every finite set K and ε > 0 there exists a finite set F such that

∀k ∈K,
∣F ∖Fk∣
∣F ∣ < ε

Suppose XB(G,H) is sofic, then there exists an S-nearest neighbor G-SFT
extension X ⊂ BG and a 1-block factor code φ ∶ X ↠XB(G,H).

By choosing K = S and ε = log(2)
∣S∣log(∣B∣)

we obtain that there is F such that:

∣∂F ∣
∣F ∣ =

∣⋃s∈S F ∖ Fs∣∣F ∣ ≤ ∑
s∈S

∣F ∖ Fs∣
∣F ∣ < ∣S∣ log(2)

∣S∣log(∣B∣) =
log(2)
log(∣B∣)

Note that this property is invariant by translation, that is, if F satisfies this
property, then gF also does for each g ∈ G. By choosing a large enough n ∈ N
such that F ⊂ Bn and 1G ∉ gnBn then gnF ⊂ gnBn and 1G ∉ gnF .

Putting everything together, we can find a set F such that ∣B∣∣∂F ∣ < 2∣F ∣ and
with the properties that 1G ∉ F , ∃n ∈ N such that F ⊂ gnBn and F ∩ hnBn = ∅.

Consider the set of patterns t ∶ 1G ∪ F → {⊠,0,1} such that t1G = ⊠ and
t(F) ∈ {0,1}F and note that there are exactly 2∣F ∣ patterns like that. As F ⊂
gnBn then each cylinder [t]1G is non-empty in XB(G,H). Consider for each
t a configuration yt ∈ [t]1G ∩XB(G,H) and xt ∈ X ⊂ BG with φ(xt) = yt. As∣B∣∣∂F ∣ < 2∣F ∣ by pigeonhole principle there are xt1 ≠ xt2 such that xt1 ∣∂F = xt2 ∣∂F
and yt1 = φ(xt1) ≠ φ(xt2) = yt2 . As X is a nearest neighbor G-SFT we can
construct x̃ ∈ X such that x̃∣F = xt1 ∣F and x̃∣G∖F = xt2 ∣G∖F . As φ is a 1-block

24

code we get φ(x̃)∣F = yt1 ∣F and φ(x̃)∣G∖F = yt2 ∣G∖F . Consider ḡ ∈ Bn such that
gnḡ ∈ mathringF with yt1gn ḡ ≠ y

t2
gnḡ

then we get that φ(x̃)1G = ⊠ and

(yt1)gnḡ = φ(x̃)gnḡ ≠ φ(x̃)hnḡ = (yt2)hnḡ = (yt2)gnḡ
And thus φ(x̃) ∉XB(G,H) hence raising a contradiction.

We have thus shown that for each infinite, finitely generated and amenable
group the class of G-effective subshifts is strictly larger than the class of sofic
G-subshifts. The class of amenable groups is quite large. It contains all abelian
groups – and thus, this theorem implies the previous result for Z

d – more-
over, it contains all virtually nilpotent groups – that is, groups with polynomial
growth – and even all groups with sub-exponential growth such as the Grig-
orchuk group [13]. There are also some groups with exponential growth which
are amenable. For example, it is known that all solvable groups are amenable
and thus the infinite lamplighter group Z2 ≀ Z or the meta-abelian Baumslag-
Solitar groups (BS(1, n))n∈N are all amenable and with exponential growth if
n ≥ 2.

A large class of non-amenable groups is given by those that contain a non-
abelian free subgroup. In particular a very well known class are the virtually
free groups. We use a different technique to show that the same result proven
here holds for a class larger than the virtually free groups.

3.3 On free groups

In the case of finitely generated free groups it is straightforward to show the ex-
istence of effective – the word problem for free groups is decidable – G-subshifts
which are not sofic.

Consider the symmetric subshift Xsym ⊆ {0,1,⊠}G given by the set of con-
figurations such that ∣{g ∈ G ∣ xg = ⊠}∣ ≤ 1 and if xḡ = ⊠ then ∀h ∈ G xḡh = xḡh−1 .
It is easy to see that Xsym is G-effective for every finitely generated group G.
Here we show it cannot be sofic.

