Lecture 2: The Domino problem on groups, part II.
 CANT 2016, CIRM (Marseille)

Nathalie Aubrun
LIP, ENS de Lyon, CNRS

30th November 2016

Introduction

Objectives of this talk...

- Give basic and inheritance properties about DP
- Describe classes and examples of groups with undecidable DP
- Formulate a conjecture on the characterization of groups with decidable DP

Yesterday

- DP undecidable on \mathbb{Z}^{2}
- hierarchy of arbitrary big grids + encode Turing machines
- encode the orbits of some $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

Outline of the talk.

(1) The Domino problem for f.g. groups
(2) Classes of groups
(3) The conjecture

Reminder

Fix G a f.g. group and S a generating set for G.

Domino problem on G

Input: A finite set of Wang tiles τ on S
Output: Yes if there exists a valid tiling by τ, No otherwise.

Remark: Decidability of DP does not depend on the choice of S.

Reminder

Fix G a f.g. group and S a generating set for G.
Domino problem on G
Input: A finite set of Wang tiles τ on S
Output: Yes if there exists a valid tiling by τ, No otherwise.

Remark: Decidability of DP does not depend on the choice of S.

Question

Which f.g. groups have decidable Domino Problem ?

Domino problem vs. Word problem (I)

Fix G a f.g. group and S a generating set for G.

$$
W P(G)=\left\{w \in\left(S \cup S^{-1}\right)^{*} \mid w={ }_{G} 1_{G}\right\} .
$$

Word problem on G

Input: A finite word w on the alphabet $S \cup S^{-1}$
Output: Yes if $w={ }_{G} 1_{G}$, No otherwise.
Remark: The Word problem on G is decidable iff the language $W P(G)$ is recursive.

Domino problem vs. Word problem (I)

Fix G a f.g. group and S a generating set for G.

$$
W P(G)=\left\{w \in\left(S \cup S^{-1}\right)^{*} \mid w={ }_{G} 1_{G}\right\} .
$$

Word problem on G

Input: A finite word w on the alphabet $S \cup S^{-1}$
Output: Yes if $w={ }_{G} 1_{G}$, No otherwise.
Remark: The Word problem on G is decidable iff the language $W P(G)$ is recursive.

Remark: Decidability of WP does not depend on the choice of S.

Word Problem vs. Domino Problem (II)

Property

Let G be a f.g. group with decidable DP, then G has decidable WP.
Sketch of the proof:

- Suppose that S generates G.
- Consider a word $w \in\left(S \cup S^{-1}\right)^{*}$ s.t. $w={ }_{G} g$.
- Define the SFT $X_{\mathcal{F}}$ on $A(|A| \geq 3)$ by forbidden patterns

$$
\mathcal{F}=\left\{p_{a}\right\}_{a \in A}
$$

where p_{a} has support $\left\{1_{G}, g\right\}$ s.t. $\left(p_{a}\right)_{1_{G}}=\left(p_{a}\right)_{g}=a$.

- Lemma: $w={ }_{G} 1_{G} \Leftrightarrow X_{\mathcal{F}}=\emptyset$.

Word Problem vs. Domino Problem (II)

Property

Let G be a f.g. group with decidable DP, then G has decidable WP.

Sketch of the proof:

- Suppose that S generates G.
- Consider a word $w \in\left(S \cup S^{-1}\right)^{*}$ s.t. $w={ }_{G} g$.
- Define the SFT $X_{\mathcal{F}}$ on $A(|A| \geq 3)$ by forbidden patterns

$$
\mathcal{F}=\left\{p_{a}\right\}_{a \in A}
$$

where p_{a} has support $\left\{1_{G}, g\right\}$ s.t. $\left(p_{a}\right)_{1_{G}}=\left(p_{a}\right)_{g}=a$.

- Lemma: $w={ }_{G} 1_{G} \Leftrightarrow X_{\mathcal{F}}=\emptyset$.

Property

If G has undecidable WP, then G has undecidable DP.

