
Tree-shifts of finite type

Nathalie Aubrun and Marie-Pierre Béal
∗

Abstract

A one-sided (resp. two-sided) shift of finite type of dimension one can
be described as the set of infinite (resp. bi-infinite) sequences of consec-
utive edges in a finite-state automaton. While the conjugacy of shifts of
finite type is decidable for one-sided shifts of finite type of dimension one,
the result is unknown in the two-sided case.

In this paper, we study the shifts of finite type defined by infinite
ranked trees. Indeed, infinite ranked trees have a natural structure of
symbolic dynamical systems. We prove a Decomposition Theorem for
these tree-shifts, i.e. we show that a conjugacy between two tree-shifts
can be broken down into a finite sequence of elementary transformations
called in-splittings and in-amalgamations. We prove that the conjugacy
problem is decidable for tree-shifts of finite type. This result makes the
class of tree-shifts closer to the class of one-sided shifts of sequences than
to the class of two-sided ones. Our proof uses the notion of bottom-up
tree automata.

1 Introduction

Sofic shifts are bi-infinite sequences labeling paths in a finite automaton. Shifts
of finite type are a particular important subclass of sofic shifts. Two-sided (resp.
one-sided) shifts of finite type are bi-infinite (resp. right-infinite) sequences of
consecutive edges in a finite-state automaton (see [12, 13.8], [9]). They are
well understood in the one-sided case since the conjugacy is decidable for such
shifts of finite type [20]. The proof uses the Decomposition Theorem (see for
instance [9]). This theorem states that every conjugacy between two one-sided
shifts of finite type can be decomposed into a finite sequence of splittings and
amalgamations, which are elementary operations on automata presenting the
two shifts.

In the two-sided case, the decidability of the conjugacy problem between two
shifts of finite type is still an open question. For class of shifts of sequences larger
than the class of shifts of finite type, like sofic shifts, the problem is also open [6].
In higher dimension, many questions become more difficult. The main reason is
that there exists no good representation of multidimensional shifts comparable
to finite automata in dimension one. Even if there exists a generalization of
finite automata to dimension two, which are called textile systems (see [14],
see also the automata for tiling systems in [5]), results are more complex than
in dimension one. The Decomposition Theorem can be extended to two-sided

∗Université Paris-Est, CNRS, Laboratoire d’informatique Gaspard-Monge, 5 boulevard

Descartes, 77454 Marne-la-Vallée, France.

1

multidimensional shifts of finite type, but an additional operation, called an
inversion, is needed (see [8], and also [1]).

In this paper, we introduce the notion of shifts of finite type defined on
infinite ranked trees, that we call tree-shifts. Indeed, infinite ranked trees have
a natural structure of one-sided symbolic systems equipped with several shift
transformations. The ith shift transformation applied to a tree gives the subtree
rooted at the child number i of the tree. Tree-shifts can be described thanks
to top-down or bottom-up tree automata which are used in automata theory
for many purposes. Tree automata have applications to logic and game theory
(see for instance [19], [4], [15], and [16]). The tree automata that we consider
here are bottom-up tree automata. They are simpler than Büchi or Muller tree
automata since they have all their states final.

We define two elementary operations on tree automata: the in-splitting oper-
ation and the in-amalgamation operation. They are very close to those existing
on finite (word) automata. In particular two in-amalgamations commute. We
prove a Decomposition Theorem for tree-shifts, i.e. we show that a conjugacy
between two tree-shifts can be broken down into a finite sequence of in-splittings
and in-amalgamations. We then prove that the conjugacy problem is decidable
for the class of tree-shifts of finite type. The key of the proof is the commutation
property of in-amalgamations. We prove that two tree-shifts of finite type are
conjugate if and only if they have a same minimal in-amalgamation. Further-
more, the minimal in-amalgamation of a tree automaton can be computed in a
polynomial time in the number of states of the automaton.

The paper is organized as follows. In Section 2 we give basic definitions
about tree-shifts and tree automata. We also present the pair graph of a tree
automaton and give a polynomial-time algorithm for checking the locality of a
deterministic tree automaton. The Decomposition Theorem is proved in Sec-
tion 3. Our main result, the decidability of the conjugacy, together with an
example are given in Section 4. We end the paper with some concluding re-
marks. A preliminary version of this paper was presented in [2].

2 Shifts, automata and infinite trees

2.1 Tree-shifts

We give here some basic definitions from symbolic dynamics which apply to
infinite trees. We consider infinite trees whose nodes have a fixed number of
children and are labeled in a finite alphabet.

Let Σ = {0, 1, . . , d− 1} be a finite alphabet of cardinal d. An infinite tree t
over a finite alphabet A is a complete function from Σ∗ to A. Unless otherwise
stated, a tree is an infinite tree. A node of a tree is a word of Σ∗. The empty
word, that corresponds to the root of the tree, is denoted by ǫ. If x is a node,
its children are xi with i ∈ Σ. Let t be a tree and let x be a node, we shall
sometimes denote t(x) by tx. A path in a tree t is a sequence (txn

)n≥0 where
x0 = ε and xn ∈ Σxn−1 for any n ≥ 0.

When Σ is fixed, we denote by T (A) the set of all infinite trees on A, hence
the set AΣ∗

. On this set we have a natural metric. If t, t′ are two trees, we define
the distance d(t, t′) = 1

n+1 , where n is the length of the shortest word x in Σ∗

such that tx 6= t′x if such a word exists, and d(t, t) = 0. This metric induces a

2

topology equivalent to the usual product topology, where the topology in A is
the discrete one.

We define the shift transformations σi for i ∈ Σ from T (A) to itself as follows.
If t is a tree, σi(t) is the tree rooted at the i-th child of t, i.e. σi(t)x = tix for
any x ∈ Σ∗. The set T (A) equipped with these shift transformations is called
the full shift of infinite trees over A.