Proposition 3.5. For every finitely generated free group Fk where k ≥ 1 Xsym

is not sofic.

Proof. As Fk = ⟨S⟩ where S = {s1, . . . , sk} the Cayley graph Γ(Fk, S) is a 2k-
regular infinite tree. Thus Γ(Fk, S)∖{1G} has 2k infinite connected components.
In particular for s = s1 the set of elements (sn)n∈N and (s−n)n∈N live in disjoint
components C1 and C2. Suppose Xsym is sofic and thus there is a S-nearest
neighbor G-SFT extension X ⊂ BFk and a 1-block code φ ∶ X ↠ Xsym. As(sn)n∈N and (s−n)n∈N live in disjoint components it is possible to assign any
value to (ysn)n∈N ∈ {0,1}N and still fill the missing coordinates to construct
y ∈ Xsym ∩ [⊠]1G . Moreover as for x ∈X , x1G can take at most ∣B∣ values, then
by pigeonhole principle there must be y1, y2 ∈ Xsym ∩ [⊠]1G such that there is
n ∈ N with (y1)sn ≠ (y2)sn and x1, x2 ∈ X with (x1)1G = (x2)1G , φ(x1) = y1
and φ(x2) = y2. As X is S-nearest neighbor it is possible to construct x̃ such

25

that x̃∣C1
= x1 and x̃∣G∖C1

= x2. Consequently as φ is 1-block ỹ = φ(x̃) satisfies
ỹ∣C1

= y1 and ỹ∣G∖C1
= y2. Thus ỹ1G = ⊠ and

ỹsn = (y1)sn ≠ (y2)sn = (y2)s−n = ỹs−n
Consequently ỹ ∉Xsym thus raising a contradiction.

As in the amenable case, we rely also in a subshift with highly non-local
conditions, but in contrast to that problem, here the main ingredient doesn’t
rely on the growth of the border of a finite set, in fact, if k ≥ 2 then for Fk the
quotient ∣∂Bn∣/∣Bn∣ does not go to 0. Instead we rely in the fact that the Cayley
graph can be disconnected by removing a finite set. We take advantage of this
idea in order to generalize this proof to groups with two or more ends.

3.4 Groups having two or more ends

Definition Let G be a group generated by a finite set S ⊂ G. The number of
ends e(G) of the group G is the limit as n tends to infinity of the number of
infinite connected components of Γ(G,S) ∖Bn.

The number of ends is a quasi-isomorphism invariant and thus it does not
depend on the choice of S and is a group invariant. It is also known that for
a finitely generated group G then e(G) ∈ {0,1,2,∞}. Stallings theorem about
ends of groups [27] gives a constructive characterization of the groups satisfying
e(G) ≥ 2. In particular we have e(G) = 2 if and only if G is infinite and virtually
cyclic. If e(G) =∞ Stallings theorem implies that G contains a non-abelian free
group. It also shows that every virtually free group satisfies e(G) ≥ 2.
Theorem 3.6. Let G be a finitely generated group where e(G) ≥ 2 then there

are G-effective subshifts which are not sofic.

Proof. Let S be a finite set of generators for G andN ∈ N such that Γ(G,S)∖BN

contains at least two different infinite connected components C1 and C2.
Let G = (gi)i∈N ⊂ C1 and H = (hi)i∈N ⊂ C2 be sequences of elements with

no repeated elements. We define the mimic subshift X(G,H) ⊂ {0,1,⊠}G that
consists of all configurations containing at most one time the symbol ⊠ and
such that if xg = ⊠ then ∀i ∈ N xggi = xghi

. Formally X(G,H) = XF where F ={Πg,Υi ∣ g ∈ G ∖ {1G}, i ∈ N} where supp(Πg) = {1G, g}, supp(Υi) = {1G, gi, hi},
Πg

1G
= Πg

g = Υ
i
1G
= ⊠, Υi

gi
≠ Υi

hi
.

There exist sequences Ḡ, H̄ such that X(Ḡ, H̄) is G-effective. The algorithm
to construct them is loosely same as the one given for showing the G-effectiveness
of XB(Ḡ, H̄) with the simplification that here we do not need to identify balls
around the sequences, but instead we care that they rest inside a given compo-
nent.