DP and subgroups

Property (stability by subgroup)

If $H \leq G$ is f.g. and H has undecidable DP, then G has undecidable DP.
Sketch of the proof:

- A set F of forbidden patterns on H is seen as F^{\prime} on G.
- $X_{F} \subset A^{H} \neq \emptyset \Leftrightarrow X^{\prime} \subset A^{G} \neq \emptyset$.

DP and subgroups

Property (stability by subgroup)

If $H \leq G$ is f.g. and H has undecidable DP, then G has undecidable DP.
Sketch of the proof:

- A set F of forbidden patterns on H is seen as F^{\prime} on G.
- $X_{F} \subset A^{H} \neq \emptyset \Leftrightarrow X^{\prime} \subset A^{G} \neq \emptyset$.

Corollary

If \mathbb{Z}^{2} embeds into G, then G has undecidable DP.
Examples: \mathbb{Z}^{n} for $n \geq 3$, discrete Heisenberg group have undecidable DP.

DP and quotient, subgroup of finite index

Proposition (stability by quotient)
If $H \unlhd G$ is a f.g. normal subgroup and G / H has undecidable DP, then G has undecidable DP.

DP and quotient, subgroup of finite index

Proposition (stability by quotient)
If $H \unlhd G$ is a f.g. normal subgroup and G / H has undecidable DP, then G has undecidable DP.

Proposition

If $H \leq G$ is a f.g. subgroup of finite index, then DP for H and G are equivalent.

DP and quotient, subgroup of finite index

Proposition (stability by quotient)

If $H \unlhd G$ is a f.g. normal subgroup and G / H has undecidable DP, then G has undecidable DP.

Proposition

If $H \leq G$ is a f.g. subgroup of finite index, then DP for H and G are equivalent.

Proposition

(Un)Decidability of DP is an invariant of commensurability.

Outline of the talk.

(1) The Domino problem for f.g. groups
(2) Classes of groups
(3) The conjecture

Virtually free groups

Free groups have decidable DP.
Proof: Direct algorithm that solves DP.

Virtually free groups

Proposition
Free groups have decidable DP.
Proof: Direct algorithm that solves DP.

Proposition

Virtually free groups have decidable DP.

Polycyclic groups

A group G is polycyclic if there exists subgroups $\left(G_{i}\right)_{i=0 \ldots n}$ s.t.

$$
\{1\}=G_{n} \unlhd G_{n-1} \unlhd \cdots \unlhd G_{0}=G
$$

where every quotient G_{i} / G_{i+1} is cyclic.
Examples: \mathbb{Z}, Heisenberg discrete group, nilpotent groups.

Polycyclic groups

A group G is polycyclic if there exists subgroups $\left(G_{i}\right)_{i=0 \ldots n}$ s.t.

$$
\{1\}=G_{n} \unlhd G_{n-1} \unlhd \cdots \unlhd G_{0}=G
$$

where every quotient G_{i} / G_{i+1} is cyclic.
Examples: \mathbb{Z}, Heisenberg discrete group, nilpotent groups.
Nice closure properties:

Proposition

Quotients and subgroups of polycyclic groups are polycyclic.
In particular, subgroups of polycyclic groups are always f.g. groups.

Polycyclic groups: Hirsch number

The Hirsch number $h(G)$ of a polycyclic group G is the number of infinite factors in a series with cyclic finite or finite factors.

Proposition

- If G_{1} is a subgroup of G_{2}, then $h\left(G_{1}\right) \leq h\left(G_{2}\right)$.
- If H is a normal subgroup of G, then $h(G)=h(G / H)+h(H)$
- $h(G)=0$ iff G is finite
- $h(G)=1$ iff G is virtually \mathbb{Z}
- $h(G)=2$ iff G is virtually \mathbb{Z}^{2}.

Polycyclic groups: Hirsch number

The Hirsch number $h(G)$ of a polycyclic group G is the number of infinite factors in a series with cyclic finite or finite factors.

