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Abstract. A one-sided (resp. two-sided) shift of finite type of dimension
one can be described as the set of infinite (resp. bi-infinite) sequences
of consecutive edges in a finite-state automaton. While the conjugacy
of shifts of finite type is decidable for one-sided shifts of finite type of
dimension one, the result is unknown in the two-sided case.
In this paper, we study the shifts of finite type defined by infinite trees.
Indeed, infinite trees have a natural structure of one-sided shifts, between
the shifts of dimension one and two. We prove a decomposition theorem
for these shifts, i.e. we show that a conjugacy between two shifts of finite
type can be broken down into a finite sequence of elementary transfor-
mations called in-splittings and in-amalgamations. We prove that the
conjugacy problem is decidable for tree shifts of finite type. This result
makes the class of tree shifts closer to the class of one-sided shifts of
dimension one than to the class of two-sided ones. Our proof uses the
notion of bottom-up tree automata.

1 Introduction

Sofic shifts are bi-infinite sequences labeling paths in a finite automaton. Shifts
of finite type are a particular important subclass of sofic shifts. Two-sided (resp.
one-sided) shifts of finite type are bi-infinite (resp. right-infinite) sequences of
consecutive edges in a finite-state automaton (see [8, 13.8], [5]). They are well un-
derstood in the one-sided case since the conjugacy is decidable for such shifts [14].
The proof uses the decomposition theorem (see for instance [5]). This theorem
states that every conjugacy between two one-sided shifts of finite type can be
decomposed into a finite sequence of splittings and amalgamations, which are
elementary operations on automata presenting the two shifts.

In the two-sided case, the decidability of the conjugacy problem between two
shifts of finite type is still an open question. In higher dimension, many questions
become more difficult. The main reason is that there exists no good representa-
tion of multidimensional shifts comparable to finite automata in dimension one.
Even if there exists a generalization of finite automata to dimension two, which
are called textile systems (see [10], see also the automata for tiling systems in
[2]), results are more complex than in dimension one. The decomposition theo-
rem can be extended to two-sided multidimensional shifts of finite type, but an
additional operation, called an inversion, is needed (see [4]).



In this paper, we introduce the notion of shifts of finite type defined on infinite
trees, that we call tree shifts. Indeed, infinite trees have a natural structure of
one-sided symbolic systems equipped with several shift transformations. The ith
shift transformation applied to a tree gives the subtree rooted at the child number
i of the tree. This defines a new class of shifts between the class of one-sided
shifts of dimension one and the class of one-sided shifts of higher dimension. Tree
shifts can be described thanks to top-down or bottom-up tree automata which
are used in automata theory for many purposes. Tree automata have applications
to logic and game theory (see [13], [1], [11], and [12]). The tree automata that
we consider here are bottom-up tree automata. They are simpler than Büchi or
Muller tree automata since they have all their states final.

We define two elementary operations on tree automata: the in-splitting oper-
ation and the in-amalgamation operation. They are very close to those existing
on finite automata. In particular two in-amalgamations commute. We prove a
decomposition theorem for tree shifts of finite type, i.e. we show that a conjugacy
between two shifts of finite type can be broken down into a finite sequence of
in-splittings and in-amalgamations. We then prove that the conjugacy problem
is decidable for this class of shifts. The heart of the proof is the commutation
property of in-amalgamations. We prove that two tree shifts of finite type are
conjugate if and only if they have the same minimal in-amalgamation. Further-
more, the minimal in-amalgamation of a tree automaton can be computed in a
polynomial time in the number of states of the automaton.

The paper is organized as follows. In Section 2 we give basic definitions about
tree shifts and tree automata. The decomposition theorem is proved in Section 3.
Our main result together with an example are given in Section 4. We end the
paper with some concluding remarks.

2 Shifts, automata and infinite trees

2.1 Tree shifts

We give here some basic definitions from symbolic dynamics which apply to
infinite trees. We consider infinite trees whose nodes have a fixed number of
children and are labeled in a finite alphabet.