Consider two fixed elements g1 ∈ C1 and h1 ∈ C2. A G-machine which
recognizes all translation of the forbidden patterns Πg and Υi is given by the
following: it first visits all of (Bn)n∈N in search of a symbol ⊠. If it is found, we
mark its position ḡ and we alternate two procedures: in the first one we continue

26

BN⊠
h1

g1 h2

g2
h3

g3

C1 C2

⋯ ⋯

Figure 8: The mimic subshift given by two sequences (gi)i∈N and (hi)i∈N. If
the symbol ⊠ appears in position ḡ, then ∀i ∈ N, the symbols xḡgi and xḡhi

are
identical.

visiting (Bn)n∈N in search of another ⊠, if it is found the algorithm accepts, thus
recognizing all translation of patterns Πg. In the second procedure we set i← 1
and mark ḡBN with a special symbol ⊗ and do the following in a loop. First
we check ḡgi and ḡhi. If they are different the algorithm accepts a forbidden
pattern, and if not, it marks them with ×, assigns i ← i + 1 and visits every
element usingMV ISIT starting from those positions with the restriction of not
being able to pass by elements marked by ⊗. Whenever new elements g∗ and
h∗ not marked by × are found in C1 and C2 respectively we set gi ∶= ḡ−1g∗,
hi ∶= ḡ−1h∗ and iterate the loop.

As the backtracking is not allowed to pass by elements in Bn, each one of
them rests inside their components C1 and C2 respectively, and the omission
of elements marked by × implies that the sequences are of distinct elements.Ḡ = (gi)i∈N and H̄ = (hi)i∈N thus satisfy the requirements and the G-machine
described above is able to detect every translation of the patterns Υi, and thus
X(Ḡ, H̄) is G-effective.

We argue by contradiction and suppose that X(Ḡ, H̄) is also a sofic G-
subshift. W.l.o.g we can choose a S-nearest neighbor G-SFT extension X ⊂ BG

given by a 1-block code φ ∶X ↠ X(Ḡ, H̄).
As G is finitely generated then BN is finite and there are at most ∣B∣∣BN ∣

possible configurations t for this ball such that φ([t]1G) ⊂ [⊠]1G . If y ∈X(Ḡ, H̄)
satisfies that y1G = ⊠ then the symbols (ygi)i∈N can be arbitrarily chosen in{0,1}N and construct a valid point. By pigeonhole principle there exist y1, y2 ∈[⊠]1G ∩ X(Ḡ, H̄) such that ∃i ∈ N (y1)gi ≠ (y2)gi and x1, x2 ∈ X satisfying
φ(x1) = y1, φ(x2) = y2 and (x1)∣BN

= (x2)∣BN
.

As X is S-nearest neighbor the possible configurations on C1 and C2 depend
exclusively on the configuration of BN and thus one can construct x̃ ∈ X such
that:

27

x̃g = { (x1)g, if g ∈ C1(x2)g, if g ∈ G ∖C1

Thus ỹ = φ(x̃) satisfies that ỹ∣1g = ⊠, ỹ∣C1
= (y1)∣C1

and ỹ∣C2
= (y2)∣C2

. Thus

ỹgi = (y1)gi ≠ (y2)gi = (y2)hi
= ỹhi

And thus ỹ ∉ X(Ḡ, H̄) hence giving the desired contradiction.

Note that Theorem 3.6 implies that every virtually free group admits ef-
fective subshifts which are not sofic – we say effective as the word problem is
context free and thus decidable for virtually free groups [20].

Conclusion

We defined a natural notion of effectiveness for G-subshifts over finitely gen-
erated groups, by generalizing classical Turing machines so that they use the
group as the tape. The class of effective subshifts it defines extends the classical
notion – which we have proved makes only sense for groups with decidable word
problem – and contains the class of sofic G-subshifts. We have also shown that
for a finitely generated group G there exist G-effective subshifts which are not
sofic in the following three cases:

1. recursively presented groups with undecidable word problem,

2. infinite amenable groups,

3. groups which have two or more ends.

