Undecidability of DP on \mathbb{Z}^2 , proof I

Undecidability of DP on \mathbb{Z}^2 , proof II

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Lecture 1: The Domino problem on groups, part I. CANT 2016, CIRM (Marseille)

Nathalie Aubrun

LIP, ENS de Lyon, CNRS

29th November 2016

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Introduction

Objectives of this talk...

- ▶ Define the Domino problem (**DP**).
- \blacktriangleright Show the two main techniques to prove undecidability of DP on \mathbb{Z}^2

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

Outline of the talk.

2 Undecidability of DP on \mathbb{Z}^2 , proof I

3 Undecidability of DP on \mathbb{Z}^2 , proof II

Undecidability of DP on Z², proof I

Undecidability of DP on Z², proof II

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Configurations and Subshifts (I)

- Let A be a finite alphabet, G be a finitely generated group.
- Colorings $x : G \to A$ are called **configurations**.
- Endowed with the prodiscrete topology A^G is a compact and metrizable set.
- ► Cylinders form a clopen basis

$$[a]_g = \left\{ x \in A^G \mid x_g = a \right\}.$$

- A pattern is a finite intersection of cylinders, or equivalently a finite configuration p : S → A
- A metric for the cylinder topology is

$$d(x,y) = 2^{-\inf\{|g| \mid g \in G: x_g \neq y_g\}},$$

where |g| is the length of the shortest path from 1_G to g in $\Gamma(G, S)$.

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Configurations and Subshifts (II)

The **shift** action $\sigma: G \times A^G \to A^G$ is given by

 $(\sigma_g(x))_h = x_{g^{-1}h}.$

The dynamical system (A^G, σ) is called the *G*-fullshift over *A*.

Definition

A *G*-subshift is a closed and σ -invariant subset $X \subset A^G$.

Undecidability of DP on Z², proof I

Undecidability of DP on Z², proof II

Configurations and Subshifts (II)

The **shift** action $\sigma: G \times A^G \to A^G$ is given by

 $(\sigma_g(x))_h = x_{g^{-1}h}.$

The dynamical system $(A^{\mathcal{G}}, \sigma)$ is called the *G*-fullshift over *A*.

Definition

A *G*-subshift is a closed and σ -invariant subset $X \subset A^G$.

A pattern $p \in A^S$ appears in a configuration $x \in A^G$ if $(\sigma_g(x))_S = p$ for some $g \in G$.

Proposition

X is a G-subshift iff there exists a set \mathcal{F} of forbidden patterns s.t.

$$X = X_{\mathcal{F}} := \left\{ x \in A^{\mathcal{G}} \mid \text{ no pattern of } \mathcal{F} \text{ appears in } x
ight\}.$$

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Subshifts of finite type

A *G*-subshift X is **of finite type** (*G*-SFT) if there exists a finite set of forbidden patterns \mathcal{F} that defines it: $X = X_{\mathcal{F}}$.

Example:

Definitions 000●0 Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

SFTs and Wang tiles

Fix G a f.g. group and S a generating set for G. Wang tiles \approx polygons with colored 2|S| edges.

Neighbourhood rule

Definitions 000●0 Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

SFTs and Wang tiles

Fix G a f.g. group and S a generating set for G. Wang tiles \approx polygons with colored 2|S| edges.

Neighbourhood rule

 $X_{ au}$ set of valid tilings by au

Definitions 000●0 Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

SFTs and Wang tiles

Fix G a f.g. group and S a generating set for G. Wang tiles \approx polygons with colored 2|S| edges.

Neighbourhood rule

 $X_{ au}$ set of valid tilings by au

 $\mathsf{SFT} \approx X_{\tau}$

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

The Domino problem on groups

Fix G a f.g. group and S a generating set for G.

Domino problem on G

Input: A finite set of Wang tiles τ on *S* **Output:** Yes if there exists a valid tiling by τ , No otherwise.

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The Domino problem on groups

Fix G a f.g. group and S a generating set for G.

Domino problem on G

Input: A finite set of Wang tiles τ on *S* **Output:** Yes if there exists a valid tiling by τ , No otherwise.

Question

Which f.g. groups have decidable Domino Problem ?

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

The Domino problem on groups

Fix G a f.g. group and S a generating set for G.

Domino problem on G

Input: A finite set of Wang tiles τ on *S* **Output:** Yes if there exists a valid tiling by τ , No otherwise.

Question

Which f.g. groups have decidable Domino Problem ?

 \rightarrow group property, quasi-isometry invariant.

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

Outline of the talk.

2 Undecidability of DP on \mathbb{Z}^2 , proof I

3 Undecidability of DP on \mathbb{Z}^2 , proof II

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Sketch of the proof

Idea: encode Turing machines inside Wang tiles.

- ▶ Undecidability of the Halting problem of Turing machines.
- ▶ Reduction from the Halting problem of Turing machines.