Let Σ = {0, 1, . . , d− 1} be a finite alphabet of cardinal d. An infinite tree t
over a finite alphabet A is a complete function from Σ∗ to A. Unless otherwise
stated, a tree is an infinite tree. A node of a tree is a word of Σ∗. The empty
word, that corresponds to the root of the tree, is denoted by ǫ. If x is a node,
its children are xi with i ∈ Σ. Let t be a tree and let x be a node, we shall
sometimes denote t(x) by tx.

When Σ is fixed, we denote by T (A) the set of all infinite trees on A, hence
the set AΣ∗

. On this set we have a natural metric. If t, t′ are two trees, we define
the distance d(t, t′) = 1

n+1 , where n is the length of the shortest word x in Σ∗

such that t(x) 6= t′(x) if such a word exists, and d(t, t) = 0. This metric induces
a topology equivalent to the usual product topology, where the topology in A is
the discrete one.



We define the shift transformations σi for i ∈ Σ from T (A) to itself as follows.
If t is a tree, σi(t) is the tree rooted at the i-th child of t, i.e. σi(t)x = tix for
any x ∈ Σ∗. The set T (A) equipped with the shift transformations σi is called
the full shift of infinite trees over A.

A pattern is a function p : L→ A, where L is a finite subset of Σ∗ containing
the empty word. The set L is called the support of the pattern. A block of height
n is a pattern with support Σ≤n, where n is some nonnegative integer, and Σ≤n

denotes the words of length at most n of letters of Σ.
We say that a pattern b of support L is a block of a tree t if there is a word

x ∈ Σ∗ such that txy = by for any y ∈ Σ∗. We say that b is a block of t rooted
at the node x. If b is not a block of t, one says that t avoids p. If b is a block of
some tree of subshift X , it is called an allowed block of X .

We define a (tree) subshift (or shift) X of T (A) as the set XF of all trees
avoiding each pattern of a set of blocks F . This subshift X is closed and for any
shift transformation σi, σi(X) ⊆ X . A subshift of finite type X of T (A) is a set
XF of all trees avoiding each block of a finite set of blocks F . The set F is called
a set of forbidden blocks of X .

We denote by L(X) the set of blocks of all trees of a shift X , and by Ln(X)
the set of all blocks of height n of X . If b is a block of height n with n ≥ 1, we
denote by σi(b) the block of height n− 1 such that σi(b)x = bix for x ∈ Σ≤n−1.
The block b is written b = (bε, σ0(b), . . , σd−1(b)).

Example 1. In figure 1 is pictured an infinite tree of a shift of finite type XF on
the binary alphabet {0, 1} defined by a finite set F of forbidden blocks of height
2. The forbidden blocks are those whose labels have a sum equal to 1 modulus 2.
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Fig. 1. A tree of the tree shift of finite type XF on the alphabet {0, 1}, where F is the
set of blocks of height 2 whose sum of labels is 1 modulus 2.

Let A,A′ be two finite alphabets, X be a subshift of T (A) and m be a
nonnegative integer. A map Φ : X ⊆ T (A) → T (A′) is called a (m + 1)-local
map (or a (m + 1)-block map ) if there exists a function φ : Lm+1(X) → A′

such that, for any x ∈ Σ∗, Φ(t)x = φ(t|xΣ≤m+1), where t|xΣ≤m+1 is the pattern

q such that qy = txy for any y ∈ Σ≤m+1. The smallest integer m satisfying this
property is called the memory of the block map. A block map is a map which is
(m+ 1)-local for some nonnegative integer m.



It is known from the Curtis-Lyndon-Hedlund theorem (see [3]) that block
maps are exactly the maps Φ : X → Y which are continuous and commute with
all shifts transformations, i.e. such that σi(Φ(t)) = Φ(σi(t)) for any t ∈ X and
any i ∈ Σ. The image of X by a block map is also a shift. A one-to-one and onto
block map from a shift X onto a shift Y has an inverse which is also a block
map. It is called a conjugacy from X onto Y . The tree subshifts X and Y are
then conjugate.