Some groups which do not necessarily fall under these categories are coun-
terexamples to the von Neumann conjecture, that is, groups which are not
amenable but do not contain F2 the free group on two generators as a subgroup.
An uncountable family of non-isomorphic finitely generated counterexamples is
given by the Tarski monster groups found by Ol’shanskii [22], and thus, by car-
dinality, there are some which are not recursively presented and which are not
covered in the scope of our results. A class of finitely presented groups which is
non-amenable and has no free subgroups has been constructed in [23]. For all
these examples there are no known techniques to prove non soficness – at least
to the knowledge of the authors. We end by stating three questions.

Questions

1. Are there infinite and finitely generated groups G s.t. the class of G-
effective subshifts matches with the class of sofic G-subshifts?

2. Are there infinite and finitely generated groups G s.t. the class of Z-
effective subshifts matches with the class of sofic G-subshifts?

28

3. Is the one-or-less G-subshift X≤1 sofic if and only if G has decidable word
problem?

Note that in the case of recursively presented groups, these three questions
can be reformulated. Indeed, a group answering positively the first question
would also answer positively the second. In this context the second question is
different from the first only for groups with undecidable word problem. In the
third question one direction is already proven: soficness implies decidability for
recursively presented groups.

Acknowledgments

The authors would like to thank Yves de Cornulier for interesting discussions
about group properties related to the symmetric subshift and François Dahmani
for sharing his thoughts concerning the soficness of the one-or-less subshift.

References

[1] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern

Approach. Cambridge University Press, 2009.

[2] Nathalie Aubrun and Jarkko Kari. Tiling problems on baumslag-solitar
groups. Preprint, 2013.

[3] Nathalie Aubrun and Mathieu Sablik. Simulation of effective subshifts by
two-dimensional subshifts of finite type. Acta Applicandae Mathematicae,
126:35–63, 2013.

[4] Alexis Ballier and Maya Stein. The domino problem on groups of polyno-
mial growth. arXiv preprint arXiv1311.4222., 2013.

[5] Robert Berger. The Undecidability of the Domino Problem. American
Mathematical Society, 1966.

[6] William W. Boone. The word problem. Proceedings of the National

Academy of Science USA, 44:1061–1065, 1958.

[7] Tullio Ceccherini-Silberstein and Michel Coornaert. Cellular Automata and

Groups. Springer, 2009.

[8] Aubrey da Cunha. Turing machines on cayley graphs. In LevD. Bek-
lemishev and Ruy de Queiroz, editors, Logic, Language, Information and

Computation, volume 6642 of Lecture Notes in Computer Science, pages
84–94. Springer Berlin Heidelberg, 2011.

[9] François Dahmani. private communication.

[10] François Dahmani and Asli Yaman. Symbolic dynamics and relatively hy-
perbolic groups. Groups, Geometry, and Dynamics, 2(2):165 – 184, 2008.

29

[11] Bruno Durand, Andrei E. Romashchenko, and Alexander Shen. Effective
closed subshifts in 1d can be implemented in 2d. In Fields of Logic and

Computation, pages 208–226, 2010.

[12] Anah́ı Gajardo and Jacques Mazoyer. One head machines from a symbolic
approach. Theoretical Computer Science, 370(1-3):34 – 47, 2007.

[13] Rostislav Grigorchuk. Degrees of growth of finitely generated groups, and
the theory of invariant means. Mathematics of the USSR-Izvestiya, 1984.

[14] Mikhail Gromov. Endomorphisms of symbolic algebraic varieties. Journal
of the European Mathematical Society, 1(2):109–197, 1999.

[15] Gustav Hedlund and Marston Morse. Symbolic dynamics. American Jour-

nal of Mathematics, 60(4):815–866, 1938.

[16] Mike Hochman. On the dynamics and recursive properties of multidimen-
sional symbolic systems. Inventiones Mathematicae, 176(1):131–167, 2009.

[17] Mike Hochman and TomMeyerovitch. A characterization of the entropies of
multidimensional shifts of finite type. Annals of Mathematics, 171(3):2011–
2038, 2010.

[18] Douglas A. Lind and Brian Marcus. An Introduction to Symbolic Dynamics

and Coding. Cambridge University Press, 1995.

