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We exhibit a weakly aperiodic tile set for Baumslag-Solitar groups, and prove that the domino prob-
lem is undecidable on these groups. A consequence of our construction is the existence of an arecur-
sive tile set on Baumslag-Solitar groups.

Introduction

Wang tilings are colorings of the Euclidean plane that respect some local constraints. They can be viewed
both as dynamical systems and computational models, but they were first introduced by Hao Wang to
study decision problems on some classes of logical formulas [18].

The concept of Wang tiles may be generalized to define tilings on the Cayley graph of a finitely
generated group. The domino problem – deciding whether a finite tile set can tile the group or not – is
undecidable on Z2 [2]. A more recent result [16, 10] characterizes groups having a decidable monadic
second order logic. A consequence of this result states that if the group is virtually free, then it has a
decidable domino problem. The reciprocal statement is still an open question, and very few examples of
effective constructions to prove the (un-)decidability of the domino problem on finitely presented groups
are known [9, 14]. Obviously the domino problem cannot be decidable on groups with undecidable
word problem, so it is relevant to investigate non virtually free groups with decidable word problem.
A famous theorem by Magnus [13] states that provided a finitely presented group possess a one-relator
presentation, it has decidable word problem.

In this article we investigate tilings on Baumslag-Solitar groups, that are two generators and one-
relator non virtually free groups. This paper is organized as follows. Section 1 is devoted to the definition
of tilings on finitely presented groups, which relies on the Cayley graph representation of such a group.
In Section 2 we present the class of Baumslag-Solitar groups, and define Wang tiles on these groups.
Following the ideas in [8] and [9], we exhibit a weakly aperiodic tile set (see Section 3), and we prove
that the domino problem is undecidable on these groups (see Section 4). Analogously to [6], we conclude
that there exist arecursive tile sets on the Baumslag-Solitar groups, that is, tile sets that admit valid tilings
but all valid tilings are non-recursive.

1 Tilings on finitely presented groups

1.1 Finitely presented groups and graph representation

The group G is finitely generated if it has a presentation P =< G |R > where G is finite, and finitely
presented if it has a presentation P=<G |R > where both G and R are finite (see [12] for an introduction
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to group presentations). By abuse of notation, we will write G =< G |R > for saying that the group G
has presentation < G |R >. The set G is the set of generators of the group, and the set R is the set of
relators of the group and is made of words on the alphabet G ∪G −1 that represent the identity of the
group. We adopt here the conventions that if the set of generators contains an element g ∈ G, then it
does not contain its inverse g−1, and that the set of relators R does not contains trivial relators xx−1 = ε ,
even if they always hold. We also denote by G −1 the set of inverses of generators, and by ε the identity
of G. A group has infinitely many presentations, and determining whether two presentations define two
isomorphic groups is an undecidable problem [17].

The Cayley graph of a finitely presented group G, denoted by ΓG = (VΓ,EΓ), is a graph whose set of
vertices VΓ is identified with G and whose set of edges EΓ consists of pairs of the form (h,hg), where h
is an element of G and g is a generator or an inverse of generator. Note that the Cayley graph depends on
the choice of the generators.

1.2 Tilings and periodicity

Let G be a group, and let A ⊆ G be a finite set with n elements. Given a finite set of colors C , a Wang
tile on A is mapping t : A ×{+,−}→ C , where (g,+) is the color on the outgoing edge g and (g,−)
is the color on the incoming edge g. A Wang tile can be represented by a polygon with 2n edges, and
every edge is associated with a color. Let τ be a tile set on G. A valid tiling of G by τ is a map t : G→ τ

that satisfies the following condition

∀x ∈ G,∀g ∈A t(x)(g,+) = t(xg)(g,−),

that is to say that two adjacent Wang tiles have the same color on their common edge. A tiling can thus
be seen as a coloring of the edges of the Cayley graph of G that satisfies given local constraints at each
vertex.

Let τ be a finite tile set. Then the group G acts on the set of tilings τG by translation. Given m ∈ G,
we define Sm the translation by m by

Sm :
�

τG → τG

x 7→ Sm(x)

�
,

where [Sm(x)]g = xmg for any g ∈ G. Let x ∈ τG be a valid tiling of G by τ . Given an element m ∈ G,
the tiling x is said to be m-periodic if x =Sm(x). In that case we say that m is a period for x. The set of
periods of a tiling x ∈ τG, denoted by Per(x), is thus a sub-group of G.