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

5(<i></i>)	Symbol x				
0(q,x)	а	b		#	
	q_0	\perp	\perp	\perp	$(q_{b^+},a, ightarrow)$	
6	q_{a^+}	\perp	$(q_{b^{++}},a, ightarrow)$	\perp	\perp	
State	q_{b^+}	\rightarrow	\dashv	\perp	$(q_\parallel,b, ightarrow)$	
St	$q_{b^{++}}$	\rightarrow	$(q_{b^{++}}, b, \rightarrow)$	$(q_{b^+}, b, \rightarrow)$	\perp	
	q_\parallel	$(q_{a^+},a, ightarrow)$	$(q_\parallel,b,\leftarrow)$	$(q_\parallel,\parallel,\leftarrow)$	$(\pmb{q}_{\parallel},\parallel,\cdot)$	

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

5(<i></i>)	Symbol x				
0(q,x)	а	b		#	
	q_0	\perp	\perp	\perp	$(q_{b^+},a, ightarrow)$	
6	q_{a^+}		$(q_{b^{++}},a, ightarrow)$	\perp	\perp	
State	q_{b^+}			\perp	$(q_\parallel,b, ightarrow)$	
S	$q_{b^{++}}$		$(q_{b^{++}}, b, \rightarrow)$	$(q_{b^+}, b, \rightarrow)$	\perp	
	q_{\parallel}	$(q_{a^+},a, ightarrow)$	$(q_\parallel,b,\leftarrow)$	$(q_\parallel,\parallel,\leftarrow)$	$(q_\parallel,\parallel,\cdot)$	

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

5(Symbol x				
0(q,x)	а	b		#	
	q_0		\dashv	\rightarrow	$(q_{b^+},a, ightarrow)$	
6	q_{a^+}	\perp	$(q_{b^{++}},a, ightarrow)$	\perp	\perp	
State	q_{b^+}	\rightarrow	\dashv	\rightarrow	$(q_\parallel,b, ightarrow)$	
S	$q_{b^{++}}$	\rightarrow	$(q_{b^{++}}, b, \rightarrow)$	$(q_{b^+}, b, \rightarrow)$	\perp	
	q_\parallel	$(q_{a^+},a, ightarrow)$	$(q_\parallel,b,\leftarrow)$	$(q_\parallel,\parallel,\leftarrow)$	$(q_\parallel,\parallel,\cdot)$	

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

5(Symbol x				
0(q,x)	а	b		#	
	q_0		\dashv	\rightarrow	$(q_{b^+},a, ightarrow)$	
6	q_{a^+}	\perp	$(q_{b^{++}},a, ightarrow)$	\perp	\perp	
State	q_{b^+}	\rightarrow	\dashv	\rightarrow	$(q_\parallel,b, ightarrow)$	
S	$q_{b^{++}}$	\rightarrow	$(q_{b^{++}}, b, \rightarrow)$	$(q_{b^+}, b, \rightarrow)$	\perp	
	q_\parallel	$(q_{a^+},a, ightarrow)$	$(q_\parallel,b,\leftarrow)$	$(q_\parallel,\parallel,\leftarrow)$	$(q_\parallel,\parallel,\cdot)$	

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

5(<i></i>)	Symbol x				
0(q,x)	а	b		#	
	q_0	\perp	\perp	\perp	$(q_{b^+},a, ightarrow)$	
6	q_{a^+}		$(q_{b^{++}},a, ightarrow)$	\perp	\perp	
State	q_{b^+}			\perp	$(q_\parallel,b, ightarrow)$	
S	$q_{b^{++}}$		$(q_{b^{++}}, b, \rightarrow)$	$(q_{b^+}, b, \rightarrow)$	\perp	
	q_{\parallel}	$(q_{a^+},a, ightarrow)$	$(q_\parallel,b,\leftarrow)$	$(q_\parallel,\parallel,\leftarrow)$	$(q_\parallel,\parallel,\cdot)$	

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

5(<i></i>)	Symbol x				
0(q,x)	а	b		#	
	q_0	\perp	\perp	\perp	$(q_{b^+},a, ightarrow)$	
6	q_{a^+}	\perp	$(q_{b^{++}},a, ightarrow)$	\perp	\perp	
State	q_{b^+}	\rightarrow	\dashv	\perp	$(q_\parallel,b, ightarrow)$	
St	$q_{b^{++}}$	\rightarrow	$(q_{b^{++}}, b, \rightarrow)$	$(q_{b^+}, b, \rightarrow)$	\perp	
	q_\parallel	$(q_{a^+},a, ightarrow)$	$(q_\parallel,b,\leftarrow)$	$(q_\parallel,\parallel,\leftarrow)$	$(\pmb{q}_{\parallel},\parallel,\cdot)$	