A pattern is a function p : L → A, where L is a finite prefix closed subset1

of Σ∗ (hence containing the empty word). The set L is called the support of
the pattern. The elements of L are called the nodes of the pattern. A block of
height n is a pattern with support Σ≤n−1, where n is some positive integer, and
Σ≤n denotes the words of length at most n with letters in Σ.

We say that a pattern (resp. a block) p of support L is a pattern of a tree
(resp. block of a tree) t if there is a node x ∈ Σ∗ such that txy = py for any
y ∈ Σ∗. We say that p is a pattern (or block) of t rooted at the node x. If p
is not a pattern (or block) of t, one says that t avoids p. If p is a pattern (or
block) of some tree of tree-shift X, it is called an allowed pattern (or allowed
block) of X.

We define a tree-shift (or tree-subshift) X of T (A) as the set XF of all trees
avoiding each pattern of a set of blocks F . This tree-shift X is closed and for
any shift transformation σi, σi(X) ⊆ X. A tree-shift of finite type (TSFT) X
of T (A) is a set XF of all trees avoiding each block of a finite set of blocks F .
The set F is called a set of forbidden blocks of X.

We denote by L(X) the set of allowed blocks of a tree-shift X, and by Ln(X)
the set of allowed blocks of height n of X. If b is a block of height n with n ≥ 2,
we denote by σi(b) the block of height n−1 such that σi(b)x = bix for x ∈ Σ≤n−2.
The block b will be written b = (bε, σ0(b), . . , σd−1(b)). A tree shift of finite type
XF , where F is a finite set of blocks of height at most 2, is called a Markov
tree-shift.

In the sequel, in order to simplify the notations, we restrict us to binary trees
(Σ = {0, 1}) but all results extend trivially to the case of trees with d children
for any d ≥ 1.

Example 1. In figure 1 is pictured an infinite tree of a tree-shift of finite type
X = XF on the binary alphabet {0, 1} defined by a finite set F of forbidden
blocks of height 2. The forbidden blocks are those whose label sum is equal to
1 modulus 2.

1

0

1 1

1

1 0

σ0 σ1

Figure 1: A tree of the tree-shift of finite type X = XF on the alphabet {0, 1},
where F is the set of blocks of height 2 whose label sum is 1 modulus 2.

Example 2. In figure 2 is pictured an infinite tree of a tree-shift on the binary
alphabet {a, b}. A block is forbidden if it contains a path with an even number
of a between two b.

1any prefix of a word of L belongs to L.

3

b

b

a b

b

a

b a

a

Figure 2: A tree of the tree-shift Y = XF ′ on the alphabet {a, b}, where F ′ is
the set of blocks containing a path with an even number of a between two b.

Let A,A′ be two finite alphabets, X be a tree-shift of T (A) and m be a
nonnegative integer. A map Φ : X ⊆ T (A) → T (A′) is called an m-local map
(or an m-block map) if there exists a function φ : Lm(X) → A′ such that, for
any x ∈ Σ∗, Φ(t)x = φ(b), where b is the block of height m of t rooted at x. The
smallest integer m satisfying this property is called the memory of the block
map. A block map is a map which is m-local for some nonnegative integer m.

It is known from the Curtis-Lyndon-Hedlund theorem (see [7]) that block
maps are exactly the maps Φ : X → Y which are continuous and commute with
all tree-shifts transformations, i.e. such that σi(Φ(t)) = Φ(σi(t)) for any t ∈ X
and any i ∈ Σ. The image of X by a block map is also a tree-shift. A one-to-one
and onto block map from a tree-shift X onto a tree-shift Y has an inverse which
is also a block map. It is called a conjugacy from X onto Y . The tree-shifts X
and Y are then said conjugate.

Example 3. Let X the tree-shift of finite type defined in Example 1. Let Y be
the tree-shift of finite type over the alphabet {a, b, c}, where the allowed blocks
of height 2 are (a, a, a), (a, b, c), (a, c, b), (a, c, c), (b, b, a), (b, c, a), (c, a, b) and
(c, a, c). The 2-block map Φ : X → Y , defined by φ(0, 0, 0) = a, φ(0, 1, 1) = a,
φ(1, 1, 0) = b, and φ(1, 0, 1) = c, is pictured in Figure 3. The map Φ is a
conjugacy. Its inverse is a 1-block map Ψ defined by ψ(a) = 0 and ψ(b) =
ψ(c) = 1.

1

0

1 1

1

1 0

c

a b

φ

Figure 3: A 2-block map Φ : X → Y , where X is the tree-shift of Figure 1
and Y a tree-shift of finite type over the alphabet {a, b, c}. The map Φ is a
conjugacy.

Let X be a tree-shift on the alphabet A. Let n be a positive integer. The
higher block presentation of order n of X is a tree-shift on the alphabet Ln(X)
defined as follows. It is the set of trees t for which there is a tree t′ in X such
that, for any node x in Σ∗, tx is the block of height n of t′ rooted at x. It is easy
to show that a tree-shift is conjugate to any of its higher block presentations.

4

2.2 Tree automata

In this section we consider bottom-up automata for infinite trees where each
node has d children.

A computation in such an automaton goes from the infinite branches and
moves upward. A tree automaton is here a structure A = (V,A,∆) where V
is a finite set of states (or vertices), A is a finite set of input symbols, and ∆
is a set of transitions of the form (q0, . . , qd−1), a → q, with q, qi ∈ V , a ∈ A.
A transition (q0, . . , qd−1), a → q is called a transition labeled by a, going out
of the d-tuple of states (q0, . . , qd−1) and coming in the state q. Note that no
initial nor final states are specified. This means that all states are both initial
and final in the setting of classical tree automata (see for instance [4], [16]).