Proposition

- If G_{1} is a subgroup of G_{2}, then $h\left(G_{1}\right) \leq h\left(G_{2}\right)$.
- If H is a normal subgroup of G, then $h(G)=h(G / H)+h(H)$
- $h(G)=0$ iff G is finite
- $h(G)=1$ iff G is virtually \mathbb{Z}
- $h(G)=2$ iff G is virtually \mathbb{Z}^{2}.

Hirsch number \Rightarrow proofs by induction on polycyclic groups.

Polycyclic groups and DP

Theorem (Jeandel, 2015)

Let G be a polycyclic group. Then G has undecidable DP iff G is not virtually cyclic (i.e. $h(g) \geq 2$).

Proof: By induction on the Hirsch number of the group.

- If $h(G) \in\{0,1,2\}$, OK.

Polycyclic groups and DP

Theorem (Jeandel, 2015)

Let G be a polycyclic group. Then G has undecidable DP iff G is not virtually cyclic (i.e. $h(g) \geq 2$).

Proof: By induction on the Hirsch number of the group.

- If $h(G) \in\{0,1,2\}$, OK.
- Suppose it is true for polycyclic groups with Hirsch number $\leq n$. Let G be a polycyclic group with $h(g)=n+1 \geq 3$.

Polycyclic groups and DP

Theorem (Jeandel, 2015)

Let G be a polycyclic group. Then G has undecidable DP iff G is not virtually cyclic (i.e. $h(g) \geq 2$).

Proof: By induction on the Hirsch number of the group.

- If $h(G) \in\{0,1,2\}$, OK.
- Suppose it is true for polycyclic groups with Hirsch number $\leq n$. Let G be a polycyclic group with $h(g)=n+1 \geq 3$.
- Every polycyclic group admits a nontrivial normal torsion-free abelian subgroup (Hirsch, 1938). Take H such a subgroup.

Polycyclic groups and DP

Theorem (Jeandel, 2015)

Let G be a polycyclic group. Then G has undecidable DP iff G is not virtually cyclic (i.e. $h(g) \geq 2$).

Proof: By induction on the Hirsch number of the group.

- If $h(G) \in\{0,1,2\}$, OK.
- Suppose it is true for polycyclic groups with Hirsch number $\leq n$. Let G be a polycyclic group with $h(g)=n+1 \geq 3$.
- Every polycyclic group admits a nontrivial normal torsion-free abelian subgroup (Hirsch, 1938). Take H such a subgroup.
- If $H=\mathbb{Z}^{n}$ for some $n>2$, then H has undecidable DP, and G has undecidable DP (stability by subgroup).

Polycyclic groups and DP

Theorem (Jeandel, 2015)

Let G be a polycyclic group. Then G has undecidable DP iff G is not virtually cyclic (i.e. $h(g) \geq 2$).

Proof: By induction on the Hirsch number of the group.

- If $h(G) \in\{0,1,2\}$, OK.
- Suppose it is true for polycyclic groups with Hirsch number $\leq n$. Let G be a polycyclic group with $h(g)=n+1 \geq 3$.
- Every polycyclic group admits a nontrivial normal torsion-free abelian subgroup (Hirsch, 1938). Take H such a subgroup.
- If $H=\mathbb{Z}^{n}$ for some $n>2$, then H has undecidable DP, and G has undecidable DP (stability by subgroup).
- Otherwise $H=\mathbb{Z}$, and G / H is a polycyclic subgroup of Hirsch number $n \geq 2$. By induction hypothesis, G / H has undecidable DP. By stability by quotient, G has undecidable DP.

Why Baumslag-Solitar groups ?

Baumslag-Solitar groups: $\mathrm{BS}(m, n)=<a, b \mid a^{m} b=b a^{n}>$

Why Baumslag-Solitar groups?

Baumslag-Solitar groups: $\mathrm{BS}(m, n)=<a, b \mid a^{m} b=b a^{n}>$

Why Baumslag-Solitar groups ?