Example 2. Let X the tree shift of finite type defined in Example 1. Let Y be
the tree shift of finite type over the alphabet {a, b, c}, where the allowed blocks
of height 2 are (a, a, a), (a, b, c), (a, c, b), (a, c, c), (b, b, a), (b, c, a), (c, a, b) and
(c, a, c). The 2-block map Φ : X → Y , defined by φ(0, 0, 0) = a, φ(0, 1, 1) =
a, φ(1, 1, 0) = b, and φ(1, 0, 1) = c, is pictured in Figure 2. The map Φ is a
conjugacy. Its inverse is a 1-block map Ψ defined by ψ(a) = 0 and ψ(b) =
ψ(c) = 1.
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Fig. 2. A 2-block map Φ : X → Y , where X is the tree shift of Figure 1 and Y a shift
of finite type over the alphabet {a, b, c}. The map Φ is a conjugacy.

Let X be a tree subshift on A. Let n be a positive integer. The higher block

presentation of order n of X is the shift X̂ on the alphabet Ln(X) made of trees
t such there is a tree t′ ∈ X such that, for any node x, tx is the block of height n
of t′ rooted at x. A tree shift is conjugate to any of its higher block presentations.

2.2 Tree automata

In this section we consider bottom-up automata for infinite trees. Such an au-
tomata its computation from the infinite branches and moves upward. A tree

automaton is here a structure A = (V,A,∆) where V is a finite set of states (or
vertices), A is a finite set of input symbols, and ∆ is a set of transitions of the
form (q0, . . , qd−1), a→ q, with q, qi ∈ V , a ∈ A. A transition (q0, . . , qd−1), a→ q
is called a transition labeled by a, going out of the d-uple of states (q0, . . , qd−1)
and coming in the state q. Note that no initial nor final states are specified. This
means that all states are both initial and final.

Such an automaton is deterministic if the set of transitions defines a partial
function δ from V d ×A to V .



A (bottom-up) computation of A on the infinite tree t is an infinite tree C on
V such that, for each node x, there is a transition (Cx0, . . , Cx(d−1), tx) → Cx ∈
∆. A tree t is accepted by A if there exists a computation of A on t. The set of
infinite trees accepted by A is a subshift.

Let m be a nonnegative integer. An m-deterministic local tree automaton

(or an m-definite tree automaton) is a tree automaton A = (V,A, δ) such that
whenever t and t′ are two trees accepted by A with a same block b of height m
rooted at the node x in t and rooted at the node x′ in t′, for any computation C
of t and any computation C′ of t′, we have Cx = C′

x′ . A tree automaton is local

(or definite) if it is m-local for some nonnegative integer m.

Proposition 1. Any tree shift of finite type is accepted by a deterministic local

tree automaton. Reciprocally any tree shift accepted by a deterministic local tree

automaton is of finite type.

Proof. The proof of this proposition id given in the appendix section.

Let A = (V,A,∆) be a tree automaton such that whenever

(q0, . . , qd−1, a) → q ∈ ∆ and (q0, . . , qd−1, b) → q ∈ ∆, one has a = b.

Note that the automaton built in the proof of Proposition 1 satisfies this condi-
tion. The set of computations in the tree automaton A defines a subshift called
the vertex shift (or Markov shift) defined by A. Equivalently, a vertex shift is
a shift accepted by a 2-local automaton, i.e. the tree subshift of finite type XF

where F is a set of forbidden blocks of height 2.
A vertex shift is the set of computation of the unlabeled automaton B =

(V, Γ ) with transitions (q0, . . , qd−1) → q.

Example 3. The tree shift X of Example 1 is a vertex shift accepted by the
automaton A = (V,∆) with transitions (0, 0) → 0, (1, 1) → 0, (1, 0) → 1 and
(0, 1) → 1. These transitions are given in the following table t where (p, q) →
t[p, q] is a transition.