Such an automaton is deterministic if for all d-tuple of states (q0, . . , qd−1)
and for all a ∈ A, there is at most one transition (q0, . . , qd−1), a→ q. Then the
set of transitions defines a partial function δ from V d × A to V . In that case,
the automaton is also denoted by A = (V,A, δ).

A (bottom-up) finite computation of A on a pattern p is a pattern c on the al-
phabet V such that, for each node x of p, there is a transition (cx0, . . , cx(d−1), tx)
→ cx ∈ ∆. A pattern p is accepted by A if there is a if there is a finite compu-
tation of A on p.

A (bottom-up) computation of A on the infinite tree t is an infinite tree c on
V such that, for each node x, there is a transition (cx0, . . , cx(d−1), tx) → cx ∈ ∆.
A tree t is accepted by A if there exists a computation of A on t.

The set of infinite trees accepted by A is a tree-shift. It is equal to XF ,
where F is the set of blocks which are not accepted by A. Indeed, the set of
trees accepted byA is clearly included in XF . The converse holds by a compacity
argument.

Example 4. The tree-shift of Example 2 is accepted by the tree-automaton with
three states qb, q0, q1 whose transitions are the followings.

a : q1

q0 q0

a : q0

q1 q1

a : q0

q1 qb

a : q0

qb q1

a : q0

qb qb

b : qb

qb qb

b : qb

q0 qb

b : qb

qb q0

b : qb

q0 q0

Let m be a nonnegative integer. An m-local deterministic tree automaton
(or an m-definite tree automaton) is a tree automaton A = (V,A, δ) such that
whenever t and t′ are two trees accepted by A with a same block b of height
m rooted at the root ε of t and t′, for any computation c of A on t and any
computation c′ of A on t′, we have cε = c′ε. Hence the memory of height m
determines the state reached. We say that the block b focuses in A to the state
cε. A tree automaton is local (or definite) if it is m-local for some nonnegative
integer m.

Proposition 1. Any tree-shift of finite type is accepted by a deterministic local
tree automaton. Conversely any tree-shift accepted by a deterministic local tree
automaton is of finite type.

5

Proof. Let X = XF be a tree-shift of finite type defined by a finite set of
forbidden blocks. Without loss of generality, we can assume that F is the set of
all forbidden blocks of height m for some integer m ≥ 2. We also assume that
the arity d of the trees is 2.

We define a deterministic tree automaton A = (V,A, δ) such that V =
Lm−1(X). For p0, p1 ∈ V , a ∈ A, if the block q = (a, p0, p1) of height m is an
allowed block of X, then δ((p0, p1), a) = b, where b is the block of q of height
m− 1 rooted at the node ε. The partial function δ is undefined otherwise. By
construction, the automaton A is deterministic and (m − 1)-local. It clearly
accepts the tree shift X, which proves the first part of the claim.

Let X be a tree-shift and A = (V,A, δ) an m-local deterministic tree au-
tomaton accepting X. We define F as the set of forbidden blocks of height
m + 1 of X. One immediately get X ⊆ XF . Suppose now that t ∈ XF . We
define a computation c of A on t as follows. For any x ∈ Σ∗, we set cx as the
state focused in A by the block of height m of t rooted at x. Let b be the block
of height m + 1 of t rooted at x. Since t ∈ XF , b is an allowed block of some
tree t′ in X rooted at some at a node y. Let c′ be the computation of A on t′.
We have δ(c′y0, c

′
y1, t

′
y) = c′y. Since A is m-local, cxi = c′yi for 0 ≤ i ≤ 1, tx = t′y

and cx = c′y. It follows that δ(cx0, cx1, tx) = cx. Hence c is a computation of A
of t and t ∈ X, which proves the second part of the claim.

We give below a decision procedure to check whether a deterministic tree
automaton is local.

Given a tree automaton A = (V,A,∆), we define the square automaton of
A, denoted by A×A = (V ×V,A,∆′), as the tree automaton whose transitions
are ((p, p′), (q, q′)), a → (r, r′) if and only if (p, q), a → r and (p′, q′), a → r′ are
transitions of A. A diagonal state of A×A is a state (p, p) for some p ∈ V .

Square automata of finite words (see for instance [17, p. 647]) are used to
check properties of pairs of paths. We extend this notion, together with a notion
of pair graph, to trees, to check the locality of tree automata. Seidl [18] uses
the notion of branch automata to check some properties on tree automata like
the degree of ambiguity of finite tree automata.

Proposition 2. A deterministic tree automaton is local if and only if there is
a computation in its square automaton ending in a non diagonal state.

Proof. By definition of the square tree automaton A × A, the existence of a
computation in A×A ending in a state (p, q) with p 6= q implies the existence
of two distinct computations of A on a same tree. Conversely, if there are two
distinct computations of A on a same tree t, they differ at some node x ∈ Σ∗.
Hence we get two computations of the subtree of t rooted at x ending in two
distinct states.

In order to check the above property, we define the notion of pair graph of a
tree automaton. We give the definition for binary trees. Let A = (V,A,∆) be a
automaton. The pair graph G = (VG, EG) of A, where VG ⊆ (V 2 × V 2) ∪ V 2 is
the set of vertices, EG ⊆ VG×{0, 1}×A×VG is the set of edges labeled by 0 or
1 and a letter from A. For more convenience, an edge labeled by 1 is noted by
a plain arrow −→ and is called a plain edge, and an edge labeled by 0 is noted
by a dashed arrow 99K and is called a dashed edge. For each pair of transitions

6

(p, q), a → r and (p′, q′), a → r′ and each pair (s, s′) of states of A, the set of
edges EG contains the following edges

((p, p′), (q, q′))
a

99K ((r, r′), (s, s′)),

((p, p′), (q, q′))
a

−→ ((s, s′), (r, r′)),

((p, p′), (q, q′))
a

99K (r, r′),

((p, p′), (q, q′))
a

−→ (r, r′).