Following Goodman-Strauss [4] we define two notions of aperiodicity. A tiling x is weakly periodic
if Per(x) contains an infinite cyclic subgroup, and x is strongly non-periodic if it is not weakly periodic.
A tile set is strongly aperiodic if a valid tiling exists and if it admits only strongly non-periodic tilings.
A tiling x is strongly periodic if Per(x) is a finite index subgroup of G. A tiling x is weakly non-periodic
if it is not strongly periodic. A tile set is weakly aperiodic if a valid tiling exists and if it admits only
weakly non-periodic tilings.

It is clear that if G contains an element of infinite order, the strong concepts imply the corresponding
weak concepts. It is also well known that in G = Z the strong and weak concepts are equivalent, and
in G = Z2 a tile set is strongly aperiodic if and only if it is weakly so. In contrast, already in G = Z3

there are tile sets that are weakly aperiodic but not strongly aperiodic. In the following we see the same
phenomenon on a Baumslag-Solitar group.
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1.3 The domino problem

Let G be a finitely generated group, and suppose a finite set of generators G is fixed. Is it possible to
find an algorithm that takes as input a finite set of Wang tiles τ on G , and outputs Yes if and only if there
exists a valid tiling by τ ? This problem is known as the domino problem on group G. The decidability
status of this problem does not depend on the choice of the generator set G .

Theorem 1. Let G be a group, and let A and B be two finite subsets of G. Suppose that B is contained
in the subgroup generated by A . Then, if it is decidable if a given Wang tile set on A admits a tiling,
then the analogous question on B is also decidable.

It follows that the choice of the generators is irrelevant for the decidability of the domino problem of
a finitely generated group. It also follows from the previous theorem that if a finitely generated group G
is a subgroup of a finitely generated group with decidable domino problem, then the domino problem on
G is also decidable.

Theorem 2. The domino problem is undecidable on Z2.

The original proof of this result due to Berger [2], for the usual presentation Z2 =< a,b|ab = ba >,
relies on the construction of a strongly aperiodic tile set. In this paper we adopt the method introduced
in [9] to prove the undecidability of the domino problem on Baumslag-Solitar groups.

1.4 Tilings defined by allowed patterns

It is well known that tilings as they were introduced in Section 1.2 are the same objects as subshifts
of finite type (SFT), studied in symbolic dynamics. Let A be a finite alphabet. An SFT on group G is
determined a set of allowed patterns p ∈ AD on a finite subset D of G. A coloring x ∈ AG of G is in the
corresponding SFT if all its translates have an allowed pattern in domain D .

One may as well consider colorings of the edges of the Cayley graph of a finitely generated group. In
the following discussion we adopt this convenient way to describe tile sets on Baumslag-Solitar groups.
By abuse of language we will use the term “tile” for a finite allowed pattern, and the term “tile set” for
a finite set of allowed patterns. It is an simple matter to convert such tile sets into equivalent Wang tile
sets.

2 The Baumslag-Solitar groups

We now focus on a particular class of groups, the Baumslag-Solitar groups, that were initially introduced
in [1] as examples of non-Hopfian finitely presented groups. These groups are very simple since they
have a presentation with only two generators and one relator, and thus have decidable word problem [13].
Nevertheless their structure is not trivial, as we will see in the sequel.

2.1 Definition and graph representation

Given two non-zero integers m and n, we define BS(m,n) the Baumslag-Solitar group of order (m,n) as
the two-generators and one-relator group with presentation

BS(m,n) =< a,b|amb = ban > .

In particular BS(1,1) is isomorphic toZ2. It is known [15] that the group BS(m,n) is residually finite
if and only if |m| = 1 or |n| = 1 or |m| = |n|. Since a finitely presented virtually free group is always
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residually finite (as a consequence of [7]), the above property means that most of the Baumslag-Solitar
groups do not satisfy the hypothesis of the Muller and Schupp’s theorem [16], hence we do not know
anything about the domino problem on these groups.

Since BS(−m,−n) is isomorphic to BS(m,n), it is enough to consider groups with m > 0. For
simplicity, we also assume that n > 0. The case n < 0 is analogous.

We now discuss Γm,n, the Cayley graph of BS(m,n) for m,n > 0. Since BS(m,n) has two generators,
every vertex in its Cayley graph Γm,n has in-degree and out-degree 2.