Baumslag-Solitar groups: $\mathrm{BS}(m, n)=<a, b \mid a^{m} b=b a^{n}>$

Baumslag-Solitar groups have decidable WP, are not virtually free, do not contain \mathbb{Z}^{2} for $m=1$ and $n \geq 2$.

Partial localization in $\mathrm{BS}(m, n)$

Let $A=\left\{a, a^{-1}, b, b^{-1}\right\}$. Define $\psi_{m, n}: A^{*} \rightarrow \mathbb{R}$ by induction

$$
\left\{\begin{array}{l}
\psi_{m, n}(\varepsilon)=0 \text { where } \varepsilon \text { is the empty word } \\
\psi_{m, n}(w \cdot b)=\psi_{m, n}\left(w \cdot b^{-1}\right)=\psi_{m, n}(w) \\
\psi_{m, n}(w \cdot a)=\psi_{m, n}(w)+\left(\frac{m}{n}\right)\|w\|_{b} \\
\psi_{m, n}\left(w \cdot a^{-1}\right)=\psi_{m, n}(w)-\left(\frac{m}{n}\right)^{\|w\|_{b}}
\end{array}\right.
$$

Partial localization in $\mathrm{BS}(m, n)$

Let $A=\left\{a, a^{-1}, b, b^{-1}\right\}$. Define $\psi_{m, n}: A^{*} \rightarrow \mathbb{R}$ by induction

$$
\left\{\begin{array}{l}
\psi_{m, n}(\varepsilon)=0 \text { where } \varepsilon \text { is the empty word } \\
\psi_{m, n}(w \cdot b)=\psi_{m, n}\left(w \cdot b^{-1}\right)=\psi_{m, n}(w) \\
\psi_{m, n}(w \cdot a)=\psi_{m, n}(w)+\left(\frac{m}{n}\right)\|w\|_{b} \\
\psi_{m, n}\left(w \cdot a^{-1}\right)=\psi_{m, n}(w)-\left(\frac{m}{n}\right)^{\|w\|_{b}}
\end{array}\right.
$$

Partial localization in $\mathrm{BS}(m, n)$

Define a function $\Phi_{m, n}: \mathrm{BS}(m, n) \rightarrow \mathbb{R}^{2}$ by

$$
\Phi_{m, n}(g)=\left(\psi_{m, n}(w),\|w\|_{b^{-1}}\right),
$$

where w is any writing of g.

Partial localization in $\mathrm{BS}(m, n)$

Partial localization in $\mathrm{BS}(m, n)$

Property

$\Phi_{m, n}$ is well-defined, but is not injective.

DP on Baumslag-Solitar groups

Use the same ideas as in the proof of undecidability of DP on \mathbb{Z}^{2} by Kari.

DP on Baumslag-Solitar groups

Use the same ideas as in the proof of undecidability of $\mathbf{D P}$ on \mathbb{Z}^{2} by Kari. Idea: encode piecewise affine maps inside Wang tiles.

DP on Baumslag-Solitar groups

Use the same ideas as in the proof of undecidability of DP on \mathbb{Z}^{2} by Kari. Idea: encode piecewise affine maps inside Wang tiles.

The tile computes the function f if the relation

$$
\frac{f\left(\vec{x}_{1}+\vec{x}_{2}\right)}{2}+\vec{c}=\frac{\vec{y}_{1}+\vec{y}_{2}+\vec{y}_{3}}{3}+\vec{d}
$$

DP on Baumslag-Solitar groups

Use the same ideas as in the proof of undecidability of DP on \mathbb{Z}^{2} by Kari. Idea: encode piecewise affine maps inside Wang tiles.

The tile computes the function f if the relation

$$
\frac{f\left(\vec{x}_{1}+\vec{x}_{2}\right)}{2}+\vec{c}=\frac{\vec{y}_{1}+\vec{y}_{2}+\vec{y}_{3}}{3}+\vec{d}
$$

which leads to

$$
f(\vec{x})+\frac{\vec{c}_{1}}{k}=\vec{y}+\frac{\vec{d}_{k}}{k}
$$

on a finite row.