[19] Roger C. Lyndon and Paul E. Schupp. Combinatorial group theory.
Springer-Verlag, 1977.

[20] David E. Muller and Paul E. Schupp. Groups, the theory of ends,
and context-free languages. Journal of Computer and System Sciences,
26(3):295 – 310, 1983.

[21] Pyotr Novikov. On the algorithmic unsolvability of the word problem in
group theory. Proceedings of the Steklov Institute of Mathematics, 44:143
pp. (Russian), 1955.

[22] Alexander Yu. Ol’shanskii. An infinite group with subgroups of prime
orders. Mathematics of the USSR-Izvestiya, 16(2):279, 1981.

[23] Alexander Yu. Ol’shanskii and Mark V. Sapir. Non-amenable finitely pre-
sented torsion-by-cyclic groups. Publications Mathématiques de l’IHÉS,
96:43–169, 2002.

[24] Michael O. Rabin. Recursive Unsolvability of Group Theoretic Problems.
Annals of Mathematics, 67(1):pp. 172–194, 1958.

[25] R. M. Robinson. Undecidable tiling problems in the hyperbolic plane.
Inventiones Mathematicae, 44:159–264, 1978.

30

[26] Raphael Robinson. Undecidability and nonperiodicity for tilings of the
plane. Inventiones Mathematicae, 12:177–209, 1971.

[27] John R. Stallings. On torsion-free groups with infinitely many ends. Annals
of Mathematics, 88(2):pp. 312–334, 1968.

[28] Benjamin Weiss. Sofic groups and dynamical systems. Sankhyā, Ser. A,
62(3):350–359, 2000.

[29] Asli Yaman. private communication.

31

A Appendix

In this section we give the proof omitted in the article.

Proposition A.1. Let L be a language that can be decided by a multiple head

G-machine. Then L can be decided by a G-machine

Proof. We prove the result for a two heads G-machine, the generalization to an
arbitrary number of heads follows easily. Suppose that a language L is decided
by a two heads G-machineM2 = (Q,Σ,⊔, q0, F,S, δ). We construct the one head
G-machine M = (Q′,Σ′,⊔′, q′0, F ′, S, δ′) as follows. We modify the alphabet in
order to mark the original position – the identity 1G – of the two heads by a
symbol ⊳, and to store the positions h1 and h2 of the two heads in the group
G, by marking the path from 1G to the first head (resp. second head) with
symbols ×i. The generator or generator inverse one should follow to find the
next symbol ×i is also attached to every ×i. The new alphabet will be

Σ′ = Σ2 × (S ∪ S−1 ∪ {⊔})2´¹¹¸¹¹¶
direction to the next ×i

× {×1,⊔} × {×2,⊔}´¹¹¸¹¹¹¶
marked path to the heads

× {⊳,⊔}´¹¹¹¹¹¸¹¹¹¹¶
original position

.

The new blank symbol will be ⊔′ = (⊔,⊔,⊔,⊔,⊔,⊔,⊔). With this new alphabet,
the first head (resp. second head) will be in position g in a configuration c if
and only if cg = (?, ?,⊔, ?,×1, ?, ?) (resp. cg = (?, ?, ?,⊔, ?,×2 , ?)), in other terms
position g is on the path from the identity 1G to the head, but this is the end
of the path.

The head of the new machine will store the states of the two heads we want
to simulate, and also uses its own states for searching for one of the head, moving
back to the identity or updating the positions h1 and h2. The new set of states
will be

Q′ = {qinit, qisearch, qisimul, qiid, qiupdate ∣ i = 1,2} ×Q2,

and we adopt the convention that the new initial state is q′0 = (qinit, q0, q0). The
first step of the new machine will always consists in an initialization

δ ((qinit, q0, q0), (⊔,⊔,⊔,⊔,⊔,⊔,⊔)) = ((q1search, q0, q0), (⊔,⊔,⊔,⊔,×1,×2,⊳),1G) ,
which consist in marking the original position of the computation in the group
with symbol ⊳ – this symbol will never be erased and appears only once – and
stating that the first and second heads are initially both located at this original
position. Then every transition of the two heads machine