The level associated with g of the Cayley graph Γm,n is the induced subgraph obtained by keeping
only the vertices of the coset g〈a〉 =

¦
g.ak : k ∈ Z

©
. We denote it by Lg and we say that the vertex g

defines the level Lg. The level Lgb is a predecessor of the level Lg, while the latter is a successor of the
former, for all group elements g. Note that each level has m predecessors and n successors.

Our tilings will be colorings of the edges of the Cayley graph Γm,n. The local constraint is given in
terms of a set of allowed patterns on the edges

ε −→ a−→ a2 −→ . . .−→ am −→ amb = ban

and
ε −→ b−→ ba−→ ba2 −→ . . .−→ ban = amb,

see the left side of Figure 1 for the case m = 3,n = 2. For each group element g the pattern of this shape
found at position g must be among the allowed patterns.

g.b g.ba g.ba2

g g.a g.a2 g.a3

L

Figure 1: One the left: the shape of the tiles in Γ3,2. On the right: some levels in Γ3,2. The level L has
two successor levels (drawn below the level) and three predecessor levels (drawn above it).

2.2 Localization in Γm,n

The Cayley graph Γm,n can be projected into the Euclidean plane by a function Φm,n : BS(m,n)→R2,
defined as follows. Let w be a finite word on the alphabet A = {a,b,a−1,b−1}. Then any element of
BS(m,n) can be represented by such a word, but this representation is of course non unique. If x is a
letter of A, we denote by |w|x the number of occurrences of x in the word w. We then define for x ∈ A the
contribution of x to w by ‖ w ‖x= |w|x−|w|x−1 .

Let ψm,n : A∗→R be the function defined by induction on the length of the word by

8>>><
>>>:

ψm,n(ε) = 0 where ε is the empty word
ψm,n(w.b) = ψm,n(w.b−1) = ψm,n(w)

ψm,n(w.a) = ψm,n(w)+
�

m
n

�‖w‖b

ψm,n(w.a−1) = ψm,n(w)−
�

m
n

�‖w‖b
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Lemma 3. For every u,v ∈ A∗ one has

ψm,n(u.v) = ψm,n(u)+
�m

n

�‖u‖b

ψm,n(v).

Proof. By induction on the length of v.

We can now define the projection function Φm,n : BS(m,n)→R2 which associates to every element
g of BS(m,n) its coordinates on the Euclidean plane:

Φm,n(g) = (ψm,n(w),‖ w ‖b−1) ,

where w is a word representing g. The following proposition states that the definition does not depend
on the choice of w. Its proof is a simple application of Lemma 3.

Proposition 4. The function Φm,n is well defined on BS(m,n).

The function Φm,n is not necessarily injective as shown by the following example.
Example 2.1. Let m = 3 and n = 2. Consider the word

ω = bab−1a2ba−1b−1a−2.

We have
Φ3,2(ω) = Φ3,2(ε) = (0,0).

However, freely reduced words that do not contain b−1akmb or baknnb−1 as subwords, for any integer
k, cannot represent the identity in BS(m,n). Thus ω and ε represent different elements of the group.
Moreover, Baumslag-Solitar groups are HNN-extensions of Z, thus from Britton’s lemma it follows that
a finite subgroup of Baumslag-Solitar group is conjugate to a finite subgroup of Z. Since ω is not the
identity, it has infinite order in BS(3,2). We see that there is an infinite cyclic subgroup that is projected
by Φ3,2 to point (0,0).

All elements belonging to the same level project on the same horizontal line, thus we can speak of
the height of a level. The height is ‖ w ‖b−1 for the words w that represent the elements of the level.

3 Weakly aperiodic tile set on BS(m,n)

3.1 Representations of real numbers

Let i ∈ Z. We say that a bi-infinite sequence (xk)k∈Z of i’s and (i+ 1)’s represents a real number x ∈
[i, i+1] if there exists a sequence of intervals I1, I2, · · · ⊆ Z of increasing lengths n1 < n2 < .. . such that

lim
k→∞

P
j∈Ik

x j

nk
= x,

that is to say there is an infinite sequence of intervals of increasing lengths whose averages converge to
x. Note that if (xk)k∈Z is a representation of x, all the shifted sequences (x`+k)k∈Z for every ` ∈ Z are
also representations of x. Note also that a sequence (xk)k∈Z can represent several distinct real numbers,
since different interval sequences may converge to different points, and that by a compactness argument,
every sequence (xk)k∈Z does represent at least one real number x.
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For a real number x, we denote by bxc the integer part of x, that is the largest integer which is lower
or equal to x. Let x,r ∈R be arbitrary. For every k ∈ Z, let

Bk = b(r+ k)xc−b(r+ k−1)xc.

