
Simulation of effective subshifts

by two-dimensional subshifts of finite type

Nathalie Aubrun
LIGM, Université Paris-Est

aubrun@univ-mlv.fr

Mathieu Sablik
LATP, Université de Provence
sablik@latp.univ-mrs.fr

Abstract

In this article we study how a subshift can simulate another one, where the notion of simulation
is given by operations on subshifts inspired by the dynamical systems theory (factor, projective
subaction...). There exists a correspondence between the notion of simulation and the set of forbidden
patterns. The main result of this paper states that any effective subshift of dimension d – that is a
subshift whose set of forbidden patterns can be generated by a Turing machine – can be obtained by
applying dynamical operations on a subshift of finite type of dimension d + 1 – a subshift that can
be defined by a finite set of forbidden patterns. This result improves Hochman’s [Hoc09].

Introduction

A subshift of dimension d is a closed and shift-invariant subset of AZd

where A is a finite alphabet. A
subshift can be characterized by either its language or by a set of forbidden patterns. With this last
point of view, the simplest class is the set of subshifts of finite type, which are subshifts that can be
characterized by a finite set of forbidden patterns. It is possible to apply dynamical transformations like
factor or projective subaction on a subshift of dimension d, and it seems natural to wonder how they
modify the set of forbidden patterns.

In dimension 1, the class of subshifts of finite type is well understood. In particular subshifts of finite
type are exactly those whose language is accepted by a local automaton [Bea93]. Given this result, we
are naturally interested in subshifts with a language given by a finite automaton without the locality
condition. This class is entirely characterized in terms of dynamical operations: it is the class of sofic
subshifts, which can all be obtained as a factor of a subshift of finite type [LM95]. Thus each sofic
subshift is obtained by a dynamical transformation of a subshift of finite type.

Multidimensional subshifts of finite type are not well understood. For example, it is not easy to
describe their languages. Moreover, in addition to factors, there exist other types of dynamical trans-
formations on multidimensional subshifts: for example a subaction of a d-dimensional subshift consists
in taking the restriction of a subshift to a subgroup of Zd. Hochman [Hoc09] showed that every d-
dimensional subshift whose set of forbidden patterns is recursively enumerable can be obtained by sub-
action and factor of a d+2-subshift of finite type. The main result of this article states that any effective
subshift of dimension d can be obtained from a SFT of dimension d+ 1, thanks to a subaction and a fac-
tor operation. This result improves Hochman’s [Hoc09] since our construction decreases the dimension.
This problem is referenced in [Boy08] and independently of this work there is solution at this problem
in [DRS10].

The idea of the proof in [Hoc09] and in this article is to construct TFinal, a three dimensional subshift
of finite type in [Hoc09] (resp. a two-dimensional subshift of finite type in this paper), which realizes
a given effective subshift Σ ⊂ AΣ

Z in one direction (assume that d = 1) after a projection. Thanks to
product operation, TFinal is constituted by different layers, the first one is constituted by the alphabet
AΣ and can be obtained by a projection π. Then finite type conditions ensure that for any x ∈ TFinal,
one has π(x)Z×{(i,j)} ∈ Σ (resp. π(x)Z×{i} ∈ Σ) and all these lines are equal; moreover conditions are
not so restrictive and any configuration of Σ can be realized by a configuration of TFinal. We here briefly
present the main ideas of the proof, so that the reader already has in mind the final goal of technical
constructions presented in this article. The difficulty is to ensure that no forbidden pattern in Σ appears.

1

Since Σ is an effective subshift, its forbidden patterns can be enumerated by a Turing machine. There
are classical techniques to simulate calculations of a Turing machine thanks to a finite type condition
(see Section 2.6) and the key point of these techniques is that calculations are embedded into finite
computation zones. Thus, we consider a Turing machine MForbid which has a double role: it both
enumerates the forbidden patterns of Σ and checks that none of these patterns appear in a particular
zone around each computation zone, called the responsibility zone. However, when a Turing machine is
constructed in a two-dimensional subshift of finite type, as in this article, computation zones are such that
a computation is made on a fractured tape (see Section 2.2). Consequently forbidden patterns produced
by MForbid are also written on a fractured tape, and comparing them with non fractured patterns that

appear in AΣ
Z

2

is not trivial. To do so, the machineMForbid calls for a second Turing machineMSearch

(see Section 3.5). This machineMSearch is given byMForbid an address located in its responsibility zone,
and answers back the letter of AΣ that appears at this address. If a forbidden pattern is detected, the
machine MForbid comes into a special state qstop, whose presence is forbidden is the final subshift. This
ensures that every row xZ×{i} in the final subshift is a configuration of Σ. So, the two final operations
one has to apply in order to obtain the subshift Σ consist first in taking the projective subaction on Ze1,
where e1 is the first vector of the canonical basis of Z2, and then to erase any information that do not
concern Σ – for instance the construction of computation zones or the SFTs simulating the behaviour of
Turing machines – thanks to a well-chosen letter-to-letter factor.

The difficulty of this construction presented in this paper is to program Turing machines with different
size of computation which exchange information in a two-dimensional subshift of finite type, similar
arguments can be found in [Dal74, Han74, DLS01]. We note that the authors of [DRS10] prove a similar
result based on Kleene’s fixed-point theorem. In that other proof, they do not recourse to geometric
arguments to describe the circulation of information between the different levels of computation.

The paper is organized as follows: in Section 1 we present five types of operations (product, fac-
tor, finite type, projective subaction and spatial extension) and we formulate classic results with this
formalism. In Section 2, we present an important tool to define runs of a Turing machine with a sofic
subshift in dimension 2, which is the construction of an aperiodic SFT that will contain calculations
of a Turing machine and how to code communication between those different calculations of a Turing
machine. These tools are used to prove our main result in Section 3. The main construction of the
proof of Theorem 3.1 is built step by step and for a better understanding, at the end of each of these
subsections the contribution to the final construction is summed up in a fact. We do not pretend to give
a formal proof for these facts, but we hope it will clarify our intention.

1 Subshifts and operations on them

In this section we recall some basic definitions on subshifts inspired from symbolic dynamics. We also
present some dynamical operations on subshifts, that were first introduced by Hochman [Hoc09] and
then developed by the authors in [AS09].

1.1 Tilings and subshifts

Let A be a finite alphabet and d be a positive integer. A configuration x is an element of AZd

. Let S
be a finite subset of Zd. Denote xS the restriction of x to S. A pattern is an element p ∈ AS and S is the
support of p, which is denoted by supp(p). For all n ∈ N, we call Sdn = [−n;n]d the elementary support

of size n. A pattern with support Sdn is an elementary pattern. We denote by EdA =
⋃
n∈NA[−n;n]d the

set of d-dimensional elementary patterns. A d-dimensional language L is a subset of EdA. A pattern p of
support S ⊂ Zd appears in a configuration x if there exists i ∈ Zd such that for all j ∈ S, pj = xi+j , we
denote p < x.

Definition. A co-tile set is a tuple τ = (A, d, P) where P is a subset of EdA called the set of forbidden
patterns.

A generalized tiling by τ is a configuration x such that for all p ∈ P , p does not appear in x. We
denote by Tτ the set of generalized tilings by τ . If there is no ambiguity on the alphabet, we just denote
it by TP .

2

Remark. If P is finite, it is equivalent to define a generalized tiling by allowed patterns or forbidden
patterns, the latter being the usual definition of tiling.

One can define a topology on AZd

by endowing A with the discrete topology, and considering the

product topology on AZd

. For this topology, AZd

is a compact metric space on which Zd acts by
translation via σ defined by:

σiA : AZd −→ AZd

x 7−→ σiA(x) such that σiA(x)u = xi+u ∀u ∈ Zd.

for all i in Zd. This action is called the shift.

Definition. A d-dimensional subshift on the alphabet A is a closed and σ-invariant subset of AZd

.
We denote by S (resp. Sd, S≤d) the set of all subshifts (resp. d-dimensional subshifts, d′-dimensional
subshifts with d′ ≤ d).

Let T ⊆ AZd

be a subshift. Denote Ln(T) ⊆ A[−n;n]d the set of elementary patterns of size n which
appear in some element of T, and L(T) =

⋃
n∈N Ln(T) the language of T which is the set of elementary

patterns which appear in some element of T.

It is also usual to study a subshift as a dynamical system [LM95, Kit98], the next proposition shows
the link between the two notions.

Proposition 1.1. The set T ⊂ AZd

is a subshift if and only if T = TL(T)c where L(T)c is the

complement of L(T) in EdA.

A set of patterns P ⊆ EdA is recursively enumerable if there exists an effective procedure for listing
the patterns of P (see for instance [RJ87]).

Definition. It is possible to define different classes of subshifts according to the set of forbidden patterns:

• For a finite alphabet A and a dimension d ∈ N, the subshift T(A,d,∅) = AZd

is the full-shift of
dimension d associated to A. Denote FS the set of all full-shifts (for every finite alphabet A and
dimension d).

