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Introduction

Objectives of this talk. . .

I Give basic and inheritance properties about DP
I Describe classes and examples of groups with undecidable DP
I Formulate a conjecture on the characterization of groups with

decidable DP
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Yesterday

I DP undecidable on Z2

I hierarchy of arbitrary big grids + encode Turing machines
I encode the orbits of some f : R2 → R2
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Outline of the talk.

1 The Domino problem for f.g. groups

2 Classes of groups

3 The conjecture
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Reminder

Fix G a f.g. group and S a generating set for G .

Domino problem on G

Input: A finite set of Wang tiles τ on S
Output: Yes if there exists a valid tiling by τ , No otherwise.

Remark: Decidability of DP does not depend on the choice of S .

Question
Which f.g. groups have decidable Domino Problem ?
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Domino problem vs. Word problem (I)

Fix G a f.g. group and S a generating set for G .

WP(G ) =
{

w ∈
(
S ∪ S−1)∗ | w =G 1G

}
.

Word problem on G

Input: A finite word w on the alphabet S ∪ S−1

Output: Yes if w =G 1G , No otherwise.

Remark: The Word problem on G is decidable iff the language WP(G )
is recursive.

Remark: Decidability of WP does not depend on the choice of S .
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Word Problem vs. Domino Problem (II)

Property

Let G be a f.g. group with decidable DP, then G has decidable WP.

Sketch of the proof:
I Suppose that S generates G .
I Consider a word w ∈

(
S ∪ S−1

)∗ s.t. w =G g .
I Define the SFT XF on A (|A| ≥ 3) by forbidden patterns

F = {pa}a∈A

where pa has support {1G , g} s.t. (pa)1G = (pa)g = a.
I Lemma: w =G 1G ⇔ XF = ∅.

Property

If G has undecidable WP, then G has undecidable DP.
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DP and subgroups

Property (stability by subgroup)

If H ≤ G is f.g. and H has undecidable DP, then G has undecidable DP.

Sketch of the proof:
I A set F of forbidden patterns on H is seen as F ′ on G .
I XF ⊂ AH 6= ∅ ⇔ XF ′ ⊂ AG 6= ∅.

Corollary

If Z2 embeds into G , then G has undecidable DP.

Examples: Zn for n ≥ 3, discrete Heisenberg group have undecidable
DP.
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DP and quotient, subgroup of finite index

Proposition (stability by quotient)

If H E G is a f.g. normal subgroup and G/H has undecidable DP, then
G has undecidable DP.

Proposition

If H ≤ G is a f.g. subgroup of finite index, then DP for H and G are
equivalent.

Proposition

(Un)Decidability of DP is an invariant of commensurability.
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Virtually free groups

Proposition

Free groups have decidable DP.

Proof: Direct algorithm that solves DP.

Proposition

Virtually free groups have decidable DP.
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Polycyclic groups

A group G is polycyclic if there exists subgroups (Gi )i=0...n s.t.

{1} = Gn E Gn−1 E · · ·E G0 = G

where every quotient Gi/Gi+1 is cyclic.

Examples: Z, Heisenberg discrete group, nilpotent groups.

Nice closure properties:

Proposition

Quotients and subgroups of polycyclic groups are polycyclic.

In particular, subgroups of polycyclic groups are always f.g. groups.
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Polycyclic groups: Hirsch number

The Hirsch number h(G ) of a polycyclic group G is the number of
infinite factors in a series with cyclic finite or finite factors.

Proposition

If G1 is a subgroup of G2, then h(G1) ≤ h(G2).
If H is a normal subgroup of G , then h(G ) = h(G/H) + h(H)

h(G ) = 0 iff G is finite
h(G ) = 1 iff G is virtually Z
h(G ) = 2 iff G is virtually Z2.

Hirsch number ⇒ proofs by induction on polycyclic groups.
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Polycyclic groups and DP

Theorem (Jeandel, 2015)

Let G be a polycyclic group. Then G has undecidable DP iff G is not
virtually cyclic (i.e. h(g) ≥ 2).