0 1
0 0 1
1 1 0

Proposition 2. Any shift of finite type is conjugate to a vertex shift.

Proof. LetX = XF be a tree shift of finite type defined by a finite set of forbidden
blocks of height m for some nonnegative integer m. Let A = (V,A, δ) be the
deterministic m-local automaton such that V = Lm(X) and, for pi ∈ V, a ∈ A,
the block q = (a, p0, . . , pd−1) of height m + 1 is an allowed block of X , then
δ(p0, . . , pd−1), a) = trunc(q), where trunc(q) is the block of height m such that
trunc(q)x = qx for x ∈ Σ≤m. The automaton A accepts X . Let Y be the vertex
shift made of the all computations on A. Note that any tree t of X has a unique
computation C in A.



We define an m+1-block map Φ from X to Y via φ : Lm(X) → V by setting
φ(p) = p. The map Φ associate to each tree of X its computation in A. The
one-block map Ψ from Y to X given by ψ : Y → A with ψ(p) = pε is the inverse
of φ. The shifts X and Y are thus conjugate.

In the sequel, in order to simplify the notations, we restrict us to binary trees
(Σ = {0, 1}) but all results extend trivially to the case of trees with d children
for any d ≥ 1.

3 A decomposition theorem for trees

The decomposition theorem for subshifts of infinite words states that any con-
jugacy between shifts of finite type can be decomposed into a finite sequence of
splittings and amalgamations. We will prove an analogous theorem for infinite
trees. The crucial lemma will show that the memory of a block map can be
reduced using a notion of (input) splittings on tree automata defined below. We
first consider the case of tree vertex shifts.

Let X be a binary tree vertex shift defined by a deterministic 2-local au-
tomaton A = (V,∆). Set V = {p1, . . , pn}. We define an in-splitting of A as an
automaton Ã = (Ṽ , ∆̃) obtained as follows. First, we in-split the automaton A
by refining the natural partition of ∆; for each vertex p ∈ V , we partition the

set ∆p of transitions coming in p into subsets ∆1
p, . . , ∆

l(p)
p . We set

Ṽ = {p1
1, . . , p

l(1)
1 , p1

2, . . , p
l(2)
2 , . . , p1

n, . . , p
l(n)
n } (1)

and (pi, qj) → rk ∈ ∆̃ if (p, q) → r ∈ ∆k
r .

The shift accepted by Ã is a vertex shift denoted by X̃ and called the in-

splitting of X defined by the above partitioning of the transitions.
The same notion of in-splitting is defined for tree shifts of finite type as

follows. Let X be a shift of finite type accepted by a deterministic automaton
A = (V,A,∆). The in-splitting of A is Ã = (Ṽ , ∆̃). For each vertex p ∈ V , we

partition the set ∆p of transitions coming in p into subsets ∆1
p, . . , ∆

l(p)
p and set

Ṽ as in Equation 1. We set (pi, qj), a → rk ∈ ∆̃ if (p, q), a→ r ∈ ∆k
r .

A tree in-amalgamation of an tree automaton A is an automaton B such that
B is an in-splitting of A. An in-amalgamation of an tree shift X is a tree shift
Y such that Y is an in-splitting of X .

Lemma 1. Let X̃ be an in-splitting of a tree vertex shift X. Then X̃ and X are

conjugate.

Proof. Let X̃ be an in-splitting of X accepted by A = (V,∆). Define a 1-block
map Φ : X̃ → X via φ(pi) = p for each state p ∈ V , and a 2-block map
Ψ : X → X̃ via ψ(r, p, q) = ri, where (p, q) → r ∈ ∆i

r.
It is not difficult to check that Φ(X̃) ⊆ X and Ψ(X) ⊆ X̃ . It is clear that

Φ(Ψ(t))u = tu for all trees t ∈ X and each word u ∈ Σ∗ since adding and
removing superscripts has no effect. Thus we only need to check that Ψ(Φ(t))u =



tu for all trees t ∈ X̃ and each word u ∈ Σ∗. Let t ∈ X̃ and u ∈ Σ∗ = {0, 1}∗.
We need to show that

Ψ(Φ(t))u = ψ((φ(tu), φ(tu0), φ(tu1)) = tu.