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

5(<i></i>)	Symbol x				
0(q,x)	а	b		#	
	q_0	\perp	\perp	\perp	$(q_{b^+},a, ightarrow)$	
6	q_{a^+}	\perp	$(q_{b^{++}},a, ightarrow)$	\perp	\perp	
State	q_{b^+}	\rightarrow	\dashv	\perp	$(q_\parallel,b, ightarrow)$	
St	$q_{b^{++}}$	\rightarrow	$(q_{b^{++}}, b, \rightarrow)$	$(q_{b^+}, b, \rightarrow)$	\perp	
	q_\parallel	$(q_{a^+},a, ightarrow)$	$(q_\parallel,b,\leftarrow)$	$(q_\parallel,\parallel,\leftarrow)$	$(\pmb{q}_{\parallel},\parallel,\cdot)$	

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

5(Symbol x				
0(q,x)	а	b		#	
	q_0		\dashv	\dashv	$(q_{b^+},a, ightarrow)$	
6	q_{a^+}	\perp	$(q_{b^{++}},a, ightarrow)$	\perp	\perp	
State	q_{b^+}	\rightarrow	\dashv	\rightarrow	$(q_\parallel,b, ightarrow)$	
S	$q_{b^{++}}$	\rightarrow	$(q_{b^{++}}, b, \rightarrow)$	$(q_{b^+}, b, \rightarrow)$	\perp	
	q_\parallel	$(q_{a^+},a, ightarrow)$	$(q_\parallel,b,\leftarrow)$	$(q_\parallel,\parallel,\leftarrow)$	$(q_\parallel,\parallel,\cdot)$	

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

5(<i></i>)	Symbol x				
0(q,x)	а	b		#	
	q_0	\perp	\perp	\perp	$(q_{b^+},a, ightarrow)$	
6	q_{a^+}	\perp	$(q_{b^{++}},a, ightarrow)$	\perp	\perp	
State	q_{b^+}	\rightarrow	\dashv	\perp	$(q_\parallel,b, ightarrow)$	
St	$q_{b^{++}}$	\rightarrow	$(q_{b^{++}}, b, \rightarrow)$	$(q_{b^+}, b, \rightarrow)$	\perp	
	q_\parallel	$(q_{a^+},a, ightarrow)$	$(q_\parallel,b,\leftarrow)$	$(q_\parallel,\parallel,\leftarrow)$	$(\pmb{q}_{\parallel},\parallel,\cdot)$	

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

5(<i></i>)	Symbol x				
0(q,x)	а	b		#	
	q_0	\perp	\perp	\perp	$(q_{b^+},a, ightarrow)$	
6	q_{a^+}	\perp	$(q_{b^{++}},a, ightarrow)$	\perp	\perp	
State	q_{b^+}	\rightarrow	\dashv	\perp	$(q_\parallel,b, ightarrow)$	
St	$q_{b^{++}}$	\rightarrow	$(q_{b^{++}}, b, \rightarrow)$	$(q_{b^+}, b, \rightarrow)$	\perp	
	q_\parallel	$(q_{a^+},a, ightarrow)$	$(q_\parallel,b,\leftarrow)$	$(q_\parallel,\parallel,\leftarrow)$	$(\pmb{q}_{\parallel},\parallel,\cdot)$	

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

5(Symbol x				
0(q,x)	а	b		#	
	q_0		\dashv	\dashv	$(q_{b^+},a, ightarrow)$	
6	q_{a^+}	\perp	$(q_{b^{++}},a, ightarrow)$	\perp	\perp	
State	q_{b^+}	\rightarrow	\dashv	\rightarrow	$(q_\parallel,b, ightarrow)$	
S	$q_{b^{++}}$	\rightarrow	$(q_{b^{++}}, b, \rightarrow)$	$(q_{b^+}, b, \rightarrow)$	\perp	
	q_\parallel	$(q_{a^+},a, ightarrow)$	$(q_\parallel,b,\leftarrow)$	$(q_\parallel,\parallel,\leftarrow)$	$(q_\parallel,\parallel,\cdot)$	

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

Turing machines

5(<i></i>	Symbol x				
0(q,x)	а	b		#	
	q_0	\perp	\perp	\perp	$(q_{b^+}, a, ightarrow)$	
b	q_{a^+}	\perp	$(q_{b^{++}},a, ightarrow)$	\perp	\perp	
State	q_{b^+}	\perp	\square	\perp	$(q_{\parallel},b, ightarrow)$	
St	$q_{b^{++}}$	\perp	$(q_{b^{++}}, b, \rightarrow)$	$(q_{b^+}, b, \rightarrow)$	\perp	
	q_\parallel	$(q_{a^+},a, ightarrow)$	$(q_\parallel,b,\leftarrow)$	$(q_\parallel,\parallel,\leftarrow)$	$(q_\parallel,\parallel,\cdot)$	

Theorem (Turing, 1936)

The Halting problem (to know whether a Turing machine \mathcal{M} halts on input w or not) is undecidable.