• For a finite alphabet A, a dimension d ∈ N and a finite set P ⊆ EdA, the subshift T(A,d,P) is a
subshift of finite type. Denote SFT the set of all subshifts of finite type. Subshifts of finite type
correspond to the usual notion of tiling.

• For a finite alphabet A, a dimension d ∈ N and a recursively enumerable set P ⊆ EdA, the subshift
TP is an effective subshift. Denote RE the set of all effective subshifts.

1.2 Operations on subshifts

In this section we describe five operations on subshifts and use them to define a notion of simulation of a
subshift by another one. Operations are gathered in two groups depending on which part – the alphabet

A or the group Zd – of a subshift T ⊆ AZd

they modify.

1.2.1 Simulation of a subshift by another one

An operation op on subshifts transforms a subshift or a n-tuple of subshifts into another one; it is
a function op : S → S or op : S × · · · × S → S that can depend on a parameter. An operation is not
necessarily defined for all subshifts. We remark that a subshift T (resp. a pair of subshifts (T′,T′′))
and its image by an operation op(T) (resp. op(T′,T′′)) do not necessary have the same alphabet or
dimension.

Let Op be a set of operations on subshifts. Let U ⊂ S be a set of subshifts. We define the closure of
U under a set of operations Op, denoted by ClOp(U), as the smallest set stable by Op which contains U .

We say that a subshift T simulates a subshift T′ by Op if T′ ∈ ClOp(T). Thus there exists a finite
sequence of operations chosen among Op, that transforms T into T′. We note it by T′ ≤Op T. Remark
that ClOp(T) = {T′ : T′ ≤Op T}.

3

1.2.2 Local transformations

We describe three operations that locally modify a subshift T ⊆ AZd

. The new subshift resulting

from the operation will be a subset of BZd

, where B is a new alphabet.

Product (Prod): Let Ti ⊆ AZ
d

i for any i ∈ {1, . . . , n} be n subshifts of the same dimension, define:

Prod (T1, . . . ,Tn) = T1 × · · · ×Tn ⊆ (A1 × · · · × An)Z
d

.

One has ClProd(FS) = FS and ClProd(SFT) = SFT .

Finite type (FT): These operations consist in adding a finite number of forbidden patterns to the

initial subshift. Formally, let A be an alphabet, P ⊆ EdA be a finite subset and let T ⊆ AZd

be a subshift.
By Proposition 1.1, there exists P ′ such that T = TP ′ . Define:

FTP (T) = TP∪P ′ .

Note that FTP (T) could be empty if P prohibits too many patterns. By FT, one lists all operations
on subshifts which are obtained by this type of transformation.

By definition of subshift of finite type, one has ClFT(FS) = SFT and ClFT(FS) = SFT .

Factor (Fact): These operations allow to change the alphabet of a subshift by local modifications.

Let A and B be two finite alphabets. A morphism π : AZd → BZd

is a continuous function which
commutes with the shift action (i.e. σi ◦π = π ◦σi for all i ∈ Zd). In fact, such a function can be defined
locally [Hed69]: that is to say, there exists U ⊂ Zd finite, called neighborhood, and π : AU → B, called
local function, such that π(x)i = π(σi(x)U) for all i ∈ Zd.

Let π : AZd → BZd

be a factor and T ⊂ AZd

be a subshift, define:

Factπ (T) = π(T).

By Fact, one lists all operations on subshifts which are obtained by this type of transformation.
Example 1.1 shows that ClFact(SFT) 6= SFT .

Example 1.1 (ClFact(SFT) 6= SFT). Consider the alphabet {0, 1, 2}Z and define T = T{00,11,02,21}.
The factor π such that π(0) = π(1) = 0 and π(2) = 2 transforms T into a subshift:

π(T) = {x ∈ {0, 2}Z : finite blocks of consecutive 0 are of even length }

which is called the even shift. It is known that the even shift is not a subshift of finite type (see Example
2.1.9 of [LM95]), since one need to exclude arbitrarily large blocks of consecutive 0’s of odd lengths to
describe it.

Definition. A sofic subshift is a factor of a subshift of finite type. Thus, the set of sofic subshifts is
Sofic = ClFact(SFT).

In [LM95], it is shown that sofic subshifts of dimension 1 are subshift which can be defined with a
language of forbidden patterns which is regular. The characterisation is unknown for multidimensional
sofic subshifts.

1.2.3 Transformations of the group of the action

We describe an operation that modify the group on which the subshift is defined, thus we change the
dimension of the subshift.

4

Projective Subaction (SA): These operations allow to take the restriction of a subshift of AZd

according to a subgroup of Zd. Let G be a sub-group of Zd freely generated by u1, u2, . . . , ud′ (d′ ≤ d).

Let T ⊆ AZd

be a subshift, define:

SAG (T) =
{
y ∈ AZ

d′

: ∃x ∈ T such that ∀i1, . . . , id′ ∈ Zd
′
, yi1,...,id′ = xi1u1+···+id′ud′

}
.

It is easy to prove that SAG (T) is a subshift of AZd′

. One denotes by SA the set of all operations
on subshifts which are obtained by this type of operation.

One verifies that ClSA(SFT) 6= SFT and ClSA(SFT) 6= Sofic (see respectively Example 1.2 and
Example 1.3).

Example 1.2 (ClSA(SFT) 6= SFT). We construct a subshift of finite type T ⊂ {0, 1, 2}Z
2

such that the
projective subaction of T on the sub-group ∆ = {(x, y) ∈ Z2 : y = x} ⊆ Z2 is not of finite type. In this
example we want the subshift that appears on ∆ to be{

x ∈ {0, 1, 2}Z : finite blocks of consecutive 0’s are of even length
}
.

Define F the following set of allowed patterns of size 4 (. symbol may be 1 or 2 but not 0, blank symbol
may be 0,1 or 2):

2 0
1 0 1

2 0 2
0 1

;

. .
2 0 .

1 0 1
0 2

;

1 0
2 0 2

. 0 1

. .

;

.
. . .

2 0 .
0 1

;

.
. .

. . .
0 .

;

2 0
. 0 1

. . .
.

;

. 0
. . .

. .
.

The alternation of 1 and 2 over and under the diagonal of 0 enables us to control the parity of 0 blocks.
Define F as the set of elementary patterns of size 4 that are not in F . Then if we denote T = TF :

SA∆ (T) =
{
x ∈ {0, 1, 2}Z : blocks of consecutive 0’s are of even length

}
which is not a subshift of finite type as explained in Example 1.1.

Example 1.3 (ClSA(SFT) 6= Sofic). The non finite type subshift constructed in Example 1.2 is sofic,
but it is possible to obtain non sofic subshifts. We construct a subshift of finite type T such that the
projection SA∆ (T) on the straight line y = x is not sofic. It is well known that in dimension 1, sofic
subshift are exactly subshifts whose language — see Definition 1.1 — is a regular language [LM95]. The

language {anbn : n ∈ N} is non-regular and so we construct a subshift of finite type T ⊆ AZ2

and a

morphism π : AZ2 → {0, a, b}Z2

such that the only allowed patterns in T′ = π(T) containing finite
blocks of consecutive a’s or b’s are those of the form 2n× 2n:

0
b

. .
.

b
a

. .
.

a
0

The principle is to construct patterns of even size and to localize the center of these patterns to
distinguish the an part from the bn part.

Denote A = {∗, a, b, 0, 1, 2, 3, 4}. We construct squares formed by any symbols except the symbol 0
which forms a background.The symbols 1, 2, 3 and 4 help to draw the two diagonals of the square and to

5

distinguish in which quadrant we are. The symbol ∗ only appears on a diagonal of the square, and the
other diagonal contains the anbn part. The presence of the symbol 0 everywhere around a finite figure
ensures that the two diagonals cross in their middle, hence the figure pictured is a square. It is possible
to describe a finite set of patterns where the only finite figures on the background formed by 0’s which
are allowed are even size squares of the form:

0 0 0 0 0 0 0 0
0 ∗ 1 1 b 0

0 4
. . . 1 1 . .

.
2 0

0
... 4 ∗ b 2

... 0

0
... 4 a ∗ 2

... 0

0 4 . .
.

3 3
. . . 2 0

0 a 3 3 ∗ 0
0 0 0 0 0 0 0 0

(∗)

We do not detail the entire set of allowed patterns, but the reader can easily deduce the missing patterns
from those given below:

Squares center:

∗ 1 1 b
4 ∗ b 2
4 a ∗ 2
a 3 3 ∗

0 0 0 0
0 ∗ b 0
0 a ∗ 0
0 0 0 0

Squares diagonals:
∗ 1 1
4 ∗ 1
4 4 ∗

1 1 b
1 b 2
b 2 2

∗ 2 2
3 ∗ 2
3 3 ∗

4 4 a
4 a 3
a 3 3

Squares sides:
0 0 0
0 ∗ 1
0 4 ∗

0 0 0
1 1 1
∗ 1 1

0 0 0
1 1 1
1 1 1

0 0 0
1 1 1
1 1 b

0 0 0
1 b 0
b 2 0

. . . and so on for the three other sides.