The bi-infinite sequence (Bk)k∈Z is called a balanced representation of x. Clearly (Bk)k∈Z is a represen-
tation of x in the sense defined above. Balanced representations of irrational x are sturmian sequences,
while for rational x the sequence is periodic.

3.2 Dynamical systems as tilings

Let I be a compact interval included in R, and T : I→ I be a dynamical system on I. We here restrict
ourselves to piecewise affine maps. Following the ideas in [8] and [9] one can construct a tile set such
that if a level in a tiling of Γm,n represents some real number x, then its successor levels represent T (x).
Going from one level to one of its successor level corresponds to one iteration of T , and a decrease of
the height of the level by 1.

x1 x2

c d
y1 y2 y3

Figure 2: The general form of tiles in BS(3,2). The colors are numbers.

Consider the case BS(3,2). The allowed patterns (tiles) are of the form shown in Figure 2. We say
that the tiles multiply by number q if the colors are numbers satisfying the relation

q
x1 + x2

2
+ c =

y1 + y2 + y3

3
+d. (1)

Consider a sequence of k such tiles on some level, next to each other so that the left vertical edge of
a tile is the same as the right edge of the previous tile. Averaging (1) over all k tiles yields then

qx+
c1

k
= y+

dk

k

where x is the average of the labels on the segment of 2k edges on the previous level, y is the average of
the labels on the corresponding segment of 3k edges on the level below, and c1 and dk are the left and
right vertical edges of the first and the last tile in the row, respectively. Letting k grow to infinity, we see
that if the previous level represents some number x then the next level necessarily represents number qx,
as required.
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3.3 An explicit tile set on BS(3,2)

Let T : [2
3 ;2]→ [2

3 ;2] be the piecewise linear map defined by

T : x 7→
¨

2x if x ∈ [2
3 ;1]

2
3 x if x ∈]1;2]

This function was used in [8] to construct an aperiodic set of Wang tiles on Z2. Here the same idea yields
a weakly aperiodic tile set on the Baumslag-Solitar group BS(3,2).
Proposition 5. The dynamical system T has no periodic points.

Proof. Suppose that x ∈ [2
3 ;2] is such that T n(x) = x, with n≥ 1. Then there exist k, ` ∈N with k+`= n

and such that 2k
�

2
3

�`
x = x. This is not possible since x 6= 0 and 2 and 3 are mutually prime.

We implement this dynamical system T by a tile set τ on BS(3,2). The tiles in τ have the form
presented in Figure 2. The tile set consists of two disjoint parts that implement multiplication by 2 and
multiplication by 2

3 , respectively. The vertical edge identifies which part is used so that each level is tiled
with tiles that multiply by the same number.

The tiles in the part that multiplies by 2 have the following properties:

• the top colors x1,x2 ∈ {0,1},
• the bottom colors y1,y2,y3 ∈ {1,2}, and

• the relation (1) is satisfied with q = 2.

9>=
>; (2)

The tiles in the part that multiplies by 2
3 satisfies the following:

• The top colors x1,x2 ∈ {1,2},
• the bottom colors y1,y2,y3 ∈ {0,1} or y1,y2,y3 ∈ {1,2}, and

• the relation (1) is satisfied with q = 2
3 .

9>=
>; (3)

Without specifying the tile set further, we can already see that it cannot admit a strongly periodic tiling.
Based on the discussion above, if a level of a valid tiling represents a real number x then its successor
level necessarily represents the number T (x). (Or if it happens that x = 1 then the successor might
represent 2

3 instead of T (x) = 2, but this causes no problems as the system still cannot have periodic
points.)

Proposition 6. There does not exist a strongly periodic valid tiling by τ .

Proof. Assume that there is a strongly periodic tiling π . Because Per(π) has finite index i, every infinite
subgroup of BS(3,2) contains a non-zero period. In particular, considering the subgroup {gakg−1 | k ∈
Z} for an arbitrary g, we see that there is a positive integer kg ≤ i such that gakgg−1 ∈ Per(π). Note
that the translation by gakgg−1 translates the level Lg by kg positions, that is, each ga j gets translated to
ga j+kg . We see that π is periodic on every level, and p = i! is a common period.