DP on Baumslag-Solitar groups

Let $f(\vec{x})=M \vec{x}+\vec{b}, M$ and \vec{b} with rational coefficient and integer corners.
where $\Phi_{3,2}(g)=(\alpha, \beta)$.

$$
-\frac{1}{3}\left[\left(\left(\frac{3}{2}\right)^{\beta} \alpha+3 k\right) f(\vec{x})\right\rfloor+k \vec{b}
$$

DP on Baumslag-Solitar groups

Let $f(\vec{x})=M \vec{x}+\vec{b}, M$ and \vec{b} with rational coefficient and integer corners.

Theorem (A. \& Kari, 2013)

The Domino problem is undecidable on Baumslag-Solitar groups.

Covering a group by disjoint bi-infinite paths

Covering a group by disjoint bi-infinite paths

What about torsion groups?

Covering a group by disjoint bi-infinite paths

What about torsion groups ?

Theorem (Seward, 2015)

Let G be an infinite f.g. group. Then there exists a finite set S s.t. the Cayley graph $\Gamma(G, S)$ of G with generating set S can be covered by disjoint bi-infinite paths.

Seward's Theorem inside an SFT ?

Choose S as in the previous theorem. Assume S is symmetrical $\left(S^{-1} \subset S\right)$.

Idea: each group element knowns the next and previous elements of its bi-infinite path.
Realization: SFT on the alphabet $S \times S$, given by

$$
\begin{gathered}
x \in(S \times S)^{G} \text { is in } G \text { iff } \\
\forall g \in G, \forall s \in S: \begin{array}{l}
\left(x_{g}\right)_{1}=s \Rightarrow\left(x_{g s}\right)_{2}=s^{-1} \\
\left(x_{g}\right)_{2}=s \Rightarrow\left(x_{g s}\right)_{1}=s^{-1}
\end{array}
\end{gathered}
$$

Seward's Theorem inside an SFT ?

Choose S as in the previous theorem. Assume S is symmetrical $\left(S^{-1} \subset S\right)$.

Idea: each group element knowns the next and previous elements of its bi-infinite path.
Realization: SFT on the alphabet $S \times S$, given by

$$
\begin{gathered}
x \in(S \times S)^{G} \text { is in } G \text { iff } \\
\forall g \in G, \forall s \in S: \begin{array}{l}
\left(x_{g}\right)_{1}=s \Rightarrow\left(x_{g s}\right)_{2}=s^{-1} \\
\left(x_{g}\right)_{2}=s \Rightarrow\left(x_{g s}\right)_{1}=s^{-1}
\end{array}
\end{gathered}
$$

But... we cannot avoid cycles !!

- Configurations of X are partitions of $\Gamma(G, S)$ into cycles and bi-infinite paths.
- By Seward's result, there exist one configuration in X with no cycle.

Domino problem on $G_{1} \times G_{2}$ groups

Theorem (Jeandel, 2015)

Let G_{1} and G_{2} be infinite f.g. groups. Then $G_{1} \times G_{2}$ has undecidable DP.
Sketch of the proof:

- Idea: encode an SFT Y on \mathbb{Z}^{2} inside an SFT Z on $G_{1} \times G_{2}$.

Domino problem on $G_{1} \times G_{2}$ groups

Theorem (Jeandel, 2015)

Let G_{1} and G_{2} be infinite f.g. groups. Then $G_{1} \times G_{2}$ has undecidable DP.
Sketch of the proof:

- Idea: encode an SFT Y on \mathbb{Z}^{2} inside an SFT Z on $G_{1} \times G_{2}$.
- Suppose Y given by forbidden patterns F_{H} and F_{V}.

Domino problem on $G_{1} \times G_{2}$ groups

Theorem (Jeandel, 2015)

Let G_{1} and G_{2} be infinite f.g. groups. Then $G_{1} \times G_{2}$ has undecidable DP.
Sketch of the proof:

- Idea: encode an SFT Y on \mathbb{Z}^{2} inside an SFT Z on $G_{1} \times G_{2}$.
- Suppose Y given by forbidden patterns F_{H} and F_{V}.
- Take S_{i} generating set for G_{i} as in Seward result.