The A-labels of the edges of Gmay be removed in order to reduce the complexity
of the graph.

A vertex of G is useful if it has at least one incoming plain edge and at least
one incoming dashed edge. We keep the essential part of the pair graph obtained
by discarding vertices which are not useful, together with their incoming and
outgoing edges. A vertex ((p, q), (r, s)) (resp. (p, q)) of G is called non diagonal
if either p 6= q or r 6= s (resp. p 6= q).

It is easy to verify that a vertex ((p, p′), (q, q′)) is a vertex of the (essential
part of the) pair graph if and only if there are two computations of A on a tree
s one ending in p, the other one in p′, and there are two computations of A on
a tree t one ending in q, the other one in q′.

Note also that there is an edge ((p, p′), (q, q′))
0
−→ ((r, r′), (s, s′)) in the pair

graph if and only if there is a letter a and transitions (p, q)
a
−→ r and (p′, q′)

a
−→ r′

in A (or transitions (p, q)
a
−→ s and (p′, q′)

a
−→ s′ in A). There is an edge

((p, p′), (q, q′))
0
−→ (r, r′) in the pair graph if and only if there is a letter a and

transitions (p, q)
a
−→ r and (p′, q′)

a
−→ r′ in A.

Proposition 3. A deterministic tree automaton A is local if and only if its pair
graph contains no non diagonal vertex (r, r′).

Proof. Let G be the pair graph of A. Any vertex ((r, r′)(s, s′)) is in the pair
graph if and only if there are two computations c, c′ of A on a same tree t such
that c ends in r and c′ ends in r′, and there are two computations d, d′ of A on
a same tree t′ such that d ends in s and d′ ends in s′. Similarly, a vertex (r, r′)
is in the pair graph if and only if there are two computations c, c′ of A on a
same tree t such that c ends in r and c′ ends in r′.

Now A is not local if and only if there are two computations c (resp. c′) of
A on a same tree ending in a state r (resp. ending in a state r′ 6= r). This is
equivalent to the fact that (r, r′) is a vertex of G by the above remarks.

When A is a deterministic automaton, we have |VG| = O(|V |4) and |EG| =
O(|V |6). The essential part of the pair graph can be computed in polynomial
time as described below. We call 0-predecessor a predecessor of a vertex by
a dashed edge (labeled by 0) and 1-predecessor a predecessor of a vertex by
a plain edge (labeled by 1). The notions of 0-sucessors and 1-sucessors are
defined similarly. We build a queue of vertices called vertexQueue containing
vertices which have to removed from the pair graph. As soon as such a vertex is
removed, one also removes its outgoing edges. A pseudo code of the algorithm
is described below. Its time complexity is O(|VG|+ |EG|).

7

Essential(pair graph GA)

1 Let n0(u) be the number of 0-predecessors of the vertex u ∈ VG

2 Let n1(u) be the number of 1-predecessors of the vertex u ∈ VG

3 vertexQueue ← the list of vertices u such that n0(u) = 0 or n1(u) = 0.
4 mark the vertices contained in vertexQueue

5 while vertexQueue is nonempty
6 do remove the vertex u from vertexQueue

7 for all 0-successors v de u

8 do decrement n0(v)
9 if n0(v) = 0 and v is unmarked

10 then add v in vertexQueue

11 mark v

12 for all 1-successors v de u

13 do decrement n1(v)
14 if n1(v) = 0 and v is unmarked
15 then add v in vertexQueue

16 mark v

17 return the unmarked states

As a consequence, it can be checked in O(|V |6) time whether a deterministic
tree automaton is local.

Example 5. A part of the pair graph for the tree automaton of Example 4. It
contains the non diagonal state (q1, q0) hence the tree automaton is not local.

(q1, q0), (q1, q0) (q0, q1), (q0, q1)q0, q1

a

a

a

a

a

a

Figure 4: A part of the pair graph for the tree automaton of Example 4.

2.3 Vertex tree-shifts

In this section we consider a particular case of tree shifts of finite type, called
vertex tree-shifts.

A vertex tree-shift is the tree shift accepted by an automaton A = (V, V,∆)
where the transitions have the form (q0, q1), q → q. Hence the label of an ac-
cepted tree at each node is equal to the corresponding state of the computation.
We simplify this setting by saying that a vertex tree-shift is the set of computa-
tions of the unlabeled automaton B = (V,Γ) with transitions in V 2×V denoted
by (q0, q1) → q. Note that a vertex shift is a Markov shift and is thus of finite
type.

Example 6. The tree-shift X of Example 1 is a vertex tree-shift accepted by
the automaton A = (V,∆) with transitions (0, 0) → 0, (1, 1) → 0, (1, 0) → 1
and (0, 1) → 1. These transitions are given in the following table t where
(p, q) → t[p, q] is a transition.

0 1
0 0 1
1 1 0

8

Proposition 4. Any tree-shift of finite type is conjugate to a vertex tree-shift.

Proof. Let X = XF be a tree-shift of finite type defined by a finite set of
forbidden blocks of height m + 1 for some nonnegative integer m. Let A =
(V,A, δ) be the deterministic m-local automaton defined by V = Lm(X) and,
for p0, p1 ∈ V, a ∈ A, δ(p0, p1, a) is the subblock of height m of b = (a, p0, p1)
rooted at ε when b is an allowed block of height m+1 of X. The automaton A
accepts X. Let Y be the vertex tree-shift made of all computations on A. Note
that A has a unique computation on any tree shift of X.