Hence each level represents a unique number, and this number is a rational number of the form c
p for

some integer c. But there are only finitely many possible numbers since the labeling alphabets are finite.
There exists hence h > 0 such that T h( c

p) =
c
p . Moreover, c 6= 0 because the choice of the alphabets in (2)

and (3) prevent two consecutive levels to represent 0. But this contradicts the fact that T has no periodic
points.
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3.4 Weakly periodic valid tiling

We next specify the tile set τ in more details to establish its weak aperiodicity. The tiles have to admit
a valid tiling. To that purpose we may include in the tile set as many tiles as we need, as long as they
satisfy the conditions (2) and (3) that guarantee that τ does not admit a strongly periodic tiling.

Our approach is to specify a coloring γ of the edges of the Cayley graph and observe that at each
vertex (2) and (3) are satisfied. We can then take the observed patterns in γ as the set of allowed patterns.
Our coloring γ assigns the same color to all edges that are projected to the same position by the function
Φ3,2.

Fix one bi-infinite orbit (xk)k∈Z by the dynamical system T of the previous section. In other words,
xk = T (xk−1) for all k ∈ Z. Let qk ∈ { 2

3 ,2} be the used multiplier so that xk = qkxk−1. We make in
the following a corresponding coloring γ of BS(3,2). Let g be an arbitrary group element projected to
Φ3,2(g) = (α,β ). Let k = β , and denote x = xk and q = qk.

• The label of the edge g−→ ga is
��3

2

�β

(α +1)x
�
−
��3

2

�β

αx
�
. (4)

• The label of the edge g−→ gb is

q
2

��3
2

�β−1
α

x
q

�
− 1

3

��3
2

�β

αx
�
. (5)

Moreover, the label identifies q = qk.

Note that the labels are determined by the coordinates α and β so they are the same on all edges that
project to the same point by Φ3,2. We have hence a well-defined coloring of the projected Cayley graph.
From (4) we see that the edge ga j −→ ga j+1 is labeled by number

��3
2

�β

(α + j+1)x
�
−
��3

2

�β

(α + j)x
�

(6)

for all j ∈ Z. Hence the sequence of labels on level Lg is a balanced representation of number x = xk.
Consider the label t of g−→ gb given by (5). For both q = 2 and q = 2

3 we have that t ∈ 1
3Z, and by

removing the floor functions in (5) we easily get

−1
3
< t <

q
2
.

We see that in the case q = 2
3 the label is 0, while in the case q = 2 we have t ∈ {0, 1

3 ,
2
3}.

Consider then the pattern of the form shown in Figure 2 extracted from this coloring γ at position
g. More precisely, let the lower left corner of the shape be the group element g. The sum of the three
bottom edges g−→ ga−→ ga2 −→ ga3 is the sum of (6) for j = 0,1,2. The sum is telescoping:

y1 + y2 + y3 =

��3
2

�β

(α +3)x
�
−
��3

2

�β

αx
�
.

Analogously, the sum of the top edges gb−→ gba−→ gba2 is

x1 + x2 =

��3
2

�β−1
(α +2)

x
q

�
−
��3

2

�β−1
α

x
q

�
.
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From (5) we get the colors of the edges g−→ gb and ga3 −→ ga3b as follows:

c = q
2

��
3
2

�β−1
α

x
q

�
− 1

3

��
3
2

�β
αx
�
,

d = q
2

��
3
2

�β−1
(α +2) x

q

�
− 1

3

��
3
2

�β
(α +3)x

�
.

A direct calculation then shows that (1) holds, that is, the pattern multiplies by q as required. We conclude
that the observed patterns in coloring γ satisfy the conditions (2) and (3). Moreover, there are only
finitely many different patterns since the labels come from finite sets. If we choose the observed patterns
as the tiles, i.e. as the allowed patterns, we obtain a tile set that admits a valid tiling, but according to
Proposition 6 does not admit a strongly periodic tiling.

Proposition 7. There exists a weakly periodic valid tiling by τ .

Proof. The coloring γ described above is a valid tiling. According to Example 2.1 the group element h
determined by the word

ω = bab−1a2ba−1b−1a−2

has infinite order and satisfies Φ3,2(h) = (0,0). For any group element g we have then Φ3,2(hg) =Φ3,2(g)
so that h ∈ Per(γ). So Per(γ) contains an infinite cyclic subgroup, and therefore γ is weakly periodic.