Domino problem on $G_{1} \times G_{2}$ groups

Theorem (Jeandel, 2015)

Let G_{1} and G_{2} be infinite f.g. groups. Then $G_{1} \times G_{2}$ has undecidable DP.

Sketch of the proof:

- Idea: encode an SFT Y on \mathbb{Z}^{2} inside an SFT Z on $G_{1} \times G_{2}$.
- Suppose Y given by forbidden patterns F_{H} and F_{V}.
- Take S_{i} generating set for G_{i} as in Seward result.
- Define $Z \subset\left(S_{1} \times S_{1} \times S_{2} \times S_{2} \times A\right)^{G_{1} \times G_{2}}$ as follows

$$
g \in Z \text { iff } z \in X \times A^{G_{1} \times G_{2}} \text { and } \forall g \in G_{1} \times G_{2}: \begin{aligned}
& \left(\left(z_{g}\right)_{5},\left(z_{\left(z_{g}\right)_{1} g}\right)_{5}\right) \notin F_{H} \\
& \left(\left(z_{g}\right)_{5},\left(z_{\left(z_{g}\right)_{3}}\right)_{5}\right) \notin F_{V}
\end{aligned}
$$

Domino problem on $G_{1} \times G_{2}$ groups

Theorem (Jeandel, 2015)

Let G_{1} and G_{2} be infinite f.g. groups. Then $G_{1} \times G_{2}$ has undecidable DP.

Sketch of the proof:

- Idea: encode an SFT Y on \mathbb{Z}^{2} inside an SFT Z on $G_{1} \times G_{2}$.
- Suppose Y given by forbidden patterns F_{H} and F_{V}.
- Take S_{i} generating set for G_{i} as in Seward result.
- Define $Z \subset\left(S_{1} \times S_{1} \times S_{2} \times S_{2} \times A\right)^{G_{1} \times G_{2}}$ as follows

$$
g \in Z \text { iff } z \in X \times A^{G_{1} \times G_{2}} \text { and } \forall g \in G_{1} \times G_{2}: \begin{aligned}
& \left(\left(z_{g}\right)_{5},\left(z_{\left(z_{g}\right)_{1} g}\right)_{5}\right) \notin F_{H} \\
& \left(\left(z_{g}\right)_{5},\left(z_{\left(z_{g}\right)_{3} g}\right)_{5}\right) \notin F_{V}
\end{aligned}
$$

- Check that $Z \neq \emptyset \Leftrightarrow Y \neq \emptyset$.

Domino problem on $G_{1} \times G_{2}$ groups

Theorem (Jeandel, 2015)

Let G_{1} and G_{2} be infinite f.g. groups. Then $G_{1} \times G_{2}$ has undecidable DP.

Sketch of the proof:

- Idea: encode an SFT Y on \mathbb{Z}^{2} inside an SFT Z on $G_{1} \times G_{2}$.
- Suppose Y given by forbidden patterns F_{H} and F_{V}.
- Take S_{i} generating set for G_{i} as in Seward result.
- Define $Z \subset\left(S_{1} \times S_{1} \times S_{2} \times S_{2} \times A\right)^{G_{1} \times G_{2}}$ as follows

$$
g \in Z \text { iff } z \in X \times A^{G_{1} \times G_{2}} \text { and } \forall g \in G_{1} \times G_{2}: \begin{aligned}
& \left(\left(z_{g}\right)_{5},\left(z_{\left(z_{g}\right)_{1 g}}\right)_{5}\right) \notin F_{H} \\
& \left(\left(z_{\sigma}\right)_{5},\left(z_{\left(z_{2}\right)}\right)_{5}\right)
\end{aligned} \notin F_{V} .
$$

- Check that $Z \neq \emptyset \Leftrightarrow Y \neq \emptyset$.