Uniform domains:
0 0 0
0 0 0
0 0 0

1 1 1
1 1 1
1 1 1

2 2 2
2 2 2
2 2 2

3 3 3
3 3 3
3 3 3

4 4 4
4 4 4
4 4 4

The only configurations one can construct with these allowed patterns are configurations of AZ2

with
0 everywhere except in some places where there are arbitrarily large blocks of the form (∗), and the
configurations made of the infinite pattern (∗). We denote by T this subshift of finite type.

Let π denote the letter-to-letter morphism defined by π(x) = 0 for x ∈ {∗, 1, 2, 3, 4} and π(a) = a,
π(b) = b. Suppose that SA∆ (T) is sofic. Since ClFact(Sofic) = Sofic then π(SA∆ (T)) would also be
sofic, which is absurd since:

π(SA∆ (T)) = T{ba;0ambn0:m6=n}.

So this construction proves that ClSA(SFT) 6= Sofic.
The class of SFT is not stable under projective subaction and the class ClSA(SFT) is studied

in [PS10]. Nevertheless a stable class for this operation is known, it is the class of effective subshifts. This
follows from the fact that projective subactions are special cases of factors of subactions, and by Theo-
rem 3.1 and Proposition 3.3 of [Hoc09] which establish that symbolic factors and subactions preserve
effectiveness. That is to say ClSA(RE) = RE .

With this formalism, the result of M. Hochman [Hoc09] can be written:

ClFact,SA(SFT) = RE .

More precisely, he proves that ClFact,SA(SFT ∩ Sd+2) ∩ S≤d = RE ∩ S≤d.
In Theorem 3.1, we show that ClFact,SA(SFT ∩ Sd+1) ∩ S≤d = RE ∩ S≤d. Moreover, there are

examples of effective subshifts which are not sofic so ClFact(SFT ∩ Sd) = Sofic ∩ Sd 6= RE ∩ Sd.

6

2 Computation zones for Turing machines

In this section we explain how to construct computation zones for a Turing machine and how to use them
to simulate calculations. A Turing machine is a model of calculation composed by a finite automaton –
the head of calculation – that moves on an infinite tape divided into boxes, each box containing a letter
that can be modified by the head. A precise definition of Turing machine will be given in Subsection 2.1,
and it will be explained how to code the behaviour of the machine thanks to local rules. The main
problem is that this SFT is not enough to code calculations of the machine, since there is no rule that
ensures the calculation is well initialized. So we need to embed calculations into specific zones. To
make sure that the size of these computation zones is not a constraint and does not prematurely stop a
calculation, we construct arbitrarily large computation zones with a sofic subshift in Subsection 2.2 and
we implement the local rules of the Turing machine in these zones in Subsection 2.6.

2.1 Local rules to code the behaviour of a Turing machine

In this article, we consider Turing machines with some restrictions: the behaviour of the machine will be
simulated only on the empty word (originally the tape only contains blank symbols]). We also assume
that the head cannot go to the left of the initial position. Note that we can impose these restrictions
without loss of generality. First we recall the formal definition of a Turing machine. Remember that a
Turing machine is a model of calculation composed by a finite automaton – the head of calculation –
that can be in different states and moves on an infinite tape divided into boxes, each box containing a
letter that can be modified by the head.

Definition. Let M = (Q,Γ,], q0, δ, QF) be a Turing machine, where:

• Q is a finite set of states of the head of calculation; q0 ∈ Q is the initial state;

• Γ is a finite alphabet;

•] /∈ Γ is the blank symbol, with which the tape is initially filled; end of any enumerated word;

• δ : Q×Γ→ Q×Γ×{←, · ,→} is the transition function. Given the state of the head of calculation
and the letter it can read on the tape — which thus depends on the position of the head of
calculation on the tape — the letter on the tape is replaced or not by another one, the head of
calculation moves or not to an adjacent box and changes or not of state;

• F ⊂ QF is the set of final states — when a final state is reached, the calculation stops.

Example 2.1. We consider the Turing machineMex that enumerates on its tape the words ab, aabb, aaabbb, . . .
and never halts. This machine uses the three letters alphabet {a, b, ‖} and five statesQ = {q0, qa+, qb+, qb++, q‖}.
A separation symbol ‖ is written at the end of each anbn. The transition function δex is

δex(q0,]) = (qb+, a,→)
δex(qb+,]) = (q‖, b,→)
δex(q‖,]) = (q‖, ‖, .)


Initialization of the tape: the machine writes the first word
ab on the tape and place the head on the separation symbol
‖ to the right of the word.

δex(q‖, ‖) = (q‖, ‖,←)
δex(q‖, b) = (q‖, b,←)
δex(q‖, a) = (qa+, a,→)

 Suppose some word anbn ‖ is written on the tape, and that
the head is on the ‖ symbol in state q‖. The machine looks
for the rightmost symbol a in anbn.

δex(qa+, b) = (qb++, a,→)
δex(qb++, b) = (qb++, b,→)
δex(qb++, ‖) = (qb+, b,→)


The machine replaces the leftmost symbol b by a symbol a
and looks for the separation symbol ‖ on the right of the
word. Once it has found it, it is replaced by bb ‖. The word
an+1bn+1 ‖ is now written on the tape and the head is on
the ‖ symbol in state q‖.

A calculation of this machine will always go through the following configurations of the tape:

7

. .

. . .] a a a a b (qb++, b) ‖]] . . .

. . .] a a a a (qb++, b) b ‖]] . . .

. . .] a a a (qa+, b) b b ‖]] . . .

. . .] a a (q‖, a) b b b ‖]] . . .

. . .] a a a (q‖, b) b b ‖]] . . .

. . .] a a a b (q‖, b) b ‖]] . . .

. . .] a a a b b (q‖, b) ‖]] . . .

. . .] a a a b b b (q‖, ‖)]] . . .

. . .] a a a b b b (q‖,])]] . . .

. . .] a a a b b (qb+,])]]] . . .

. . .] a a a b (qb++, ‖)]]]] . . .

. . .] a a a (qb++, b) ‖]]]] . . .

. . .] a a (qa+, b) b ‖]]]] . . .

. . .] a (q‖, a) b b ‖]]]] . . .

. . .] a a (q‖, b) b ‖]]]] . . .

. . .] a a b (q‖, b) ‖]]]] . . .

. . .] a a b b (q‖, ‖)]]]] . . .

. . .] a a b b (q‖,])]]]] . . .

. . .] a a b (qb+,])]]]]] . . .

. . .] a a (qb++, ‖)]]]]]] . . .

. . .] a (qa+, b) ‖]]]]]] . . .

. . .] (q‖, a) b ‖]]]]]] . . .

. . .] a (q‖, b) ‖]]]]]] . . .

. . .] a b (q‖, ‖)]]]]]] . . .

. . .] a b (q‖,])]]]]]] . . .

. . .] a (qb+,])]]]]]]] . . .

. . .] (q0,])]]]]]]]] . . .

If an origin is given it is straightforward to describe the behaviour of a Turing machine with a set
of two-dimensional patterns. The first dimension stands for the tape and second dimension for time
evolution. We obtain the space time diagram of computation of M which can be construct locally by
3× 2 allowed patterns:

• If the pattern codes a part of the tape on which the head of calculation does not act, the two line
of allowed pattern are identical and for x, y, z ∈ Γ one has:

x y z
x y z

• If the head of calculation is present in the part of the tape coded, we code the modification given
by the Turing machine. For example the rule δ(q1, x) = (q2, y,←) will be coded by:

(q2, z) y z′

z (q1, x) z′

Denote by PM the set of forbidden patterns on the alphabet AM = Γ∪(Q×Γ) constructed according
to the rules of M – patterns that cannot be seen as coming from the transition function as above. We

can assume that the support of all patterns in PM the following type: . For example,

with this assumption the rule δ(q1, x) = (q2, y,←) becomes:

y
z (q1, x) z′

(q2, z)
t z (q1, x)

z′

(q1, x) z′ z′′

Consider now the subshift of finite type TPM . It contains an element that is exactly the space time
diagram of computation of M, but also many other elements that are inconsistent. With the Turing
machine Mex of Example 2.1, the SFT TPMex

contains an element where the following configuration of
the tape appears

. . .] . . .] a b b b b b (q‖, ‖)] . . .] . . .

but this configuration is inconsistent since it is never reached by a calculation of Mex.
The problem comes from the lack of information about the beginning of a calculation. We need to

specify a point in Z2 that stands for the origin of a calculation – the head of calculation is in the initial
state q0, and the row is filled with blank symbols].

By compactness of the set of configurations of a subshift, it is impossible to impose that a special
symbol appears exactly once in every configuration.