Indeed, suppose tu0 = pi, tuj = qj and tu = rk where pi, qj ∈ Ṽ . Hence we have
(p, q) → r ∈ ∆k

r . We get ψ((φ(tu), φ(tu0), φ(tu1)) = ψ(r, p, q) = rk = tu.

When the partition of the set of transitions consists of singleton sets, then
the in-s splitting X̃ of X is called the complete in-splitting of X .

In the remainder of this section, we give a proof of the decomposition theorem
of tree vertex shifts. In Lemma 3 we show that a higher block presentation of
the tree shift is the composition of a finite sequence of in-splittings and in-
amalgamations. Then, by moving to a higher block presentation if necessary, we
may assume that the conjugacy Φ between two tree shifts is a 1-block map with
an n-block map inverse. If n = 1, then this conjugacy is just a relabeling of the
symbols of the states and as such a trivial splitting. So we would like a way to
reduce the memory of the inverse of Φ. We will reduce the memory in Lemmas 2
by using tree in-splittings and in-amalgamations.

Lemma 2. Let Xk for k = 1 and 2, be two tree vertex shift defined by the two

automata A1 = (V1, ∆) and A2 = (V2, Λ) respectively. Suppose Φ : X1 → X2 is

a 1-block conjugacy with an n-block inverse. If n ≥ 1, then there are tree vertex

shifts X̃k such that the following diagram commutes:

X1
Φ

−−−−→ X2

Ψ1





y





y

Ψ2

X̃1
Φ̃

−−−−→ X̃2

where Ψ1 and Ψ2 are in-splittings of X1 and X2 respectively, and where Φ̃ is a

1-block conjugacy with an (n− 1)-block inverse.

Proof. For p ∈ V1, we partition ∆p into
⋃

s,t ∈ V2 × V2 = {(q, r) → p | φ(q) =
s and φ(r) = t}. Then we set

Ṽ1 = {ps,t : p ∈ V1, s, t ∈ V2 with φ(q) = s and φ(r) = t for some (q, r) → p ∈ ∆p},

We set (ps,t, qu,v) → rp,q ∈ ∆̃ if (p, q) → r ∈ ∆̃.
As shown in Lemma 1, Ψ1 : X1 → X̃1 is a conjugacy via Ψ1(t)u = ψ1(tu, tu0, tu1) =

t
φ(tu0),φ(tu1)
u , where u ∈ {0, 1}∗.

Now let X̃2 be the complete in-splitting of X2. So

Ṽ2 = {rp,q : p, q, r ∈ V2, with (p, q) → r ∈ Λr},

We set (rp,q, su,v) → tr,s ∈ Λ̃ if (r, s) → t ∈ Λ. As shown in Lemma 1, Ψ2 : X2 →
X̃2 is a conjugacy via Ψ2(t)u = ψ2(tu, tu0, tu1) = ttu0,tu1

u , where u ∈ {0, 1}∗.



Now we define the 1-block map Φ̃ : X̃1 → X̃2 via

Φ̃(t)u = φ(tu)φ(tu0),φ(tu1),

where u ∈ {0, 1}∗. Clearly, the diagram commutes and thus Φ is one-to-one and
onto. It remains to check that Φ̃−1 = Ψ1 ◦ Φ−1 ◦ Ψ2 is an (n − 1)-block map.
That is, we must show that for any tree t ∈ X̃2, the coordinates in a block of
height n− 1 of t rooted at the node ε determines Φ̃−1(t)ε. But this follows from
the observation that the block of height n − 1 of t rooted at ε determines all
Ψ−1

2 (t)v0 and all Ψ−1
2 (t)v1 for v ∈ {0, 1}n−1, and therefore the block of height n

at the root of t.