Corollary

Grigorchuk group has undecidable DP.

Outline of the talk.

(1) The Domino problem for f.g. groups
(2) Classes of groups
(3) The conjecture

Conjecture (I)

Conjecture
A f.g. group has decidable DP iff it is virtually free.

Conjecture (I)

Conjecture
A f.g. group has decidable DP iff it is virtually free.
Virtually free groups have decidable DP:

- Why ? Explicit algorithm for free groups + stability by subgroup of finite index.

Conjecture (I)

Conjecture

A f.g. group has decidable DP iff it is virtually free.
Virtually free groups have decidable DP:

- Why ? Explicit algorithm for free groups + stability by subgroup of finite index.
- Why ?
- DP can be expressed in MSO logic (Wang, 1961)
- a group is virtually free if and only if it has finite tree-width (Muller \& Schupp, 1985)
- graphs with finite tree-width are exactly those with decidable MSO (Kuske \& Lohrey, 2005)

Conjecture (II)

Conjecture

A f.g. group has decidable DP iff it is virtually free.

Conjecture (II)

Conjecture

A f.g. group has decidable DP iff it is virtually free.

Theorem (using Robertson \& Seymour, 1986)

If a group is not virtually free, then it has arbitrarily large grids as minors.
A minor of a graph (V, E) is obtained by deleting vertices, deleting edges and contracting edges.

Conjecture (II)

Conjecture

A f.g. group has decidable DP iff it is virtually free.

Theorem (using Robertson \& Seymour, 1986)

If a group is not virtually free, then it has arbitrarily large grids as minors.
A minor of a graph (V, E) is obtained by deleting vertices, deleting edges and contracting edges.

- Remember Robinson's construction. . .
- Can we use these grids as computation zones for Turing machines ?

Conjecture (II)

Conjecture

A f.g. group has decidable DP iff it is virtually free.

Theorem (using Robertson \& Seymour, 1986)

If a group is not virtually free, then it has arbitrarily large grids as minors.
A minor of a graph (V, E) is obtained by deleting vertices, deleting edges and contracting edges.

- Remember Robinson's construction. . .
- Can we use these grids as computation zones for Turing machines ?
- But we do not know where this grids appear!
- And even if we knew, how to code them inside an SFT ?

Conclusion

- DP has good structural properties.
- Seems hard to adapt existing proofs on \mathbb{Z} to the general case.
- Several characterizations of virtually free groups.

Conclusion

- DP has good structural properties.
- Seems hard to adapt existing proofs on \mathbb{Z} to the general case.
- Several characterizations of virtually free groups.

Thank you for your attention !!

Domino Problem as a Markov property

A property of f.p. groups is a Markov property if
(i) there exists a f.p. group with this property,
(ii) there exists a f.p. group that cannot be embedded in any f.p. group with the property.
Examples: being trivial, abelian, nilpotent, solvable, free, torsion-free. . . are Markov properties.

Domino Problem as a Markov property

A property of f.p. groups is a Markov property if
(i) there exists a f.p. group with this property,
(ii) there exists a f.p. group that cannot be embedded in any f.p. group with the property.
Examples: being trivial, abelian, nilpotent, solvable, free, torsion-free. . . are Markov properties.

Theorem (Adian \& Rabin, 1955-1958)

If \mathcal{P} is a Markov property, the problem of deciding whether a f.p. group has property \mathcal{P} is undecidable.

Domino Problem as a Markov property

A property of f.p. groups is a Markov property if
(i) there exists a f.p. group with this property,
(ii) there exists a f.p. group that cannot be embedded in any f.p. group with the property.
Examples: being trivial, abelian, nilpotent, solvable, free, torsion-free. . . are Markov properties.

Theorem (Adian \& Rabin, 1955-1958)

If \mathcal{P} is a Markov property, the problem of deciding whether a f.p. group has property \mathcal{P} is undecidable.

Proposition

The group property G has decidable domino problem is a Markov property.