8

2.2 A substitutive sofic subshift as grid of computation

A classical problem in tiling theory is the construction of aperiodic tilings, that are sets of tiles that can
only produce aperiodic configurations. A first example was initially given by Berger, who proved that
the domino problem (is it possible to tile the whole plane with a given finite set of tiles?) is undecidable
(see [Ber66] for the original proof by Berger and [Rob71] for Robinson’s proof with a smaller set of
tiles). Robinson reduces this problem to the Turing machine halting problem, which is known to be
undecidable. The heart of the proof is the construction of an aperiodic tiling, which codes computation
zones for Turing machines. These computation zones are all finite, but for any calculation of a Turing
machine that stops, it is possible to find a zone large enough that contains it. Robinson entirely describes
a finite set of tiles that produces the tiling, but there are many techniques to obtain it: Mozes [Moz89]
gives a proof based on substitutions and Durand, Romashchenko and Shen [DRS08] propose a proof
based on Kleene’s fixed point theorem. We here define computation zones for Turing machine with a
two dimensional substitution.

Definition of the substitution sGrid Let A be a finite alphabet. A (k, k′)-two dimensional substi-
tution is a function s : A → AUk,k′ where Uk,k′ = [0, k − 1] × [0, k′ − 1]. We naturally extend s to a

function sn,n
′

: AUn,n′ → AUnk,n′k′ by identifying AUnk,n′k′ with (AUk,k′)Un,n′ . Starting from a letter

placed in (1, 1) ∈ Z2 and applying successively s, sk,k
′
, . . . , sk

n−1,k′n−1

we obtain a sequence of patterns
in AUki,k′i for i ∈ {0, . . . , n}. Such patterns are called s-patterns. Note that the substitutions s we define
here are deterministic but one can imagine non deterministic substitutions replacing the function s by a
set of substitution rules, where a letter may have different images by the substitution. The definition of
s-patterns naturally extends to non deterministic substitutions.

To describe the grid of computation, we consider two alphabets G1 and G2 (see Figure 1). The
alphabet G1 = { , , , } describes the zones of computation, , and are called
computation boxes where the computation holds and are called communication boxes through which
computation boxes can send information. More precisely, and are called border computation
boxes. The alphabet G2 is constituted by lines which describe communication channels between the
different zones of computation.

G1

G2

Figure 1: The alphabets G1 and G2 on which the substitution is defined.

We define two (4, 2)-two dimensional substitutions, s1 on G1 and s2 on G2 (see Figure 2 for the
substitution rules). Then, we define the product substitution sGrid = s1 × s2 on G1 × G2. Iterations of
sGrid on any pattern of G1×G2 produce arbitrarily large computation zones with communication channels
between them (this will be detailed in Section 2.4 and Section 2.7). See Figure 5 for an example of an
iteration of sGrid.

9

Figure 2: Basic elements to define the substitution rules of s. The first row lists the substitution rules
of s1 on the alphabet G1. The second and third rows contain substitution rules of s2 on some of the
letters of G2. All substitution rules of s2 on G2 can be obtained by superimposing a substitution rule of
the second row and a substitution rule of the third row. One can deduce substitution rules of sGrid on
the alphabet G1 × G2 by superimposing a rule of s1 on G1 and a rule of s2 on G2.

Figure 3: Four iterations of the substitution sGrid starting from an element of G1 × G2.

We denote by πG1
(resp. πG2

) the projection on G1 (resp. G2).

Sofic subshift generated by the substitution Given a substitution s, recall that a s-pattern is
a pattern obtained by iteration of the substitution s on a letter (for instance in Figure 5 are drawn
s-patterns obtained after four iterations on the letter). The subshift generated by a substitution s,
denoted Ts, is the set of configurations x such that any pattern that appears in x also appears in a
s-pattern.

S. Mozes studied more general substitutions – non deterministic ones and substitution rules may
be of different sizes – and proved that if the substitution s satisfies some good property and has only
strictly two-dimensional substitution rules, then Ts is a sofic subshift (see Theorem 4.1 of [Moz89]). In
particular Mozes theorem can be applied for all deterministic substitutions, that is to say that all letter
have only one image, like sGrid. As a consequence, the following holds

Fact 2.1. The subshift generated by sGrid,

TGrid = TsGrid =
{
x ∈ (G1 × G2)

Z
2

: for all u < x there exists n ∈ N such that u < snGrid()
}

is a two-dimensional sofic subshift.

Remark. Note that πG1
(TGrid) = Ts1 and πG2

(TGrid) = Ts2 but TGrid is different of Ts1 ×Ts2 .

A substitution s : A → AUk,k′ may be extended into an application s̃ : AZ2 → AZ2

. This substitution
has unique derivation if for every element x ∈ Ts there exists an unique y ∈ AZ2

and an unique i ∈ Uk,k′
such that s̃(y) = σi(x).

Since the pattern appears in each rules of the substitutions s1, for every configuration x ∈ Ts1 ,
there exists (i, j) ∈ [0, 3] × [0, 1] such that x{n1+i+1}×[n2+j+1,n2+j+2] = for all (n1, n2) ∈ N × N.

10

Moreover this pattern cannot appear in other position so (i, j) is chosen in an unique way. Consider the
plane partition ([n1 + i, n1 + i+ 3]× [n2 + j, n2 + j+ 1])(n1,n2)∈N×N of the configuration x, since all boxes
have different image by the substitution, this plane partition gives an unique antecedent y by s̃1. We
deduce that s̃1(y) = σi,j(x). Thus Ts1 has unique derivation. The same type of reasoning holds for ‹s2.

Fact 2.2. The substitutions s1 and s2 have unique derivation.

2.3 Use of communication channels

A communication channel is a sequence of adjacent boxes marked by a special symbol – we call these
marked boxes channel boxes. The channel begins and ends with two computation boxes. In our con-
struction, the channel boxes are of two types which can appear in the same box:

• communication boxes from alphabet G1 that will be used for internal communication and
communication between adjacent Turing machines;

• symbols from alphabet G2 that will be used for communication between non adjacent Turing
machines.

Figure 4: A communication channel between the computation boxes i and f .

A transfer of information consists in three objects

• an initial computation box denoted i and a final computation box denoted f

• local rules that determine the symbol transferred through a channel, depending on the direction of
the channel starting from i (resp.reaching f) and the symbol contained in the box i (resp. in the
box f)

• a communication channel c.

Two adjacent communication boxes carry the same symbol, which is transferred through the channel.
Note that the computation boxes i and f are not necessary identical – for example a rule local may make
a change at the end of the communication channel. The same computation box may be at the extremity
of different communication channels.

Note that a communication box may belong to multiple communication channels, but this number
must be bounded – in our construction the maximum number of channels going through a communication
box will be 3 – internal communication inside a computation zone, communication between two adjacent
computation zones of same level and communication between computation zones of different levels.

Fact 2.3. Given a subshift Σ that contains communication channels, it is possible to code transfers
of information through these channels thanks to a product and a finite type operations, provided the
symbols transferred locally depend on the symbol contained in the initial and final computation boxes of
the channel.

2.4 Description of computation zones

In this section we only consider the G1 part of the sofic subshift TGrid. We here describe the grid where
computations hold for an element of πG1(TGrid): horizontal dimension stands for the tape and vertical
dimension for time evolution. On a horizontal line, a zone of computation is constituted by a group of
computation boxes located between on the left and on the right. The size of a computation
zone is the number of computation boxes which constitute the zone.

11

Consider a configuration x ∈ TGrid and a computation zone in x. Since s1 has unique derivation
(see Fact 2.2) for any integer n, there exists a unique way to partition x into 4n × 2n rectangles so that
each of these rectangles is a sn1 (a) for some a ∈ G1. So there exists a minimal integer n such that the
computation zone of x appears in sn1 (a) for some a ∈ G1. We call this integer the level of the computation
zone.

Figure 5: Four iterations of the substitution sGrid. Computation zones of level 1,2 and 3 appear on the
last pattern. The computation boxes of the first (resp. second and third) level are pictured with plain
(resp. hashed with SW-NE lines and hashed with NW-SE lines) pattern.

At the iteration n of the substitution on , that is to say sn(), we obtained a rectangle of size
4n × 2n. By induction, for all m ∈ [1, n], we get 4n−m ∗ 2n−m = 8n−m zones of computation of level m
in sn(), the size of these zones of computation is 2m. More precisely, if on the line j ∈ [0, 2n − 1] of
sn() we find a zone of computation of level m, then in this line we have 4n−m zones of computation of
level m. Moreover for each computation box located at the coordinate (i, j), the next computation box
in the same column above the current one is separated by 2m − 1 communication boxes, so it is located
at the coordinate (i, j + 2m), and this computation box is in a zone of computation of level m at the
same place that the box at the position (i, j). There is the same phenomena if we look down. The set of
zones of computation of the same size 2m on a vertical line is called a strip of computation of size 2m.

For any other symbol a ∈ G1, the description is the same except for the bottom row.

Remark. Note that it is possible to have a symbol on a row with no symbol on its right – that
is to say an infinite computation zone. In this case the computation zone has an infinite level.

Fact 2.4. Consider x ∈ TGrid and Cn a computation zone of level n of x. We assume that Cn appears
in the ith row of x, and we denote this row by xZ×{i}. Then the following properties hold – remember
that in this section we only consider the G1 part of the subshift TGrid:

1. Cn contains 2n computation boxes, separated by communication boxes;

2. on xZ×{i} there are only computation zones of level n, separated by 22n−1 communication boxes;

3. the row xZ×{i} is repeated vertically every 2n rows, that is to say xZ×{i} = xZ×{i+k×2n} for any
integer k ∈ Z;

4. vertically, between every pair of consecutive computation boxes of xZ×{i} and xZ×{i+k×2n}, there
are only 2n − 1 communication boxes.