Theorem

The Blank tape Halting problem (to know whether a Turing machine \mathcal{M} halts on the empty input) is undecidable.

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

Turing machines and Wang tiles

- no computation head
- ▶ initial configuration ($^{\infty} \sharp^{\infty}, q_0$)
- $\blacktriangleright \delta(q,a) = (q',a',.)$

►
$$\delta(r, a) = (r', a', \rightarrow)$$

►
$$\delta(s, a) = (s', a', \leftarrow)$$

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

Turing machines and Wang tiles

- ▶ no computation head
- ▶ initial configuration ($^{\infty} \sharp^{\infty}, q_0$)
- $\blacktriangleright \delta(q,a) = (q',a',.)$

►
$$\delta(r, a) = (r', a', \rightarrow)$$

►
$$\delta(s, a) = (s', a', \leftarrow)$$

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

Turing machines and Wang tiles

- no computation head
- ▶ initial configuration ($^{\infty} \sharp^{\infty}, q_{O}$)
- $\blacktriangleright \delta(q,a) = (q',a',.)$

$$\blacktriangleright \ \delta(\mathbf{r},\mathbf{a}) = (\mathbf{r}',\mathbf{a}',\rightarrow)$$

$$\blacktriangleright \ \delta(s,a) = (s',a',\leftarrow)$$

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

Turing machines and Wang tiles

- no computation head
- initial configuration $({}^{\infty}\sharp^{\infty}, q_0)$
- $\blacktriangleright \delta(q,a) = (q',a',.)$

►
$$\delta(\mathbf{r}, \mathbf{a}) = (\mathbf{r}', \mathbf{a}', \rightarrow)$$

►
$$\delta(s, a) = (s', a', \leftarrow)$$

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

Turing machines and Wang tiles

- no computation head
- ▶ initial configuration ($^{\infty} \sharp^{\infty}, q_0$)
- $\blacktriangleright \ \delta(q,a) = (q',a',.)$
- $\blacktriangleright \delta(\mathbf{r}, \mathbf{a}) = (\mathbf{r}', \mathbf{a}', \rightarrow)$
- ► $\delta(s, a) = (s', a', \leftarrow)$

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

Turing machines and Wang tiles

Encode Turing machine computations inside Wang tiles:

- no computation head
- ▶ initial configuration ($^{\infty} \sharp^{\infty}, q_0$)
- $\blacktriangleright \delta(q,a) = (q',a',.)$

►
$$\delta(r, a) = (r', a', \rightarrow)$$

► $\delta(s, a) = (s', a', \leftarrow)$

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

Turing machines and Wang tiles

Encode Turing machine computations inside Wang tiles:

- no computation head
- ▶ initial configuration ($^{\infty} \sharp^{\infty}, q_0$)
- $\blacktriangleright \ \delta(q,a) = (q',a',.)$
- ► $\delta(r, a) = (r', a', \rightarrow)$
- ► $\delta(s, a) = (s', a', \leftarrow)$

We want: au admits a tiling iff $\mathcal M$ does not halt on the empty input.

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

Which tilings ?

We **forbid** tiles with an halting state q_f .

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

Which tilings ?

We **forbid** tiles with an halting state q_f .

If $\ensuremath{\mathcal{M}}$ does not halt on the empty input, we have a tiling.

5900

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

Which tilings ?

We **forbid** tiles with an halting state q_f .

If ${\mathcal M}$ does not halt on the empty input, we have a tiling. But. . .

. Dac

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The Origin Constrained Domino problem

What we have not proven:

Not-Yet-Theorem

The Domino problem is undecidable on \mathbb{Z}^2 .

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

The Origin Constrained Domino problem

What we have not proven:

Not-Yet-Theorem

The Domino problem is undecidable on \mathbb{Z}^2 .

What we have proven:

Theorem (Kahr, Moore & Wang 1962, Büchi 1962)

The Origin Constrained Domino problem is undecidable on \mathbb{Z}^2 .

where

Origin Constrained Domino problem

Input: A finite set of Wang tiles τ , a tile $t \in \tau$ **Output:** Yes if there exists a valid tiling by τ with t at the origin, No otherwise.

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

How to initialize computations ?

Build one infinite in time and space computation zone?

► Compactness ⇒ we cannot force one given tile to appear exactly once in every valid tiling

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

How to initialize computations ?

Build one infinite in time and space computation zone?

► Compactness ⇒ we cannot force one given tile to appear exactly once in every valid tiling

Build arbitrarily big computation zones?

► Compactness ⇒ if we have arbitrarily big *rectangles* in our tilings, then we also have a tiling with no rectangle.

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

How to initialize computations ?

Build one infinite in time and space computation zone?