The proof of the above lemma is similar to the proof of the analogous result
for subshifts of ΣZ (see [8, Lemma 7.3.1]) or subshifts of ΣZ

2

(see [4]).
In general a conjugacy between tree vertex shifts is an n-block map but

the following lemma shows that moving to a higher block presentation we may
assume it is a 1-block map.

Lemma 3. Let Xk, for k = 1 and 2, be tree vertex shifts. Let n be a positive

integer. Suppose Φ : X1 → X2 is an n-block conjugacy and let X̂1 be the higher

block presentation of X1 of order n. There exists a map η : X1 → X̂1 which is a

sequence of tree in-splittings, such that Φ ◦ η−1 is a 1-block conjugacy.

Proof. Clearly, Φ ◦ η−1 is a 1-block conjugacy. We need to show that η is a
sequence of tree in-splitting.

If X is the vertex shift defined by A = (V,∆) and n is a nonnegative integer,
a higher block presentation of X of order n is the vertex shift X̂ defined by
Â = (V̂ , ∆̂), where V̂ is the set of allowed blocks of X of height n. There is a
transition (p, q) → r in ∆̂, where p, q, r ∈ Ln(X) if and only if r0u = pu and
r1u = qu for any u ∈ {0, 1}n−1.

A complete in-splitting of the tree shift X yields a higher block presentation
of X of order 2 by Ψ(t)u = ttu0,tu1

u .
By iterating this construction on Ψ(X), we can find a sequence of in-splittings

η such that η̄ = η ◦ Ψ−1
1 is a 1-block conjugacy, or simply a relabeling. Then

η = η̄ ◦ Ψ1 and we have the result.

Lemma 4. Let X be tree subshift of finite type, there is a vertex shift Y and a

conjugacy from X to Y which is a sequence of in-splittings.

Proof. LetX = XF be a tree shift of finite type defined by a finite set of forbidden
blocks of height m for some nonnegative integer m.

Let X̂ be the higher block presentation of X of order m. The shift X̂ is the
vertex shift defined by Â = (V̂ , ∆̂), where V̂ is the set of allowed blocks of X
of height m. There is a transition (p, q) → r in ∆̂, where p, q, r ∈ Lm(X) if and
only if r0u = pu and r1u = qu for any u ∈ {0, 1}m−1.

We know from Lemma 3 that X̂ is obtained from X with a sequence of
in-splittings.



We are now ready to state the main result of this section.

Theorem 1. Let X1 and X2 be two tree shifts of finite type. Every conjugacy

between X1 and X2 is the composition of a finite sequence of tree in-splittings

and tree in-amalgamations.

Proof. By Lemma 4, we can view any tree shift of finite type as a vertex shift.
The theorem follows then from Lemma 1 and Lemma 3.

4 Commutation of in-amalgamations

Proposition 3. Suppose X1 is a tree vertex shift and X2, X3 are tree vertex

shifts obtained from X1 by in-amalgamations. Then there is a tree vertex shift

X4 that can be obtained from both X3 and X4 by in-amalgamations.

X4

X2 X3

X1

Φ Ψ

Ω Θ

Fig. 3. The commutation of in-amalgamations. If X2, X3 are vertex shifts which are in-
amalgamations of X1, the there is a vertex shift X4 which is a common amalgamation
of X2, X3.

In Figure 3, the maps Φ and Ψ are in-amalgamations. As a consequence of
Proposition 3 the maps Ω and Θ are also in-amalgamations.

Proof. Let us first assume that there is an in-amalgamation Φ : X1 → X2 and a
in-amalgamation Ψ : X1 → X3. Let us assume that states p1, . . , pl(p) of V1 are
amalgamated to a state p of V2.