We now explain how it is possible for two computation boxes of the same computation zone and for
two adjacent strips to communicate.

Communication inside a strip Two computation zones in the same computation strip of level
n communicate thanks to communication boxes of the 2n − 1 intermediate rows (vertical transfer of
information), and inside a same computation zone communication between computation boxes occurs
on the 2 ∗ 4n−1 − 2n communication boxes (horizontal transfer of information).

Figure 6 represents a computation grid where all zones of computation of the same size share the
same color and are filled with the same pattern.

12

Figure 6: Computation grid with the communication between disconnected parts of the same computa-
tion zone. Computation zones of level 1,2 and 3 are pictured with three different colors and patterns.
On a given row there are only computation zones of the same level, and there are 2n rows between two
rows with level n computation zones. A row of a strip of computation of level n is made of 2n boxes
arranged into a 2 ∗ 4n−1 wide block of boxes. The two ways of communication (horizontal and vertical)
are pictured with arrows whose color corresponds to the level of the computation zone or strip.

Communication between two adjacent strips Two strips of computation of same level can also
communicate if they are adjacent – that is the leftmost computation box of the first strip and the
rightmost computation box of the second strip are only separated by communication boxes.

Fact 2.5. Communication boxes contain two communication channels – horizontal and vertical channels.
Thanks to these channels, computation boxes into a same strip and two adjacent strips can communicate.

2.5 Initialization of calculations : the clock

The computation strips described in the previous section are restricted in space but not in time, hence
inconsistent configurations of a Turing machine may appear. To solve this problem, we equip each
computation strip with a clock, that will be reinitialized periodically. At each step of calculation, the
clock is increased and when it is reinitialized, the Turing machine starts a new calculation.

We use a four elements alphabet C = {0, 1, ø,∼} to construct a sofic subshift TClock obtained by adding

finite type rules on Prod
Ä
TGrid, CZ

2
ä
, where TGrid is the sofic subshift described in Section 2.2. Denote

πC the projection on the second coordinate. The clock is actually a finite automaton that simulates
binary addition modulo 22n

on a 2n boxes tape — special symbol ø corresponds to the carry in binary
addition, and symbol ∼ is used to synchronize adjacent computation zones of same level. To prevent the
appearance of inconsistent states on the clock, we forbid the patterns ø 0 , ø 1 , 0 ø , x ∼
and ∼ x where x ∈ {0, 1, ø} — we call this finite type condition Consist.

We describe the finite type conditions Count on the alphabet G1 × C in Figure 7.

13

∼ ∼ ∼ ∼
ø ø ø ø
1 1 1 1
1 1 1 ø
1 1 0 1
1 1 ø ø
1 0 1 1
1 0 1 ø
1 0 0 1
1 ø ø ø
0 1 1 1
0 1 1 ø
0 1 0 1
0 1 ø ø
0 0 1 1
0 0 1 ø
0 0 0 1
0 0 0 0

Figure 7: On the left, an example of the evolution of the clock for a computation zone of size 22.
On the middle the evolution of a part of this clock on a level 2 computation strip: on the tape are
successively written 001ø, 0011, 01øø and 0101. And on the right, some of the finite type conditions
Count, represented by the allowed patterns, added to the sofic subshift TGrid to obtain the sofic subshift
TClock.

The clocks of different computation levels evolve according to the rules described in Figure 7, and
when a symbol ø reaches the left most computation box , it is reinitialized. Before reinitialization, the
clock passes through the configuration with only ∼ symbols on the tape. Thanks to this configuration,
it is possible to synchronize a clock on a strip of level n with its two neighbours of level n. For example
the clock for a computation strip of level 1 will be 00, 01, 1ø, 11, øø,∼∼, 00, . . . Hence a clock for a
computation strip of level n is reinitialized after 22n

+ 2 steps.
To these local rules we add another finite type condition called Synchro, that ensures that clocks

corresponding to computation zones on the same level are synchronized, that is they are in the same state
at every calculation step – on a same row, all the clocks are in the same state. This can be easily done
by the following way: a clock is in the configuration ∼ · · · ∼ only when its left and right neighbours are
in the same configuration – a signal carrying symbol ∼ is sent through communication channel between
neighbours. We thus obtain a sofic subshift

TClock = FTCount∪Consist∪Synchro
Ä
Prod

Ä
TGrid, CZ

2
ää

in which every computation strip of TGrid is now equipped with a clock. Note that we do not impose
clocks for different levels of computation zones to be somehow synchronized.

Fact 2.6. Consider the sofic subshift TClock, in the interior of a strip of computation of level n which is
of size 2n, the clock is initialized every 22n

+ 2 on computation zone of level n.

2.6 A sofic subshift to describe Turing machines behaviour

We are going to use the subshift TClock constructed in Section 2.5 to construct a sofic subshift where
the computation of M in a space 2n holds on each strip of computation of size 2n, for all n ∈ N∗. We
want to apply the rules of PM to adjacent computation boxes that may be separated by a sequel of
communication boxes. As explained in Section 2.3 information may be transferred through communica-
tion boxes horizontally and vertically. The space of computation of M is restricted by on the left
and by on the right. We start again with the sofic subshift TClock defined in Section 2.5, into the

product subshift Prod
Ä
TClock, ÃZ

2
ä

where Ã = AM∪(AM×AM×AM). A symbol in Ã may be either

a symbol of AM inside a computation box or three symbols of AM transferred – horizontally for the
first and the second and vertically for the third – through a communication box. We have defined πG1

,

πG2
and πC respectively the projections on G1, G2 and C in the first coordinate of Prod

Ä
TClock, ÃZ

2
ä
.

Moreover denote πÃ the projection on the second coordinate of Prod
Ä
TClock, ÃZ

2
ä
, if we are in a com-

munication box, we can write πÃ1
, πÃ2

and πÃ3
respecively for the first, second and third coordinate of

AM ×AM ×AM.

14

To the sofic-subshift Prod
Ä
TClock, ÃZ

2
ä
, we add the following finite conditions, the support of all

forbidden patterns have the following form:

a
b c d

e
with a, b, c, d, e ∈ G1 × G2 × C × Ã

The conditions are:

• if the center box corresponds to a communication box in TClock, that is to say πG1
(c) = , one uses

conditions Transfer: the first and second coordinates are constant along the central row, and the
third coordinate is constant along the central comlumn – more precisely πÃ1

(b) = πÃ1
(c) = πÃ1

(d),
πÃ2

(b) = πÃ2
(c) = πÃ2

(d) and πÃ3
(a) = πÃ3

(c) = πÃ3
(e), these conditions hold if all boxes in

the neighborhood are communication boxes, in fact, if there is a computation box, we just use the
projection πÃ;

• if the center box corresponds to a computation box in TClock, that is to say πG1
(c) ∈ { , , },

one uses one of the followings conditions:

– conditions Init: when the clock is in a initial state, there is the blank symbol] on each box
and the tape is in the initial state on the left computation box – more precisely

∗ if πC(c) =∼ and πG1
(c) = then πÃ(c) = πÃ1

(d) = πÃ2
(b) = πÃ3

(a) = (q0,]),

∗ if πC(c) =∼ and πG1(c) ∈ { , } then πÃ(c) = πÃ1
(d) = πÃ2

(b) = πÃ3
(a) =];

– conditions Comp: we use the rules described in PM if the clock is not in the initial state –
more precisely

∗ if πC(c) 6=∼ and πG1
(c) = then

πÃ3
(a)

πÃ1
(b) πÃ(c) πÃ2

(d)
∈ PM, πÃ(c) = πÃ2

(b) = πÃ1
(d) and πÃ(c) = πÃ3

(e),

∗ if πC(c) 6=∼, πG1(c) = and the third coordinate of δ(πÃ(c)) is different from ←, that
is to say the transition function of the Turing machine does not move the head toward
the left, then

πÃ3
(a)

] πÃ(c) πÃ2
(d)

∈ PM, πÃ(c) = πÃ2
(b) = πÃ1

(d) and πÃ(c) = πÃ3
(e),

if πC(c) 6=∼, πG1(c) = and the third coordinate of δ(πÃ(c)) is different from →, that
is to say the transition function of the Turing machine does not move the head toward
the right, then

πÃ3
(a)

πÃ1
(b) πÃ(c)]

∈ PM, πÃ(c) = πÃ2
(b) = πÃ1

(d) and πÃ(c) = πÃ3
(e);

– conditions Bound: if the head wants to go to the left of the computation box or to
the right of the computation box , the head reaches a special state and the computation
continues in an infinite loop until the computation is initiated by the clock – more precisely

∗ if πC(c) 6=∼, πG1
(c) = and the third coordinate of δ(πÃ(c)) is ←, then

qWait
πÃ(c) πÃ2

(d)
, πÃ(c) = πÃ2

(b) = πÃ1
(d) and πÃ(c) = πÃ3

(e);

∗ if πC(c) 6=∼, πG1
(c) = and the third coordinate of δ(πÃ(c)) is →, then

qWait
πÃ1

(b) πÃ(c)
, πÃ(c) = πÃ2

(b) = πÃ1
(d) and πÃ(c) = πÃ3

(e);

15

∗ if πC(c) 6=∼, πG1
(c) ∈ { , , } and πÃ = qWait, then

πÃ(c) = πÃ3
(a) = πÃ3

(e) = πÃ2
(b) = πÃ1

(d) = qWait,

∗ if πC(c) 6=∼ and πÃ1
(b) = qWait or πÃ2

(d) = qWait then πÃ(c) = qWait.