► Compactness ⇒ we cannot force one given tile to appear exactly once in every valid tiling

Build arbitrarily big computation zones?

► Compactness ⇒ if we have arbitrarily big *rectangles* in our tilings, then we also have a tiling with no rectangle.

One solution: hierarchy of computation zones (thus arbritrarily big zones) that intersect a lot.

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Robinson tileset

The Robinson tileset, where tiles can be rotated and reflected.

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Robinson tileset

The Robinson tileset, where tiles can be rotated and reflected.

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

Existence of a valid tiling

Proposition

Robinson's tileset admits at least one valid tiling.

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Existence of a valid tiling

Proposition

Robinson's tileset admits at least one valid tiling.

Proof:

- We can build arbitrarily large patterns (called macro-tiles) with the same structure.
- We thus conclude by compactness.

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

Macro-tiles of level 1

Macro-tiles of level 1.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Undecidability of DP on Z², proof I ○○○○○○○●○○○○○○ Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

Macro-tiles of level 1

Macro-tiles of level 1.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Undecidability of DP on Z², proof I

Undecidability of DP on Z², proof II

From macro-tiles of level 1 to macro-tiles of level 2

Undecidability of DP on Z², proof I

Undecidability of DP on Z², proof II

From macro-tiles of level 1 to macro-tiles of level 2

Undecidability of DP on Z², proof I

Undecidability of DP on Z², proof II

From macro-tiles of level 1 to macro-tiles of level 2

Undecidability of DP on Z², proof I

Undecidability of DP on Z², proof II

From macro-tiles of level 1 to macro-tiles of level 2

Undecidability of DP on Z², proof I

Undecidability of DP on Z², proof II

From macro-tiles of level 1 to macro-tiles of level 2

Undecidability of DP on Z², proof I

Undecidability of DP on Z², proof II

From macro-tiles of level 1 to macro-tiles of level 2

Undecidability of DP on Z², proof I

Undecidability of DP on Z², proof II

From macro-tiles of level 1 to macro-tiles of level 2

Undecidability of DP on Z², proof I

Undecidability of DP on Z², proof II

From macro-tiles of level 1 to macro-tiles of level 2

Undecidability of DP on Z², proof I

Undecidability of DP on Z², proof II

From macro-tiles of level 1 to macro-tiles of level 2

Undecidability of DP on Z², proof I

Undecidability of DP on Z², proof II

From macro-tiles of level 1 to macro-tiles of level 2

Undecidability of DP on Z², proof I

Undecidability of DP on Z², proof II

From macro-tiles of level 1 to macro-tiles of level 2

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Undecidability of DP on Z², proof I

Undecidability of DP on Z², proof II

From macro-tiles of level n to macro-tiles of level n + 1

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

・ロト ・個ト ・ヨト ・ヨト

3

About Robinson's tiling structure

Hierarchy of squares: squares of level n are gathered by 4 to form a square of level n+1

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

About Robinson's tiling structure

Hierarchy of squares: squares of level n are gathered by 4 to form a square of level n+1

Proposition

The only valid tilings by the Robinson tileset form a hierarchy of squares.

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

Valid tilings (I)

The two forms in Robinson tileset, cross (bumpy corners) and arms (dented corners).

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Valid tilings (I)

The two forms in Robinson tileset, cross (bumpy corners) and arms (dented corners).

Obviously, two crosses cannot be in contact (neither through an edge nor a vertex) thus a cross must be surrounded by eight arms.

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Valid tilings (II)

You cannot have things like

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

<ロ> (四) (四) (三) (三) (三) (三)

Valid tilings (II)

You cannot have things like

The only possibilities are thus

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

・ロト ・個ト ・ヨト ・ヨト

æ

Valid tilings (II)

You cannot have things like

The only possibilities are thus

Undecidability of DP on Z², proof I ○○○○○○○○○○○○○ Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Valid tilings (III)

So each \prod is part of a macro tile of level 1

that behaves like a big \prod , and so on...

Undecidability of DP on Z², proof I ○○○○○○○○○○○○○ Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

<ロ> (四) (四) (三) (三) (三) (三)

Undecidability of the Domino Problem (II)

Solution

Undecidability of DP on Z², proof I ○○○○○○○○○○○○○ Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Undecidability of the Domino Problem (II)

Solution

Undecidability of DP on Z², proof I ○○○○○○○○○○○○○ Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Undecidability of the Domino Problem (II)

Solution

Undecidability of DP on Z², proof I ○○○○○○○○○○○○○ Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

Undecidability of the Domino Problem (II)

Solution

Undecidability of DP on Z², proof I ○○○○○○○○○○○○○ Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

Undecidability of the Domino Problem (II)

Solution

Undecidability of DP on Z², proof I ○○○○○○○○○○○○○ Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Undecidability of the Domino Problem (II)