By definition of an in-amalgamation, this implies that if (q, r) → pi ∈ ∆1,
then (q, r) → pj /∈ ∆1 for any states q, r ∈ V1 and any 1 ≤ i 6= j ≤ l(p).
This implies also that (pi, q) → r ∈ ∆1 if an only if (pj , q) → r ∈ ∆1, and
(q, pi) → r ∈ ∆1 if and only if (q, pj) → r ∈ ∆1 for any states q, r ∈ V1 and any
1 ≤ i, j ≤ l(p).

Suppose also that states q1, . . , ql(q) of V1 are amalgamated to a state q of V3.
Let us first assume that the states p1, . . , pl(p) and q1, . . , ql(q) are all distinct.

We define X4 as the in-amalgamation of X2 obtained by amalgamating the
states p, q1, . . , ql(q) to a state q. It is also the in-amalgamation of X3 obtained
by amalgamating the states q, p1, . . , pl(p) to a state q.

Let us now assume that p1 = q1, . . , pl = ql for some integer 1 ≤ l ≤
min(l(p), l(q)). This implies that, for any 1 ≤ i ≤ l(p), 1 ≤ j ≤ l(q), one
has (pi, q) → r ∈ ∆n if and only if (pj , q) → r ∈ ∆n, and (q, pi) → r ∈ ∆n if
and only if (q, pj) → r ∈ ∆n for n = 1 and n = 2.



We define X4 as the in-amalgamation of X2 obtained by amalgamating the
states p, ql+1, . . , ql(q) to the state p. It is also the in-amalgamation ofX3 obtained
by amalgamating the states q, pl+1, . . , pl(p) to a state p. Hence, if Φ and Ψ are
in-amalgamations, then Ω and Θ also.

The previous theorem allows us to define the notion of minimal in-amalgamation

of an edge shift X . It is defined as the vertex shift defined by an automa-
ton A = (V,∆) with the smallest number of vertices which is obtained by
in-amalgamations of X .

Corollary 1. Any vertex shift has a unique minimal in-amalgamation.

Proof. Let us assume that X has two minimal amalgamations X2 and X3. By
Proposition 3, X2 and X3 have a common in-amalgamation Y . By minimality,
Y = X2 = X3.

Theorem 2. Let X1 and X2 be two tree subshifts of finite type. It is decidable

whether X1 and X2 are conjugate.

Proof. By Proposition 2, one may assume that X1 and X2 are vertex shifts. By
Theorem 1, there is a sequence of tree in-splittings and tree in-amalgamations
from X1 to X2.

Let us consider first that this sequence is decomposed into a sequence of tree
in-splittings from X1 to X followed (up to a relabeling of X), by a sequence
of tree in-amalgamations from X to X2. This case is illustrated in Figure 4.
By Proposition 3, there are vertex shift at the confluence of any two dashed
edges of Figure 4. As a consequence, X1 and X2 have a common amalgamation
and thus the same minimal amalgamation. Conversely, if X1 and X2 have the
same minimal amalgamation, there is a sequence of tree in-splittings and tree
in-amalgamations from X1 to X2.

We now consider the case where there is a sequence of tree in-splittings
and tree in-amalgamations from X1 to X2. This sequence is decomposed into a
sequence of the form described in the previous case and the same result holds
by transitivity.

Example 4. Let X1 and X2 be two tree vertex shifts over the alphabet V =
{a, b, c}. The shift X1 is accepted by A1 = (V,∆1) and the shift X2 is accepted
by A2 = (V,∆2) where ∆1 and ∆2 are given in the two following tables.

∆1 =

a b c
a a c c
b b a a
c b a a

∆2 =

a b c
a c a a
b a b b
c a b b

∆3 =
a b

a a b
b b a

∆4 =
a b

a b a
b a b

Since the second and third row of ∆1 and the second and third column of ∆1 are
equal, the vertices b and c can be amalgamated. There is an in-amalgamation
from A1 to A3 = (V3, ∆3) where V3 = {a, b} and ∆3 is given by the following
tables.