Define the sofic subshift TM:

TM = FTTransfer∪Init∪Comp∪Bound

Ä
Prod

Ä
TClock, ÃZ

2
ää
.

For more convenience, we gather the local rules Transfer, Init, Comp and Bound in WorkM,

and the construction is summed up by: TM = FTWorkM

Ä
Prod

Ä
TGrid,AZ

2

Comp(M)

ää
for any Turing

machine M.
On each strip of computation appears parts of the space time diagram of the calculation of M on

the empty word. Each part of these space time diagrams are limited in space by the size of the strip of
computation and the number of steps is bounded exponentially by the length of the strip. Thus we can
find in TM arbitrary large part of space time diagram of M.

Fact 2.7. The subshift TM contains all calculations of the Turing machine M on space time diagram
of size 2n ×

(
22n

+ 2
)

– 2n boxes tape and 22n

+ 2 steps of calculation – starting with an empty entry
word.

Example 2.2. In this example the Turing machine Mex starts its enumeration with the word ab. The
picture describes how a run is coded on a computation grid. If one only considers computation boxes of
level 2, they form a three by four computation zone (three steps of calculation on a four boxes tape).

(q0,])

a

(q0,])

a

a

a

a

a

]

(qb+,])

(qb+,])

(qb+,])

(qb+,])

(qb+,])

]

(qb+,])

a

a

a

(q0,])

a

a

a

a

a

]

(qb+,])

(qb+,])

(qb+,])

(qb+,])

(qb+,])

(qb+,])

b

b

]

(q‖,])

(q‖,])

(q0,])

a

a

a

a

a

]

(qb+,])

(qb+,])

(qb+,])

(qb+,])

(qb+,])

]

]

]

]

]

(q0,])

a

a

a

a

a

]

(qb+,])

(qb+,])

(qb+,])

(qb+,])

(qb+,])

]

]

Figure 8: Calculation of a Turing machine on a computation grid with computation zones of levels 1, 2
and 3. Remark that each ↑ or ↔ arrow actually carries a symbol, but for more readability they are not
pictured here. For the same reason the clock is also omitted.

2.7 Communication channels between Turing machine of different levels

In the sequel computation strips will need to communicate. For two strips of the same level commu-
nication it is easy since between two zones of computation of adjacent strips of level n, there are only
communication boxes. Then one bit of information can be exchanged between two adjacent strips of
level n at each step of calculation (see Section 2.4). But if the two strips are not of the same level the
problem is not as simple. We present in this section a communication grid that allows a strip of level n
to communicate with a strip of level n− 1 and a strip of level n+ 1. This communication grid is based
on the G2 part of the subshift TGrid.

The lines obtained with the alphabet G2 are called communication lines. Communication between
computation zones of different levels are made through these lines. Under the action of s2, communication

16

lines form rectangles. The two rectangles obtained after n iteration of an element of G2 are called
communication rectangles of level n. Each rectangle of level n intersects two rectangles of level n−1 and
it is intersected by a rectangle of level n+ 1.

If we consider a border computation box (resp.) in a computation zone of level n, it is inside
a communication rectangle of level n. Thus if we go horizontally on the left (resp. the right) of this
box we meet the left border (resp. the right border) of this rectangle. On the bottom and top lines of
this rectangle, we encounter two border computation boxes (and) which are in two different
computation zones of level n− 1.

By local rules it is possible to construct communications channel of level n, that start from each
border computation box (or) of level n. The channel of communication goes on horizontally
on the right and left branches until it meets the right or left border of a communication rectangle
which is necessary of level n. Then the channel goes up and follows the border of the rectangle until
it meets a border computation box. This box is necessarily of level n − 1. Thus a computation zone
can communicate with the four computation zones of the previous level which are included in itself (see
Figure 9). These channels are used in Section 3.5 to ensure communication between computation zones
of different levels. We remark that zones of a level n repeat vertically with half the frequency of level
n− 1 zones. Therefore half the level n− 1 zones do not incoming path from higher zones.

Figure 9: A computation grid with communication lines. The computation zone of level 3 communicates
with level 2 computation zones it contains. This communication is made through the level 3 communi-
cation rectangle inside which the left border computation box is. Symmetrically, one can imagine that
the right border communication box communicates with two other level 2 computation zones, this in not
pictured here.

Fact 2.8. For any computation strip of level n, there are two communication channels starting from
each border computation box or of level n and ending at a border computation box of level n− 1
– one and one . Starting from a computation zone of level n, the four computation strips of
level n− 1 associated can be reached by this way.

3 Proof of the main theorem

The ideas of the proof of the main result of this article were presented in the Introduction. We give here
technical details that rely on constructions presented in the previous sections. We want to prove the
following result.

Theorem 3.1. Any effective subshift of dimension d can be obtained with factor and projective subaction
operations from a subshift of finite type of dimension d+ 1.

Thanks to the formalism of Section 1 and since RE is stable under Fact and SA operations, we
rewrite it:

ClFact,SA(SFT ∩ Sd+1) ∩ S≤d = RE ∩ S≤d.

This result improves Hochman’s [Hoc09] since our construction decreases the dimension.
We here prove this statement in the particular case d = 1, but the proof can be easily extended to

any dimension. Let Σ be a one dimensional effective subshift, defined on an alphabet AΣ.

17

3.1 Construction of the four layers of SFT

We start with the two-dimensional fullshift AΣ
Z

2

with a spatial extension operation, and thanks to
factor, product and finite type operations we construct a sofic subshift TFinal such that after factor and
projective subaction we obtain Σ. To do that, we eliminate configurations x such that xZ×{0} contains
a forbidden word of Σ. Then the projective subaction that consists in only keeping the first coordinate
of a two-dimensional configuration x gives the subshift Σ.

To resume the two-dimensional sofic subshift is made of four layers that are glued together thanks to
product operations:

• first layer contains AZ2

Σ and all horizontal lines are identical by finite condition Align, the other
layers force the horizontal line to be an element of the effective subshift Σ, thus this subshift can
be obtained after projective subaction (to keep horizontal line) and factor (to keep the first layer);

• layer 2 contains the computation zones for Turing machines equipped with the clock (this con-
struction is described in Section 2), that will be used by both machines MForbid and MSearch; but
also the communication channels that will be used by the same machines to send requests (see
Sections 3.4 and 3.5);

• layer 3 is devoted to Turing machines MForbid, and communication with the Turing machines
MSearch (this part is described in Section 3.4);

• layer 4 is devoted to Turing machinesMSearch and internal communication between these machines
(see Section 3.5).

Of course each of this layer depends on the others (for example layer 3 uses computation zones given by
layer 2), and the dependences are coded thanks to finite type operations.

Figure 10: Four layers in the final construction.

3.2 Addresses in a strip

Since, on the first layer, each column is formed by one letter of AΣ, to check a word in an horizontal
configuration, it is sufficient to check the first layer in the corresponding columns.

Let Cn be a computation zone of level n of an element x ∈ TGrid and let Sn be the computation
strip associated. By Fact 2.2, there exists an unique i ∈ [0, 4n − 1]× [0, 2n − 1] and an unique y ∈ TGrid

such that snGrid(y) = σi(x) so there exists an unique (j1, j2) ∈ Z2 such that Cn < snGrid(y(j1,j2)). One has
Sn < σ−i(snGrid(y{j1}×Z})) < x, the strip σ−i(snGrid(y{j1}×Z})) is the dependency strip associated with
the computation strip Sn

In TGrid the tape of a Turing machine in a strip of level n is fractured. Thus a Turing machine of level
n cannot view all columns which are in its associated dependency strip. To get this information, this
Turing machine communicates with a Turing machine of lower level (see Section 3.5) but both machines
need to precisely identify a column.

Given a dependency strip associated with a computation strip of level n, it is possible to describe the
coordinate relative to this strip of any column of the dependency strip by an address which contains n

18

letters in a four elements alphabet. Each sn1 (a) is horizontally decomposed into four (possibly different)
sn−1

1 (b) where a, b ∈ G1. The first letter of the address indicates in which of these dependency stripes of
size n − 1 the column is located. By iteration of this process the position of a column is exactly given
with n letters (see Figure 11).

Figure 11: Addresses of two boxes inside a dependency strip associated with a computation zone of
level 3. The address of the column of the black box is 231 and for the grey box, the address of the
column is 020.