Solution

Undecidability of DP on Z², proof I ○○○○○○○○○○○○○ Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Undecidability of the Domino Problem (II)

Solution

Undecidability of DP on Z², proof I ○○○○○○○○○○○○○ Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Undecidability of the Domino Problem (II)

Solution

Undecidability of DP on Z², proof I ○○○○○○○○○○○○○ Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

Undecidability of the Domino Problem (II)

Solution

Undecidability of DP on Z², proof I ○○○○○○○○○○○○○ Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Undecidability of the Domino Problem (II)

Solution

Undecidability of DP on Z², proof I ○○○○○○○○○○○○○ Undecidability of DP on \mathbb{Z}^2 , proof II 000000000

Undecidability of the Domino Problem (II)

Solution

Embed Turing machine computations inside the hierarchy of squares given by Robinson's tiling.

Theorem (Berger 1966, Robinson 1971)

The Domino Problem is undecidable on \mathbb{Z}^2 .

Undecidability of DP on Z², proof I

Undecidability of DP on Z², proof II

Outline of the talk.

2 Undecidability of DP on \mathbb{Z}^2 , proof I

3 Undecidability of DP on \mathbb{Z}^2 , proof II

Undecidability of DP on Z², proof I

Undecidability of DP on Z², proof II

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Sketch of the proof

Idea: encode piecewise affine maps inside Wang tiles.

- ▶ Undecidability of the Mortality problem of Turing machines.
- ▶ Undecidability of the Mortality problem of piecewise affine maps.
- ▶ Reduction from the Mortality problem of piecewise affine maps.

Undecidability of DP on Z², proof I

Undecidability of DP on ℤ², proof II ●○○○○○○○○

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Mortality problem of Turing machines

Take M a deterministic Turing machine with an halting state q_f .

!! configurations of ${\mathcal M}$ do not have finite support !!

A configuration (x, q) is a **non-halting configuration** if it never evolves into the halting state.

Mortality problem of Turing machines

Take M a deterministic Turing machine with an halting state q_f .

!! configurations of ${\mathcal M}$ do not have finite support !!

A configuration (x, q) is a **non-halting configuration** if it never evolves into the halting state.

Mortality problem of Turing machines

 $\label{eq:input: a deterministic Turing machine \mathcal{M} with an halting state.} \\ \textbf{Output: Yes} if \mathcal{M} has a non-halting configuration, No otherwise.} \\$

Theorem (Hooper, 1966)

The Mortality problem of Turing machines is undecidable.

Proof: very technical, uses Minsky 2-counters machines.

Undecidability of DP on Z², proof I

Undecidability of DP on ℤ², proof II ●0000000

Rational piecewise affine maps in \mathbb{R}^2

Take $f_i : U_i \to \mathbb{R}^2$ for $i \in [1; n]$ some rational affine maps, with U_1, U_2, \ldots, U_n disjoint unit squares with integer corners.

Define $f : \mathbb{R}^2 \to \mathbb{R}^2$ with domain $U = \bigcup_{i=1}^n U_i$ by $\overrightarrow{x} \mapsto f_i(\overrightarrow{x})$ if $\overrightarrow{x} \in U_i$.

A point $\vec{x} \in \mathbb{R}^2$ is an **immortal starting point** for $(f_i)_{i=1...n}$ if for every $n \in \mathbb{N}$, the point $f^n(\vec{x})$ lies inside the domain U.

Mortality problem of piecewise affine maps

Input: a system of rational affine maps f_1, f_2, \ldots, f_n with disjoint unit squares U_1, U_2, \ldots, U_n with integer corners. **Output:** Yes the system has an immortal starting point, No otherwise.

Undecidability of DP on \mathbb{Z}^2 , proof II

Rational piecewise affine maps and Turing machines (I)

We use the **moving tape** Turing machines model.

Assume that $\mathcal M$ has alphabet $A=\{0,1,\ldots,a-1\}$ and states $Q=\{0,1,\ldots,b-1\}.$

Given \mathcal{M} a Turing machine, we construct a system f_1, f_2, \ldots, f_n of piecewise affine maps s.t.

- \blacktriangleright A configuration of ${\cal M}$ is coded by two real numbers.
- A transition of \mathcal{M} is coded by one f_i .
- ▶ $f_1, f_2, ..., f_n$ has an immortal starting point if and only if \mathcal{M} has an immortal configuration.

Undecidability of DP on Z², proof I

Undecidability of DP on Z², proof II

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Rational piecewise affine maps and Turing machines (II)

Configuration (x, q) is coded by $(\ell, r) \in \mathbb{R}^2$ where

$$\ell = \sum_{i=-1}^{-\infty} M^i x_i$$

and

$$r=Mq+\sum_{i=0}^{\infty}M^{-i}x_i,$$

where M is an integer s.t. M > a and M > b.