X1 X2

X

Y

Φ1

Φ2

Ψ1

Ψ2

Fig. 4. A sequence of tree in-splittings from X1 to X is followed (up to a relabeling
of X), by a sequence of tree in-amalgamations from X to X2. Any edge represents an
in-amalgamation. The shifts X1 and X2 have the same minimal amalgamation Y .

No more in-amalgamation is possible from A3 and thus A3 is minimal. Simi-
larly, the second and third row of ∆2 and the second and third column of ∆2 are
equal, the vertices b and c can be amalgamated. There is an in-amalgamation
from A2 to A4 = (V4, ∆4) where V4 = {a, b} and ∆4 is given by the following
tables.

Finally, relabeling the states of A4 by exchanging a and b gives A3. Hence,
X1 and X2 have the same minimal amalgamation and are conjugate.

c

a

a b

a

c a

a

b

b a

c

a b

φ

Fig. 5. A 2-block map Φ : X → Y , where X is the tree shift of Figure 1 and Y a shift
of finite type over the alphabet {a, b, c}.

The 2-block map Φ : X2 → X1 of Figure 5 is a conjugacy. It is defined
by φ(a, a, b) = b, φ(a, b, a) = c, φ(a, a, c) = b, φ(a, c, a) = c, φ(b, b, b) = a,
φ(b, b, c) = a, φ(b, c, b) = a, φ(b, c, c) = a, φ(c, a, a) = a.

5 Conclusion

We have shown that it decidable whether two tree shifts of finite type are con-
jugate.

Further work will include the case of sofic trees. We conjecture that the results
that we have obtained for tree shifts of finite type can be extended to sofic tree
shifts using techniques similar to the one used for shifts of sequences (see [9],
[6], [7]). The decomposition theorem that we have proved for tree shifts of finite



type will also allow us to define a notion of strong shift equivalence between tree
shifts and to deduce that two tree shifts of finite type are equivalent if and only
if their transition matrices are related by a sequence of simple algebraic matrix
conditions.
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Proof of Proposition 1

Proposition 4. Any tree shift of finite type is accepted by a deterministic local

tree automaton. Reciprocally any tree shift accepted by a deterministic local tree

automaton is of finite type.

Proof. – Let X = XF be a tree shift of finite type defined by a finite set of
forbidden blocks. Without loss of generality, we can assume that F is the
set of all not allowed blocks of height m for some nonnegative integer m.
We define a deterministic tree automaton A = (V,A, δ) such that V =
Lm(X). For pi ∈ V, a ∈ A, if the block q = (a, p0, . . , pd−1) of height m + 1
is an allowed block of X , then δ((p0, . . , pd−1), a) = trunc(q), where trunc(q)
is the block of height m such that trunc(q)x = qx for x ∈ Σ≤m. The partial
function δ is undefined otherwise.
The automaton A is deterministic and m-local. Let Y be the tree subshift
accepted by A. It is clear that Y ⊆ XF . Conversely, let t ∈ XF . We define a
computation C of t as follows. For any x ∈ Σ∗, set Cx be the block of t of
size m rooted at the node x. Hence XF ⊆ Y which proves the first part of
the claim.

– LetX be a tree shift and A = (V,A, δ) am-definite tree automaton accepting
X . We define F as the set of blocks of height ≤ m+1 such that any infinite
tree containing such a block is not accepted by A. Then one immediately
has X ⊆ XF . Suppose t ∈ XF , we construct a computation C of A on t on
the following way. For any x ∈ Σ∗ we denote by px the block txΣ≤m+1. Then
there exist a tree t′ with a computation C′ of A and a word y ∈ Σ∗ such
that t′

yΣ≤m+1 = px. We set Cx = C′
y and since A is a m-definite automaton,

C is a computation of A on t. Finally X = XF where F is a finite set of
blocks which proves the claim.