Fact 3.2. For every dependency strip associated with a computation strip of level n, it is possible to
describe the position of any column by an address of length n on a four elements alphabet.

3.3 Responsibility zones

On each computation zone a Turing machine makes calculations. The Turing machineMForbid described
more precisely in Section 3.4 enumerates patterns and then checks that these patterns never appear. Since
it takes an infinite number of steps of calculation to check that one pattern does not appear in the entire
configuration, each Turing machine MForbid only checks a finite zone. The finite zone in which the
machine ensures that no forbidden pattern it produces appears is called the responsibility zone of the
machine.

We thus associate a responsibility zone with each strip of computation. For a strip of level n this
responsibility zone is 3 ∗ (2 ∗ 4n−1) = 6 ∗ 4n−1 wide and centered on the strip (see Figure 12), so that
the responsibility zone of a strip starts at the end of the strip of same level on its left and ends at the
beginning of the strip of same level on its right.

Figure 12: Responsibility zones for strips of level 2. These zones are 24 boxes wide and overlap on 8
boxes. The responsibility zone of the center strip starts at the end of the strip on its left and ends at
the beginning of the strip on its right.

Responsibility zones defined in this way overlap: two adjacent responsibility zones of same level n
share 2 ∗ 4n−1 boxes. These overlappings are essential: if they did not exist, one can imagine that a
forbidden pattern not entirely included in any responsibility zone would not be detected. Moreover the
non bounded size of overlappings ensures that any pattern is inside an infinite number of responsibility
zones of increasing levels.

19

3.4 Generation and detection of forbidden patterns by MForbid

Since Σ is recursively enumerable, there exists a Turing machine that enumerates the forbidden patterns
of Σ. We here describe a modified version of this Turing machine that also checks that no forbidden

pattern appears inside its responsibility zone, on the first level of the construction AΣ
Z

2

. Computation
zones are not connected (see Figure 8), so a calculation of MForbid on a strip of computation of size 2n

cannot access entirely its responsibility zone. The machine MForbid needs the help of a second Turing
machine MSearch to obtain the patterns of AΣ

Z written in its responsibility zone. The behaviour of
MForbid is the following: it enumerates as many forbidden patterns as the size of the computation
zone allows, and each time such a pattern is generated, MForbid checks that it does not appear in its
responsibility zone.

Tapes of MForbid The machine MForbid uses three tapes:

• the first tape is the calculation tape;

• the second tape is a writing tape, where the forbidden patterns are successively written;

• the last tape is the communication tape and contains successively the addresses of letters from
alphabet AΣ needed by MForbid to check no forbidden pattern appears inside its responsibility
zone; MForbid waits for the required MSearch machine of its neighbourhood (left, middle or right
machine) to be available, then sends it the address of the letter it wants to access (see Section 3.5).

Detection of the size of the responsibility zone associated First, the Turing machine MForbid

detects the size of the computation zone between and . Thus, MForbid knows the size of its
responsibility zone. This can be in linear time according to the size of the computation zone considered.

Enumeration of forbidden patterns Then, MForbid enumerates forbidden patterns and each time
it encounter one, it checks if this forbidden pattern appears in the associated responsibility zone before
to enumerate the following one.

Check of the responsibility zone Assume that the machine MForbid has written on its writing
tape a forbidden pattern f = f0f1 . . . fk−1. Assume that MForbid must check a responsibility zone of
level n denoted a0a1 . . . a6∗4n−1−1. It asks MSearch for the first letter in its responsibility zone a0 (the
principe of a request is explained in Section 3.5), and compares it with f0. If the letters coincide, then
it is still possible that f appears in position 0 in the responsibility zone, so the comparison of the two
patterns f and a0 . . . ak continues. If f0 6= a0 then we are sure that f does not appear at this location. If
f = a0 . . . ak, the Turing machine MForbid stops its computation and enter in a state which says that a
forbidden patterns appears in the checked configuration. This state will be forbidden in the final subshift
of finite type. When the word a0 . . . ak−1 is checked, MForbid continues the comparison with a1 . . . ak,
. . . , a6∗4n−1−k−1 . . . a6∗4n−1−1. At most, to check if f appears in the responsibility zone of level n ,
MForbid takes 6 ∗ 4n−1 ∗ k ∗ t(n) where t(n) is the time takes byMSearch to answer a request ofMForbid;
the time t(n) is estimated in Section 3.5.

20

Responsibility zone of MForbid︷ ︸︸ ︷
a0 a1 a2 aN

f0 f1 f2 . . .

f0 f1 f2 . . .

f0 f1 f2 . . .

Figure 13: When a forbidden pattern f = f0f1 . . . fk is
generated by MForbid, comparisons with the patterns ap-
pearing in the responsibility zone of MForbid are made in
parallel.

3.5 Scan of the entire responsibility zone by MSearch

The Turing machine MSearch is sent a request – that is to say a sequence of symbols which codes the
address of a letter inside a responsibility zone of a MForbid machine – by MForbid each time an address
is totally written on the communication tape (the third tape of MForbid). The Turing machine MSearch

must respond the letter corresponding to the address inside the responsibility zone, on the first level

of the construction AΣ
Z

2

. Note that the responsibility zone of a MForbid machine of level n does not
exactly match with the communication network of MSearch machines of same level. Actually a MForbid

machine shares its responsibility zone with threeMSearch machines, and depending on the address of the
bit requested, the MForbid sends its request to the appropriate MSearch machine (see Figure 14 for an
example).

Tapes of MSearch The machine MSearch of level n uses three tapes:

• the first tape is the calculation tape;

• the second tape is the hierarchical request tape; this is where the bits of an address transferred by
the MSearch of level n+ 1 are written.

• the three last tapes are the left request tape, the center request tape and the right request tape which
correspond to the addresses of the bits asked by the Turing machine MForbid of level n localized
respectively to the left, inside and to the right of the communication strip of the machine MSearch

considered.

Request sent by MForbid Each time that an address is written on the communication tape of a
Turing machineMForbid, this machine sends this request to the correspondingMSearch of the same level
localized in the same communication strip or in communication strips directly to the left or to the right.
MForbid sends one bit composing the address every step of calculation, so that a level n Turing machine
sends a bit every 2n rows – if we implement Turing machines in the subshift of finite type described
in Section 2.6. Adjacent strips of same level can communicate by communication channels described in
Section 2.4 using the fact that in one row there is only computation zones of same level (see Fact 2.4).
The bits of the address are sent one by one, hence the transfer takes 2n ∗ n rows since the size of the
address of the request is n. The request is written on the corresponding request tape. MForbid waits for
the answer of the corresponding MSearch before to continue the computation.

Request sent by MSearch A Turing machineMSearch of level n ≥ 2 can make a request at one of the
four Turing machines MSearch of level n− 1 localized in its dependency. The asking machine sends one
bit composing the address every step of calculation, so that a level n Turing machine sends a bit every
2n rows and thus it takes 2n ∗ n rows to transfer the address of size n. The machine MSearch of level n

21

uses communication channels described in Fact 2.8 to communicate: each border computation box
and is surrounded by a rectangle of the same level n which communicates with border computation
box of the previous level n− 1.

Treatment of a request A machine MSearch of level n successively responds to the different request
tapes. The address of the request tape considered is copied on the computation tape, and the machine
keeps in memory to which request tape it is responding. If the machine MSearch is of level 1, it directly
reads the letter of AΣ. Otherwise the machine MSearch of level n transmits the address to the corre-
sponding machine MSearch of level n− 1: the first letter of the address indicates which channel MSearch

must be used to send the continuation of the address, converted into a n− 1 bits address by erasing the
first bit of the address. Then the machine MSearch of level n waits for the answer, which is obtained
when a machine of level 1 is reached (see Figure 14). This letter must be transferred back until it finds
the machine which initially made the request.

Figure 14: An example of request by a MForbid machine of level 3 – the computation zone on the top
of the picture. Depending on the address of the letter requested, MForbid sends its request to either the
left, center or rightMSearch machine. On this example theMForbid machine sends its request to the left
MSearch machine of level 3, which transmits it to a MSearch machine of level 2 and finally to a MSearch

machine of level 1. This last machine can answer the request.

Transfer back of the information When a Turing machineMSearch obtains the bit corresponding to
the request, it transfers it by the communication channel to the Turing machine which made the request
via the request tapes. This operation is instantaneous for two reasons. First there is just one box of
information to transmit. Secondly there is just one information on the channel since the corresponding
Turing machine waits for an answer. A Turing machine MSearch eventually answers the request of the
Turing machineMForbid of the same computation strip, since everyMSearch alternately works forMForbid

of same level and higher levels MSearch machines.

Initialization of the computations When the computation is initialized, it is important not to
erase the addresses on the request tapes, because Turing machines of higher levels may be waiting for an
answer. Requests are only made toward lower level, so they are answered even if the address does not
correspond to a real request.

Another problem of initialization occurs when a Turing machine makes a request, but is initialized
before to obtain its answer. Actually in this case we impose that once the Turing machine is initialized,
it waits for the answer to its request from the previous computation before to begin a new one.