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II

Rational piecewise affine maps and Turing machines (II)

Configuration (x, q) is coded by $(\ell, r) \in \mathbb{R}^2$ where

$$\ell = \sum_{i=-1}^{-\infty} M^i x_i$$

and

$$r=Mq+\sum_{i=0}^{\infty}M^{-i}x_i,$$

where M is an integer s.t. M > a and M > b.

The transition $\delta(q,a)=(q',a',
ightarrow)$ is coded by the affine transformation

$$\left(\begin{array}{c}\ell\\r\end{array}\right)\mapsto \left(\begin{array}{c}\frac{1}{M}&0\\0&M\end{array}\right)\left(\begin{array}{c}\ell\\r\end{array}\right)+\left(\begin{array}{c}a'\\M(q'-a-Mq)\end{array}\right)$$

with domain $[0,1] \times [Mq, Mq + 1]$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Rational piecewise affine maps and Turing machines (II)

▶ A Turing machine *M* is transformed into a system *f*₁,..., *f_n* of rational piecewise affine maps.

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Rational piecewise affine maps and Turing machines (II)

- ▶ A Turing machine *M* is transformed into a system *f*₁,..., *f_n* of rational piecewise affine maps.
- \mathcal{M} has an immortal starting point iff f_1, \ldots, f_n has.

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Rational piecewise affine maps and Turing machines (II)

- ▶ A Turing machine *M* is transformed into a system *f*₁,..., *f_n* of rational piecewise affine maps.
- \mathcal{M} has an immortal starting point iff f_1, \ldots, f_n has.

Theorem

The Mortality problem of piecewise affine maps is undecidable.

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Rational affine maps inside Wang tiles (I)

Consider $f: \mathbb{R}^2 \to \mathbb{R}^2$ a rational affine map as before. The tile

$$\overrightarrow{w} \boxed{\overbrace{}^{\overrightarrow{n}}} \overrightarrow{e}$$

is said to **compute** the function f if

$$f(\overrightarrow{n}) + \overrightarrow{w} = \overrightarrow{s} + \overrightarrow{e}.$$

Undecidability of DP on Z², proof I

Undecidability of DP on ℤ², proof II ○○○○●○○○○

Rational affine maps inside Wang tiles (I)

Consider $f: \mathbb{R}^2 \to \mathbb{R}^2$ a rational affine map as before. The tile

Ŵ

is said to **compute** the function f if

$$f(\overrightarrow{n}) + \overrightarrow{w} = \overrightarrow{s} + \overrightarrow{e}.$$

त्ते

 \overrightarrow{e}

And on a row:

$$\overrightarrow{w} = \overrightarrow{w}_1 \underbrace{\boxed{\overrightarrow{n}_1 \quad \overrightarrow{n}_2}}_{\overrightarrow{s}_1 \quad \overrightarrow{s}_2} \cdots \underbrace{\boxed{\overrightarrow{n}_{k-1} \quad \overrightarrow{n}_k}}_{\overrightarrow{s}_{k-1} \quad \overrightarrow{s}_k} \overrightarrow{e}_k = \overrightarrow{e}$$

$$f\left(\frac{\overrightarrow{n}_1 + \dots + \overrightarrow{n}_k}{k}\right) + \frac{1}{k}\overrightarrow{w} = \frac{\overrightarrow{s}_1 + \dots + \overrightarrow{s}_k}{k} + \frac{1}{k}\overrightarrow{e}$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Rational affine maps inside Wang tiles (II)

For $x \in \mathbb{R}$, a representation of x is a sequence of integers $(x_k)_{k \in \mathbb{Z}}$ s.t.

• $\forall k \in \mathbb{Z}, x_k \in \{\lfloor x \rfloor, \lfloor x \rfloor + 1\};$

• $\forall k \in \mathbb{Z}$,

$$\lim_{n\to\infty}\frac{x_{k-n}+\cdots+x_{k+n}}{2n+1}=x.$$

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Rational affine maps inside Wang tiles (II)

For $x \in \mathbb{R}$, a representation of x is a sequence of integers $(x_k)_{k \in \mathbb{Z}}$ s.t.

• $\forall k \in \mathbb{Z}, x_k \in \{\lfloor x \rfloor, \lfloor x \rfloor + 1\};$ • $\forall k \in \mathbb{Z},$ $\lim_{n \to \infty} \frac{x_{k-n} + \dots + x_{k+n}}{2n+1} = x.$

Define
$$B_k(x) = \lfloor kx
floor - \lfloor (k-1)x
floor$$
 for every $k \in \mathbb{Z}$. Then $B(x) = (B_k(x))_{k \in \mathbb{Z}}$

is the **balanced representation of** *x*.

Undecidability of DP on Z², proof I

Undecidability of DP on ℤ², proof II

ション ふゆ く 山 マ チャット しょうくしゃ

Rational affine maps inside Wang tiles (II)

For $x \in \mathbb{R}$, a representation of x is a sequence of integers $(x_k)_{k \in \mathbb{Z}}$ s.t.