We define an m-block map Φ from X to Y via φ : Lm(X) → Y by setting
φ(p) = p. The map Φ associates to each tree t of X the unique computation of
A on t. The one-block map Ψ from Y to X given by ψ : Y → A with ψ(p) = pε
is the inverse of φ. The tree-shifts X and Y are thus conjugate.

3 Decomposition Theorem

The Decomposition Theorem for shifts of infinite words states that any conju-
gacy between shifts of finite type can be decomposed into a finite sequence of
splittings and amalgamations (see for instance [9]). In this section, we prove
an analogous theorem for infinite trees. The crucial lemma will show that the
memory of a block map can be reduced using a notion of (input) splittings on
tree automata defined below.

Let X be a tree-shift over the alphabet A. For each letter a, we consider
a partition Pa of the subset L2(X) of blocks of height 2 labeled by a at their
root. Let [(a, b, c)]a denotes the partition element in Pa that contains the block
(a, b, c), emphasing the fact that it is a class of Pa. Let P be the partition of
L2(X) which is the union of all partitions Pa. Let Φ : X → PΣ∗

be the 2-block

map defined by φ(a, b, c) = [(a, b, c)]a. We denote by X̃ the tree shift Φ(X).
The map Φ is a 2-block conjugacy whose inverse is a 1-block map. We say that
Φ is an in-splitting map and that X̃, and more generally that any shift obtained
from X̃ by renaming symbols, is an in-splitting of X. We also say that Φ−1 is
an in-amalgamation map and that X is an in-amalgamation of X̃. When Pa is
the trivial discrete partition for any letter a (i.e. [(a, b, c)]a = (a, b, c) for any

a), Φ is called the complete in-splitting map and X̃ is the complete in-splitting
of X.

A 1-block conjugacy whose inverse is also 1-block is called a renaming map.
It is just a renaming of symbols.

Theorem 5. Any conjugacy between tree-shifts can be decomposed as a compo-
sition of in-splitting maps and in-amalgamation maps.

Lemma 6. Let Φ : X → Y be an m-block conjugacy between two tree-shifts with
m ≥ 2. Then there is an in-splitting map Ψ1 from X to X̃ and an (m−1)-block

conjugacy Φ̃ from X̃ onto Y such that Φ = Φ̃ ◦Ψ1.

Proof. Let us assume that A is the alphabet of the tree-shift X and that B is
the alphabet of the tree-shift Y . Let φ : Lm(X) → B be the block function

defining Φ. Let Ψ1 : X → X̃ be the 2-block conjugacy defined by ψ1(a, b, c) =
(a, b, c). The map Ψ1 is a complete in-splitting.

Let f (resp. g, h) be the map from L2(X) to A which maps (a, b, c) to a

(resp. b, c). Let Φ̃ : X̃ → Y be the (m − 1)-block map defined, for any block

9

b of Lm−1(X̂), by φ̃(b) = φ(b′), where b′ is the block of height m defined by
b′x = f(bx) for any word x of length at most m − 1 of Σ, and b′x0 = g(bx), and

b′x1 = h(bx) for any x of length m− 1 of Σ. We have Φ = Φ̃ ◦Ψ1.

Lemma 7. Let Φ : X → Y be a 1-block conjugacy between two tree-shifts such
that Φ−1 is an m-block map with m ≥ 2. Then there is an in-splitting map Ψ1

from X to X̃, an in-splitting map Ψ2 from Y to Ỹ , and a 1-block conjugacy Φ̃
from X̃ onto Ỹ such that Φ = Ψ−1

2 ◦ Φ̃ ◦Ψ1 and Φ̃−1 is an (m− 1)-block map.
This makes the following diagram commute.

X
Φ

−−−−→ Y

Ψ1

y
yΨ2

X̃
Φ̃

−−−−→ Ỹ

Proof. Let us assume that X (resp. Y) is a tree-shift over the alphabet A
(resp. B). Let Pa be the partition of the blocks of height 2 rooted by a such
that two blocks (a, b, c) and (a, b′, c′) belong to the same class if and only if
φ(b) = φ(b′) and φ(c) = φ(c′) where φ : A → B is the block function defining

Φ. Let [(a, b, c)]a denotes the class of (a, b, c) in Pa. We denote φ(X) by X̃. Let

Ψ1 : X → X̃ be the 2-block map defined by ψ1(a, b, c) = [(a, b, c)]a. Then X̃ is
an in-splitting of X.

Let B be the alphabet of Y , and Ỹ be the complete in-splitting of Y over
the alphabet B2 = L2(Y). We denote by Ψ2 the complete in-splitting map from

Y to Ỹ .
We define a 1-block map Φ̃ from X̃ onto Ỹ by φ̃[(a, b, c)]a = (φ(a), φ(b), φ(c)).

It is consistent by definition of the partition Pa. We have Φ = Ψ−1
2 ◦ Φ̃ ◦Ψ1. It

remains to check that Φ̃−1 = Ψ−1
2 ◦Φ−1 ◦Ψ1 is an (m− 1)-block map. That is,

we must show that for any tree t in Ỹ , the coordinates in the block b of height
m−1 rooted at the node ε of a tree t determines Φ̃−1(t)ε. But this follows from
the observation that the block of height m − 1 of t rooted at ε determines all
Ψ−1

2 (t)x0 and all Ψ−1
2 (t)x1, for any word x ∈ Σm−1, and therefore the block of

height m at the root ε of Ψ−1
2 (t). Hence, if t′ = (Φ−1 ◦Ψ−1

2)(t), t′ε is determined
by b. Moreover, the block of height m − 1 of t rooted at ε determines also
Ψ1(t

′)ε.