δ ((q1, q2), (a1, a2)) = ((q′1, q′2), (b1, b2), (g1, g2))
will be decomposed into the following transitions – by convention, a symbol ?
represents any symbol that is not modified by the machine, and two symbols ?
in a transition rule do not necessarily represent the same symbol – in the one
head machine

32

1. follow the path marked by ×1 until reaching position h1 where the first
head is

δ ((q1search, q1, q2), (?, ?, h1, ?,×1, ?, ?)) = ((q1search, q1, q2), (?, ?, h1, ?,×1, ?, ?), h1) ,
δ ((q1search, q1, q2), (?, ?,⊔, ?,×1, ?, ?)) = ((q1simul, q1, q2), (?, ?,⊔, ?,×1, ?, ?),1G) ,

2. simulate the first head and update h1

δ ((q1simul, q1, q2), (a1, ?,⊔, ?,×1, ?, ?)) = ((q1update, q′1, q2), (b1, ?, g1, ?,×1, ?, ?), g1) ,
δ ((q1update, q′1, q2), (?, ?,⊔, ?,⊔, ?, ?)) = ((q1id, q′1, q2), (?, ?,⊔, ?,×1, ?, ?),1G) ,
δ ((q1update, q′1, q2), (?, ?, g′1, ?,×1, ?, ?)) = ((q1id, q′1, q2), (?, ?,⊔, ?,×1, ?, ?),1G) ,

3. go back to position ⊳

δ ((q1id, q′1, q2), (?, ?, g′1, ?,×1, ?,⊔)) = ((q1id, q′1, q2), (?, ?, g′1, ?,×1, ?,⊔), (g′1)−1) ,
δ ((q1id, q′1, q2), (?, ?, ?, ?,×1 , ?,⊳)) = ((q2search, q′1, q2), (?, ?, ?, ?,×1, ?,⊳),1G) ,

4. follow the path marked by ×2 until reaching position h2 where the first
head is

δ ((q2search, q′1, q2), (?, ?, ?, h2, ?,×2, ?)) = ((q2search, q′1, q2), (?, ?, ?, h2, ?,×2, ?), h2) ,
δ ((q2search, q′1, q2), (?, ?, ?,⊔, ?,×2, ?)) = ((q2simul, q′1, q2), (?, ?,⊔, ?,×1, ?, ?),1G) ,

5. simulate the second head and update h2

δ ((q2simul, q′1, q2), (?, a2, ?,⊔, ?,×1, ?)) = ((q2update, q′1, q′2), (?, a′2, ?, g2, ?,×2, ?), g2) ,
δ ((q2update, q′1, q′2), (?, ?, ?,⊔, ?,⊔, ?)) = ((q2id, q′1, q′2), (?, ?, ?,⊔, ?,×2, ?),1G) ,
δ ((q2update, q′1, q′2), (?, ?, ?, g′2, ?,×2, ?)) = ((q2id, q′1, q′2), (?, ?, ?,⊔, ?,×2 , ?),1G) ,

6. go back to position ⊳

δ ((q2id, q′1, q′2), (?, ?, ?, g′2, ?,×2,⊔)) = ((q2id, q′1, q′2), (?, ?, ?, g′1, ?,×2,⊔), (g′2)−1) ,
δ ((q2id, q′1, q′2), (?, ?, ?, ?, ?,×2 ,⊳)) = ((q1search, q′1, q′2), (?, ?, ?, ?, ?,×2 ,⊳),1G) ,

By giving as set of final states

F ′ = {qinit, qisearch, qisimul, qiid, qiupdate ∣ i = 1,2} ×F 2,

we ensure that the language decided by the G-machineM is L.

33

	1 Generalities
	1.1 Finitely generated groups and computational aspects
	1.2 Symbolic dynamics and subshifts

	2 Effectiveness on finitely generated groups
	2.1 Z-Effectiveness
	2.2 G-Effectiveness
	2.3 Groups with decidable word problem
	2.4 Relation between effectiveness and other classes

	3 Groups with G-effective subshifts which are not sofic.
	3.1 The Zd case
	3.2 Amenable groups
	3.3 On free groups
	

	A Appendix