• $\forall k \in \mathbb{Z}, x_k \in \{\lfloor x \rfloor, \lfloor x \rfloor + 1\};$ • $\forall k \in \mathbb{Z},$ $\lim_{n \to \infty} \frac{x_{k-n} + \dots + x_{k+n}}{2n+1} = x.$

Define
$$B_k(x) = \lfloor kx
floor - \lfloor (k-1)x
floor$$
 for every $k \in \mathbb{Z}.$ Ther $B(x) = (B_k(x))_{k \in \mathbb{Z}}$

is the **balanced representation of** *x*.

For $\overrightarrow{x} \in \mathbb{R}^2$ and $k \in \mathbb{Z}$, define $B_k(\overrightarrow{x})$ coordinate by coordinate.

If
$$\overrightarrow{\times}$$
 is in $U_i = [n, n+1] \times [m, m+1]$, then
 $B_k(\overrightarrow{\times}) \in \{(n, m), (n, m+1), (n+1, m), (n+1, m+1)\}$ for every $k \in \mathbb{Z}$

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Rational affine maps inside Wang tiles (III)

The tile set corresponding to $f_i(\overrightarrow{x}) = M\overrightarrow{x} + \overrightarrow{b}$ consists of tiles

$$f_{i}(A_{k-1}(\overrightarrow{x})) - A_{k-1}(f_{i}(\overrightarrow{x})) = \begin{bmatrix} B_{k}(\overrightarrow{x}) \\ \\ +(k-1)\overrightarrow{b} \end{bmatrix} f_{i}(A_{k}(\overrightarrow{x})) - A_{k}(f_{i}(\overrightarrow{x})) \\ +k\overrightarrow{b} \\ B_{k}(f_{i}(\overrightarrow{x})) \end{bmatrix}$$

for every $k \in \mathbb{Z}$ and $\overrightarrow{x} \in U_i$.

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Rational affine maps inside Wang tiles (III)

The tile set corresponding to $f_i(\overrightarrow{x}) = M\overrightarrow{x} + \overrightarrow{b}$ consists of tiles

$$f_{i}(A_{k-1}(\overrightarrow{x})) - A_{k-1}(f_{i}(\overrightarrow{x})) = \begin{bmatrix} B_{k}(\overrightarrow{x}) \\ \\ +(k-1)\overrightarrow{b} \end{bmatrix} f_{i}(A_{k}(\overrightarrow{x})) - A_{k}(f_{i}(\overrightarrow{x})) \\ +k\overrightarrow{b} \\ B_{k}(f_{i}(\overrightarrow{x})) \end{bmatrix}$$

for every $k \in \mathbb{Z}$ and $\overrightarrow{x} \in U_i$.

Since U_i is bounded and f_i rational, there are **finitely many** tiles !

Undecidability of DP on Z², proof I

Undecidability of DP on ℤ², proof II

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Rational affine maps inside Wang tiles (IV)

- A system of rational affine maps f_1, f_2, \ldots, f_n defined on U_1, U_2, \ldots, U_n with integer corners.
- Each $f_i \rightsquigarrow$ a finite set of tiles T_i
- Set of tiles T = ∪T_i with additional markings (every row tiled by a single T_i)
- ▶ *T* admits a tiling of the plane iff $f_1, f_2, ..., f_n$ has an immortal point.

Undecidability of DP on Z², proof I

Undecidability of DP on \mathbb{Z}^2 , proof II

ション ふゆ アメリア メリア しょうくしゃ

Rational affine maps inside Wang tiles (IV)

- A system of rational affine maps f_1, f_2, \ldots, f_n defined on U_1, U_2, \ldots, U_n with integer corners.
- Each $f_i \rightsquigarrow$ a finite set of tiles T_i
- Set of tiles T = ∪T_i with additional markings (every row tiled by a single T_i)
- ▶ *T* admits a tiling of the plane iff $f_1, f_2, ..., f_n$ has an immortal point.

Theorem (Kari, 2007)

The Domino problem is undecidable on \mathbb{Z}^2 .

Conclusion

Undecidability of DP on Z², proof I

Undecidability of DP on Z², proof II ○○○○○○○●

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー わえぐ

• Two proofs of the undecidability of **DP** on \mathbb{Z}^2 .

- ▶ Encode a small computational model inside Wang tiles.
- ▶ What about f.g. groups ?

Conclusion

Undecidability of DP on Z², proof I

Undecidability of DP on Z², proof II ○○○○○○○○●

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

• Two proofs of the undecidability of **DP** on \mathbb{Z}^2 .

- ▶ Encode a small computational model inside Wang tiles.
- ▶ What about f.g. groups ?

Thank you for your attention !!