Proof of Theorem 5. Let Φ : X → Y be an n-block conjugacy between two
tree-shifts such that φ−1 is an m-block map, with n,m ≥ 1.

By Lemma 6 and Lemma 7, there are in-splitting maps Ψ1, . . ,Ψn+m−2,
∆1, . . ,∆m−1, and a renaming map ∆ such that Φ = ∆−1

1 ◦ ∆−1
2 · · · ◦ ∆−1

m−1 ◦
∆−1 ◦ Ψn+m−2 ◦ Ψ2 ◦ Ψ1. The result follows from the fact that a renaming
map is a particular case of an in-splitting map or of in-amalgamation map. The
decomposition into in-splitting maps and in-amalgamation maps is illustrated

10

in the following diagram.

X
Φ

−−−−→ Y

Ψ2

y
yId

...
...

Ψn−1

y
yId

X̃n−1 −−−−→ Y

Ψn

y
y∆1

X̃n −−−−→ Ỹ1
...

...

Ψn+m−2

y
y∆m−1

X̃n+m−2
∆

−−−−→ Ỹm−1

4 Deciding conjugacy for tree-shifts of finite type

In this section we prove that for the particular case of tree-shifts of finite type,
the conjugacy problem is decidable. The key point is that for tree shifts of finite
type, the in-amalgamation maps commute. We first consider the case of vertex
tree-shifts. We will show the following proposition.

Proposition 8. Suppose X1 is a vertex tree-shift and X2, X3 are vertex tree-
shifts obtained from X1 by in-amalgamations. Then there is a vertex tree-shift
X4 that can be obtained from both X3 and X4 by in-amalgamations and such
the following diagram commutes.

X4

X2 X3

X1

Φ Ψ

Ω Θ

Figure 5: The commutation of in-amalgamation maps. If X2, X3 are vertex
tree-shifts which are in-amalgamations of X1, then there is a vertex tree-shift
X4 which is a common amalgamation of X2, X3.

In Figure 5, the maps Φ and Ψ are in-amalgamation maps. As a consequence
of Proposition 8 the maps Ω and Θ are also in-amalgamation maps.

Let X be a vertex tree-shift accepted by an automaton A = (V,∆) and Φ be

an in-splitting map from X to X̃ defined by partitioning the sets ∆r of transi-
tions coming in p for each vertex r in V . We denote by Ṽ the alphabet of X̃. It
is the union of the sets {[(r, p, q)]r, | (p, q) → r ∈ ∆}. The vertices [(r, p, q)]r are
called in-splitted (or splitted) vertices of r. One says that the vertices [(r, p, q)]r

11

are amalgamated (or merged) to r. Then X̃ is a vertex tree-shift accepted by the

automaton Ã = (Ṽ , ∆̃) defined by ([(r, p, q)]r, [(r
′, p′, q′)]r′) → [(s, r, r′)]s ∈ ∆̃ if

and only if (r, r′) → s ∈ ∆.

For more convenience, the vertices of ∆̂ corresponding to a partitioning of ∆r

are denoted r1 . . , rℓ(r). An in-amalgamation of a vertex tree-shift X accepted
by A is a vertex tree-shift Y accepted by Ã such that Y is an in-splitting of
X. The vertices r1 . . , rl(p) of Ã are amalgamated to the vertex r. Note that
whenever (p′, q′) → ri ∈ ∆̃, then (p′, q′) → rj /∈ ∆̃, for any p′, q′ ∈ Ṽ and

any 1 ≤ i 6= j ≤ ℓ(r). This also implies that (ri, p′) → q′ ∈ ∆̃ if and only if

(rj , p′) → q′ ∈ ∆̃, and (p′, ri) → q′ ∈ ∆̃ if and only if (p′, pj) → q′ ∈ ∆̃ for

any vertices p′, q′ ∈ Ṽ and any 1 ≤ i, j ≤ ℓ(r). Roughly speaking, if a vertex
r is splitted into r1 . . , rℓ(r), the transitions coming in a r are splitted while
transitions going out of r are duplicated after the in-splitting.

Proof of Proposition 8. Suppose that Xn is the vertex tree-shift accepted by
(Vn,∆n) for n = 1, 2, 3. We assume that there is an in-amalgamation Φ :
X1 → X2 and a in-amalgamation Ψ : X1 → X3. Let us assume that vertices
p1, . . , pℓ(p) of V1 are amalgamated to a vertex p of V2.

By definition of an in-amalgamation, this implies that if (q′, r′) → pi ∈ ∆1,
then (q′, r′) → pj /∈ ∆1 for any vertices q′, r′ ∈ V1 and any 1 ≤ i 6= j ≤ ℓ(p).
This implies also that (pi, q′) → r′ ∈ ∆1 if an only if (pj , q′) → r′ ∈ ∆1, and
(q′, pi) → r′ ∈ ∆1 if and only if (q′, pj) → r′ ∈ ∆1 for any vertices q′, r′ ∈ V1
and any 1 ≤ i, j ≤ ℓ(p).

Suppose also that vertices q1, . . , qℓ(q) of V1 are amalgamated to a vertex q
of V3. Let us first assume that the vertices p1, . . , pℓ(p) and q1, . . , qℓ(q) are all
distinct. We define X4 as the in-amalgamation of X2 obtained by amalgamating
the vertices p, q1, . . , ql(q) to a vertex q. It is also the in-amalgamation of X3

obtained by amalgamating the vertices q, p1, . . , pl(p) to a vertex q.
Let us now assume that p1 = q1, . . , pℓ = qℓ for some integer 1 ≤ ℓ ≤

min(ℓ(p), ℓ(q)). This implies that, for any 1 ≤ i ≤ ℓ(p), 1 ≤ j ≤ ℓ(q), one has
(pi, q′) → r ∈ ∆1 (resp. ∆2) if and only if (pj , q′) → r ∈ ∆1 (resp. ∆2), and
(q′, pi) → r ∈ ∆1 (resp. ∆2) if and only if (q′, pj) → r ∈ ∆1 (resp. ∆2).