Time taken by MSearch to answer at a request Denote t(n) the time that a machine MSearch of
level n needs to answer a request from MForbid. Since a machine of level n makes a calculation step
every 2n rows, a machine MSearch of level n needs 2n ∗ t(n) rows to answer a request from MForbid.

A machine MSearch of level n ≥ 2 needs the help of a machine MSearch of level n − 1: it transfers
one by one the n − 1 bits of the address, one bit is transferred every 2n rows, this takes n ∗ 2n rows.
Then it waits for the MSearch of level n − 1 answer. It is possible that this MSearch of level n − 1 is
already busy, and the level n machine has to wait – in the worst case three MForbid machines of level
n − 1 are already waiting for an answer. Hence the MSearch of level n − 1 possibly works for the three
neighbouringMForbid machines of level n− 1, this takes 3× t(n− 1) steps of calculation, before to work

22

for the MSearch of level n, this takes t(n − 1) steps of calculation. Thus the number of rows used to
answer at a request is given by

2nt(n) ≤ n ∗ 2n + 4 ∗ 2n−1 ∗ t(n− 1).

We deduce from the previous inequality that t(n) ≤ n22n.

Fact 3.3. All requests ofMForbid of level n are handled by theMSearch machine of same level in at most
n22n steps of calculation for large enough n.

Time taken by MForbid to check if a forbidden word appear Assume that a Turing machine
MForbid must check if a word f of size k appears in the responsibility zone associated. According to
Section 3.4, this takes 6 ∗ 4n−1 ∗ k ∗ t(n) ≤ k ∗ n2 ∗ 23n+1 steps of calculation.

Let (fi)i∈N be the enumeration of forbidden patterns by MForbid. Denote t(f0, . . . , fk) the time
taken by MForbid to scan if the words (fi)i∈[0,k] appear in the responsibility zone associated and denote
t′(f0, . . . , fk) the time taken byMForbid to compute the words (fi)i∈[0,k] without scaning the responsibility
zone. Thus, the time taken by a Turing machine MForbid of level n to scan the words (fi)i∈[0,k] is given
by

t(f0, . . . , fk) ≤ t′(f0, . . . , fk) + (k + 1) ∗max{|fi| : i ∈ [0, k]} ∗ n2 ∗ 23n+1.

Since t′(f0, . . . , fk) does not depend of the level of MForbid and since by Fact 2.7 a machine MForbid of
level n could make 22n

+ 2 steps of calculation, there exists a level n such that all Turing machines of
level n check that the words (fi)i∈[0,k] does not appear in their responsibility zones.

Fact 3.4. For all forbidden word of Σ, there exists n ∈ N such that every turing machine MForbid of
level n checks that the word does not appear in its responsibility zone.

3.6 The final construction

We sum up the construction of the final subshift:

1. First, we construct the four layers: TLevel = Prod
Ä
AZ2

,TGrid,AZ
2

Comp(MForbid)
,AZ2

Comp(MSearch)

ä
;

2. then, we align all the letter of the first layer to obtain the same configuration horizontally TAlign =
FTAlign (TLevel);

3. finally, we include the working ofMForbid andMSearch thanks to WorkMForbid
∪WorkMSearch

and we
include the communication between the different layers thanks to Com. Moreover, we include the
condition Forbid which exclude the configuration when MForbid encounters a forbidden pattern.
We obtain:

TFinal = FTWorkMForbid
∪WorkMSearch

∪Com∪Forbid
(
TAlign

)
.

We denote by T the subshift Factπ (SAZe1 (TFinal)) where π is a morphism that only keeps letters
from alphabet AΣ from the first layer. We want to compare Σ and T

Any configuration in Σ can be obtained (Σ ⊆ T): Let x ∈ Σ, by construction of TFinal it is easy
to construct a two-dimensional configuration y such that y ∈ TFinal and π(y|Ze1) = x.

Any configuration constructed is in Σ (T ⊆ Σ): Let x ∈ T, we prove that x ∈ Σ. By definition
there exists y ∈ TFinal such that π(y|Ze1) = x. It is sufficient to prove that every word in x is in L(Σ).
Let w be a word that appears in x. Suppose that w is not in L(Σ), by Fact 3.4, there exists n ∈ N such
that in any computation strip of level n, the word w is checked in the associated dependency strip. In
particular the word w will be compared with any word of length |w| that appears in x. Since w appears
in x, there would be a computation strip of level n in which the calculation ofMForbid violates the finite
type condition Forbid. This proves the inclusion T ⊆ Σ.

23

3.7 Effective subshift as sub-action of a two-dimensional sofic

In fact the previous construction gives a more general result. If we consider

SAZe1 : π(TFinal) −→ Σ
x 7−→ xZ×{0}

it is a continuous bijective map. Indeed, for all x ∈ π(TFinal), one has x(i,k) = x(j,k) for all i, j, k ∈ Z
since by condition Align all columns contain the same symbol. Moreover, SAZe1 ◦σe1 = σΣ◦SAZe1 , thus
SAZe1 realizes a conjugation between the dynamical system (π(TFinal), σ

e1) and (Σ, σΣ). We deduce
the following theorem:

Theorem 3.5. Any effective subshift of dimension d is conjugate to a sub-action of a sofic subshift of
dimension d+ 1.

Acknowledgements

The authors are grateful to Michael Schraudner for useful discussions and important remarks about the
redaction. We also want to thank the anonymous referee for his rigorous and detailed review which
helped us to clarify the paper and Mike Boyle for some comments about sub-action concepts. Moreover,
this research is partially supported by projects ANR EMC and ANR SubTile.

References

[AS09] Nathalie Aubrun and Mathieu Sablik. An order on sets of tilings corresponding to an order
on languages. In 26th International Symposium on Theoretical Aspects of Computer Science
(STACS 2009), volume 3, pages 99–110, 2009.

[Bea93] M.P. Beal. Codage Symbolique. Masson, 1993.

[Ber66] R. Berger. The Undecidability of the Domino Problem. American Mathematical Society, 1966.

[Boy08] M. Boyle. Open problems in symbolic dynamics. Contemporary Mathematics, 468:69–118,
2008.

[Dal74] Myers Dale. Nonrecursive tilings of the plane. ii. The Journal of Symbolic Logic, 39(2):286–294,
1974.

[DLS01] Bruno Durand, Leonid Levin, and Alexander Shen. Complex tilings. In STOC ’01: Proceedings
of the thirty-third annual ACM symposium on Theory of computing, pages 732–739, New York,
NY, USA, 2001. ACM.

[DRS08] Bruno Durand, Andrei E. Romashchenko, and Alexander Shen. Fixed point and aperiodic
tilings. In Developments in Language Theory, pages 276–288, 2008.

[DRS10] Bruno Durand, Andrei E. Romashchenko, and Alexander Shen. Fixed-point tile sets and their
applications. CoRR abs/0910.2415, http://arxiv.org/abs/0910.2415, 2010.

[Han74] William Hanf. Nonrecursive tilings of the plane. i. The Journal of Symbolic Logic, 39(2):283–
285, 1974.

[Hed69] GA Hedlund. Endomorphisms and automorphisms of the shift dynamical system. Theory of
Computing Systems, 3(4):320–375, 1969.

[Hoc09] M. Hochman. On the Dynamics and Recursive Properties of Multidimensional Symbolic Sys-
tems. Inventiones Mathematicae, 176(1):131–167, 2009.

[Kit98] B. Kitchens. Symbolic dynamics. Springer New York, 1998.

[LM95] D. Lind and B. Marcus. An Introduction to Symbolic Dynamics and Coding. Cambridge
University Press, 1995.

24

[Moz89] S. Mozes. Tilings, substitution systems and dynamical systems generated by them. Journal
d’analyse mathématique(Jerusalem), 53:139–186, 1989.

[PS10] R. Pavlov and M. Schraudner. Classification of sofic projective subdynamics of multidimensional
shifts of finite type. Submitted, 2010.

[RJ87] H. Rogers Jr. Theory of recursive functions and effective computability. MIT Press Cambridge,
MA, USA, 1987.

[Rob71] R.M. Robinson. Undecidability and nonperiodicity for tilings of the plane. Inventiones Math-
ematicae, 12(3):177–209, 1971.

25

	Subshifts and operations on them
	Tilings and subshifts
	Operations on subshifts
	Simulation of a subshift by another one
	Local transformations
	Transformations of the group of the action

	Computation zones for Turing machines
	Local rules to code the behaviour of a Turing machine
	A substitutive sofic subshift as grid of computation
	Use of communication channels
	Description of computation zones
	Initialization of calculations : the clock
	A sofic subshift to describe Turing machines behaviour
	Communication channels between Turing machine of different levels

	Proof of the main theorem
	Construction of the four layers of SFT
	Addresses in a strip
	Responsibility zones
	Generation and detection of forbidden patterns by MForbid
	Scan of the entire responsibility zone by MSearch
	The final construction
	Effective subshift as sub-action of a two-dimensional sofic