We can explicitly construct τ by taking all tiles that satisfy (2) and whose vertical labels c and d
come from the set {0, 1

3 ,
2
3}, and all tiles that satisfy (3) and where c = d = 0. All shapes that appear in

γ are then included. It turns out the first part (that multiplies by q = 2) contains 36 tiles, and the second
part (for q = 2

3 ) contains 10 tiles. These are depicted in Figure 3.
A similar tile set can be constructed on BS(m,n) for every m,n > 0. The dynamical system T

presented in Section 3.3 can be used for all the groups BS(m,n), and arguments for proving the weak
aperiodicity of the tile set remain the same.

Theorem 8. There exist weakly aperiodic tile sets on BS(m,n) for every m,n > 0.

4 Undecidability of the domino problem on BS(m,n)

We adapt the proof of undecidability of the domino problem in the hyperbolic plane presented in [9].
The proof is by reduction of the mortality problem of piecewise affine maps, which is known to be
undecidable.

Given a finite number of rational affine transformations f1, f2, . . . , fn of R2 and disjoint closed unit
squares U1,U2, . . . ,Un that serves as domains for the corresponding affine map, we define a partial func-
tion f :R2→R2 whose domain is U =U1∪U2∪·· ·∪Un and which is defined by

−→x 7→ fi(
−→x ) for −→x ∈Ui.

A vector−→x ∈R2 is immortal if for every i∈Z, the value f i(−→x ) is always in the domain U . The mortality
problem of piecewise affine maps asks whether a given system of rational affine transformations of the
plane f1, f2, . . . , fn and disjoint unit squares U1,U2, . . . ,Un with integer corners has an immortal point.
It is known, using the undecidability of the Turing machine mortality problem [5], that the mortality
problem of piecewise affine maps is undecidable [9].
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1 2

0 0

(2 tiles)

1 1 1

2 2

0 0

(3 tiles)

1 1 2

1 2

0 0

(2 tiles)

1 1 1

1 1

0 0

(3 tiles)

0 1 1

1 1

0 2
3

(3 tiles)

1 1 2

1 1

c c+ 1
3

c ∈ {0, 1
3 }

(6 tiles)

1 2 2

1 1

c c

c ∈ {0, 1
3 ,

2
3}

(3 tiles)

2 2 2

0 1

c c

c ∈ {0, 1
3 ,

2
3}

(6 tiles)

1 1 1

0 1

c c− 1
3

c ∈ { 1
3 ,

2
3}

(12 tiles)

1 1 2

0 1

2
3 0

(6 tiles)

1 2 2

Figure 3: The tile set τ , defined on the group BS(3,2), that implements the dynamical system T . The
whole set of 46 tiles can be easily obtained by permutations of the values for x1, x2 and for y1,y2, y3
and by choosing appropriate values for the carries c. The tiles corresponding to multiplication by 2 are
pictured in white, those to multiplication by 2

3 from a real number x ∈]1; 3
2 ] in dashed grey, and from a

real number x ∈]3
2 ;2] in grey.

Let fi :R2→R2 be a rational affine transformation of the Euclidean plane with domain Ui, given by

fi(
−→x ) = Mi

−→x +
−→
bi .

Following [9], one can adapt the tiles presented in Section 3.2 to construct a finite tile set that computes
function fi and whose top edges labels represent a vector in Ui.

Given a piecewise affine map f with domain U , one can thus effectively construct a finite tile set τ on
BS(m,n) such that τ admits a valid tiling if and only if f has an immortal point. From the undecidability
of the mortality problem for piecewise affine maps [9] we deduce
Theorem 9. The domino problem is undecidable on Baumslag-Solitar groups.

As explained in [9], it is possible to encode Turing machines into affine maps, and affine maps can
be encoded in a tiling on Baumslag-Solitar groups as discussed above. Combining this two facts, we can
conclude that for any Baumslag-Solitar group, it is possible to encode any Turing machine inside a tiling
on this group. It was shown in [6] that there exists a Turing machine M that halts on every recursive
configuration but does not halt on some non-recursive configuration. Executing our construction on M
one obtains a tile set on BS(m,n) that admits a valid tiling, and all valid tilings are non recursive.
Theorem 10. There exist an arecursive tile set on BS(m,n) for every m,n > 0.
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