We define X4 as the in-amalgamation of X2 obtained by amalgamating the
vertices p, ql+1, . . , ql(q) to the vertex p. It is also the in-amalgamation of X3

obtained by amalgamating the vertices q, pl+1, . . , pl(p) to a vertex p. Hence, if
Φ and Ψ are in-amalgamations, then Ω and Θ also.

The previous theorem allows us to define the notion of minimal (in)-amal-
gamation of a vertex tree-shift X. It is defined as the vertex tree-shift defined
by the smallest automaton (in the number of vertices) which is obtained by
in-amalgamations of X.

Corollary 9. Any vertex tree-shift has a unique minimal in-amalgamation.

Proof. Let us assume that X has two minimal amalgamations X2 and X3. By
Proposition 8, X2 and X3 have a common in-amalgamation Y . By minimality,
Y = X2 = X3.

We now describe an algorithm for computing the minimal amalgamation of
a vertex tree-shift. Let us assume that X is a vertex tree-shift defined by an
n-vertex automaton A = (V,∆). We call out-degree of A the maximal number

12

of transitions (p, q) → r or (q, p) → r for all pair of vertices (p, q). Let us assume
that this out-degree of is bounded above by some constant k independent of |V |.
This implies that the number of transitions is at most k|V |3.

We say that two vertices p, q of V are pre-mergeable if p and q have no
common incoming transitions, i.e. for any pair (r, s) of vertices, (r, s) → p ∈ ∆
implies (r, s) → q /∈ ∆, and (r, s) → q ∈ ∆ implies (r, s) → p /∈ ∆. We call
signature of a vertex p the sequence of triples (0, r, s) such that (p, r) → s ∈ ∆
concatenated with the sequence of triples (1, r, s) such that (r, p) → s ∈ ∆. The
triples are sorted in lexicographic order. One can merge two vertices p and q if
and only if they are pre-mergeable and σ(p) = σ(q).

For each pair (r, s), the number the transitions going out of (r, s) is at
most k. Whenever this number is greater than or equal to 2, any pair of states
ending such transitions are not pre-mergeable. Thus, one can compute in time
O(k2|V |2) a table of size |V |2 giving, for any pair of states (p, q), whether p and
q are pre-mergeable or not.

We deduce from this characterization an algorithm for computing the mini-
mal amalgamation of a vertex tree-shift given by an automaton A = (V,∆). The
length of a signature is at most 2k|V |. It follows that the signatures of all ver-
tices may be computed in time O(k|V |2). They may then be lexicographically
sorted in time O(k|V |2).

Hence finding (and merging) two vertices which can be merged can be com-
puted in time O(k2|V |2). This step being done at most |V | times, the overall
complexity for computing the minimal amalgamation is 0(k2|V |3).

Theorem 10. Let X1 and X2 be two tree-shifts of finite type. It is decidable
whether X1 and X2 are conjugate.

Proof. By Proposition 4, one may assume that X1 and X2 are vertex tree-
shifts. By Theorem 5, there is a sequence a sequence of in-splittings from X1 to
X followed (up to a relabeling of X) of in-amalgamations from X1 to X2. This
case is illustrated in Figure 6. By Proposition 8, there are vertex tree-shifts at
the confluence of any two dashed edges of Figure 6. As a consequence, X1 and
X2 have a common amalgamation and thus the same minimal amalgamation.
Conversely, if X1 and X2 have the same minimal amalgamation, there is a
sequence of in-splitting and in-amalgamation maps from X1 to X2.

We deduce from this result an algorithm for deciding the conjugacy of two
tree-shifts of finite type X1, X2 accepted by two deterministic local automata.
By Proposition 4, we build two automata A1 = (V1,∆1) and A2 = (V2,∆2)
accepting the vertex tree-shifts Y1, Y2 such that X1 and Y1 (resp. X2 and Y2)
are conjugate. We compute the minimal amalgamations Z1 and Z2 of Y1 and Y2
respectively in polynomial time. Then X1 and X2 are conjugate if and only if
Z1 and Z2 are the same vertex tree-shift up to a renaming of the vertices. This
test can be done in an exponential time only, making the whole time complexity
of this procedure exponential.

Example 7. Let X1 and X2 be two vertex tree-shifts over the alphabet V =
{a, b, c}. The tree-shift X1 is accepted by A1 = (V,∆1) and the tree-shift X2

is accepted by A2 = (V,∆2) where ∆1 and ∆2 are given in the two following

13

X1 X2

X

Y

Φ1

Φ2

Ψ1

Ψ2

Figure 6: A sequence of tree in-splittings from X1 to X is followed (up to a
relabeling of X), by a sequence of tree in-amalgamations from X to X2. Any
edge represents an in-amalgamation. The tree-shifts X1 and X2 have the same
minimal amalgamation Y .

tables. If t is a table, (p, q) → t[p, q] is a transition.

∆1 =

a b c
a a c c
b b a a
c b a a

∆2 =

a b c
a c a a
b a b b
c a b b

∆3 =
a b

a a b
b b a

∆4 =
a b

a b a
b a b

Since the second and third row of ∆1 and the second and third column of ∆1 are
equal, the vertices b and c can be amalgamated. There is an in-amalgamation
from A1 to A3 = (V3,∆3) where V3 = {a, b} and ∆3 is given by the following
tables.

No more in-amalgamation is possible from A3 and thus A3 is minimal. Simi-
larly, the second and third row of ∆2 and the second and third column of ∆2 are
equal, the vertices b and c can be amalgamated. There is an in-amalgamation
from A2 to A4 = (V4,∆4) where V4 = {a, b} and ∆4 is given by the following
tables.

Finally, relabeling the states of A4 by exchanging a and b gives A3. Hence,
X1 and X2 have the same minimal amalgamation and are conjugate.

c

a

a b

a

c a

a

b

b a

c

a b

φ

Figure 7: A 2-block map Φ : X → Y , where X is the tree-shift of Figure 1 and
Y a tree-shift of finite type over the alphabet {a, b, c}.

The 2-block map Φ : X2 → X1 of Figure 7 is a conjugacy. It is defined
by φ(a, a, b) = b, φ(a, b, a) = c, φ(a, a, c) = b, φ(a, c, a) = c, φ(b, b, b) = a,
φ(b, b, c) = a, φ(b, c, b) = a, φ(b, c, c) = a, φ(c, a, a) = a.

14

5 Conclusion

We have shown that it decidable whether two tree-shifts of finite type are con-
jugate. This result makes the class of tree-shifts of finite type close to the class
of one-sided shifts of sequences of dimension one. The Decomposition Theorem
that we have proved for tree-shifts of finite type may allow us to define a no-
tion of strong tree-shift equivalence between tree-shifts and to deduce that two
tree-shifts of finite type are equivalent if and only if their transition matrices
are related by a sequence of simple algebraic matrix conditions. In [3], we have
started the study of sofic tree-shifts, a class which is larger than tree-shifts of fi-
nite type, using tree automata techniques and symbolic dynamic notions similar
to the one used for sofic shifts of sequences (see [13], [10], [11]).

References

[1] H. Aso, Conjugacy of Z2-subshifts and textile systems, Publ. Res. Inst.
Math. Sci., 36 (2000), pp. 1–18.

[2] N. Aubrun and M.-P. Béal, Decidability of conjugacy of tree-shifts of
finite type, in ICALP ’09: Proceedings of the 36th International Collo-
quium on Automata, Languages and Programming, Berlin, Heidelberg,
2009, Springer-Verlag, pp. 132–143.

[3] M.-P. Béal and N. Aubrun, Sofic and Almost of Finite Type Tree-Shifts
, in 5th International Computer Science Symposium in Russia, (CSR’10),
E. Mayr and F. Ablayev, eds., no. 6072 in Lecture Notes in Computer
Science, Springer-Verlag, 2010, pp. 12–24.

[4] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard,

D. Lugiez, S. Tison, and M. Tommasi, Tree automata techniques and
applications. Available on: http://www.grappa.univ-lille3.fr/tata,
2007. release October, 12th 2007.

[5] E. M. Coven, A. Johnson, N. Jonoska, and K. Madden, The sym-
bolic dynamics of multidimensional tiling systems, Ergodic Theory Dynam.
Systems, 23 (2003), pp. 447–460.

[6] M. Fujiwara, Conjugacy for one-sided sofic systems, in Dynamical sys-
tems and singular phenomena (Kyoto, 1986), vol. 2 of World Sci. Adv. Ser.
Dynam. Systems, World Sci. Publishing, Singapore, 1987, pp. 189–202.

[7] G. Hedlund, Endomorphisms and automorphisms of the shift dynamical
system, Theory of Computing Systems, 3 (1969), pp. 320–375.

[8] A. S. A. Johnson and K. M. Madden, The decomposition theorem for
two-dimensional shifts of finite type, Proc. Amer. Math. Soc., 127 (1999),
pp. 1533–1543.

[9] B. P. Kitchens, Symbolic dynamics, Universitext, Springer-Verlag,
Berlin, 1998. One-sided, two-sided and countable state Markov shifts.

[10] W. Krieger, On sofic systems. I, Israel J. Math., 48 (1984), pp. 305–330.

15

[11] , On sofic systems. II, Israel J. Math., 60 (1987), pp. 167–176.

[12] D. Lind and B. Marcus, An introduction to symbolic dynamics and cod-
ing, Cambridge University Press, Cambridge, 1995.

[13] M. Nasu, Topological conjugacy for sofic systems and extensions of auto-
morphisms of finite subsystems of topological markov shifts, in Proceedings
of Maryland special year in Dynamics 1986–87, vol. 1342 of Lecture Notes
in Mathematics, Springer verlag, 1988, pp. 564–607.

[14] M. Nasu, Textile Systems for Endomorphisms and Automorphisms of the
Shift, American Mathematical Society, 1995.

[15] M. Nivat and A. Podelski, eds., Tree automata and languages, vol. 10
of Studies in Computer Science and Artificial Intelligence, North-Holland
Publishing Co., Amsterdam, 1992. Papers from the workshop held in Le
Touquet, June 1990.

[16] D. Perrin and J. Pin, Infinite words, Elsevier Boston, 2004.

[17] J. Sakarovitch, Elements of Automata Theory, Cambridge University
Press, 2009.

[18] H. Seidl, On the finite degree of ambiguity of finite tree automata, in
Fundamentals of computation theory (Szeged, 1989), vol. 380 of Lecture
Notes in Comput. Sci., Springer, New York, 1989, pp. 395–404.

[19] W. Thomas, Automata on infinite objects, in Handbook of theoretical
computer science, Vol. B, Elsevier, Amsterdam, 1990, pp. 133–191.

[20] R. F. Williams, Classification of subshifts of finite type, in Recent ad-
vances in topological dynamics (Proc. Conf. Topological Dynamics, Yale
Univ., New Haven, Conn., 1972; in honor of Gustav Arnold Hedlund),
Springer, Berlin, 1973, pp. 281–285. Lecture Notes in Math., Vol. 318.

16