Proof: By induction on the Hirsch number of the group.
If h(G ) ∈ {0, 1, 2}, OK.

Suppose it is true for polycyclic groups with Hirsch number ≤ n. Let
G be a polycyclic group with h(g) = n + 1 ≥ 3.
Every polycyclic group admits a nontrivial normal torsion-free
abelian subgroup (Hirsch, 1938). Take H such a subgroup.
If H = Zn for some n > 2, then H has undecidable DP, and G has
undecidable DP (stability by subgroup).
Otherwise H = Z, and G/H is a polycyclic subgroup of Hirsch
number n ≥ 2. By induction hypothesis, G/H has undecidable DP.
By stability by quotient, G has undecidable DP.
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Why Baumslag-Solitar groups ?

Baumslag-Solitar groups: BS(m, n) =< a, b|amb = ban >

Baumslag-Solitar groups have decidable WP, are not virtually free, do
not contain Z2 for m = 1 and n ≥ 2.
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Partial localization in BS(m, n)

Let A = {a, a−1, b, b−1}. Define ψm,n : A∗ → R by induction
ψm,n(ε) = 0 where ε is the empty word
ψm,n(w .b) = ψm,n(w .b−1) = ψm,n(w)

ψm,n(w .a) = ψm,n(w) +
(m

n

)‖w‖b
ψm,n(w .a−1) = ψm,n(w)−

(m
n

)‖w‖b

Partial localization in BS(m, n)

Define a function Φm,n : BS(m, n)→ R2 by

Φm,n(g) = (ψm,n(w), ‖ w ‖b−1) ,

where w is any writing of g .
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Partial localization in BS(m, n)

Property

Φm,n is well-defined

ε
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Partial localization in BS(m, n)

Property

Φm,n is well-defined, but is not injective.

ε

Φ3,2(ε) = Φ3,2(abab−1a−1ba−1b−1)
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DP on Baumslag-Solitar groups

Use the same ideas as in the proof of undecidability of DP on Z2 by Kari.

Idea: encode piecewise affine maps inside Wang tiles.

−→x 1
−→x 2

−→c −→
d

−→y 1
−→y 2

−→y 3

The tile computes the function f if the relation

f
(−→x 1 +−→x 2

)
2

+−→c =
−→y 1 +−→y 2 +−→y 3

3
+
−→
d

which leads to

f (−→x ) +
−→c 1

k
= −→y +

−→
d k

k
on a finite row.
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DP on Baumslag-Solitar groups

Let f (−→x ) = M−→x +
−→
b , M and

−→
b with rational coefficient and integer

corners.

•g

Bg .b
2k−1

(−→x ) Bg .b
2k

(−→x )

cg (k − 1) cg (k)

Bg
3k−2

(
f (−→x )

)
Bg

3k−1

(
f (−→x )

)
Bg

3k

(
f (−→x )

)

with cg (k) = 1
2 f
(⌊(( 3

2

)β−1
α + 2k

)−→x ⌋)
− 1

3

⌊(( 3
2

)β
α + 3k

)
f (−→x )

⌋
+ k
−→
b

where Φ3,2(g) = (α, β).

Theorem (A. & Kari, 2013)

The Domino problem is undecidable on Baumslag-Solitar groups.
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Covering a group by disjoint bi-infinite paths

What about torsion groups ?

Theorem (Seward, 2015)

Let G be an infinite f.g. group. Then there exists a finite set S s.t. the
Cayley graph Γ(G ,S) of G with generating set S can be covered by
disjoint bi-infinite paths.
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Seward’s Theorem inside an SFT ?

Choose S as in the previous theorem. Assume S is symmetrical
(S−1 ⊂ S).

Idea: each group element knowns the next and previous elements of its
bi-infinite path.
Realization: SFT on the alphabet S × S , given by

x ∈ (S × S)G is in G iff

∀g ∈ G ,∀s ∈ S :
(xg )1 = s ⇒ (xgs)2 = s−1

(xg )2 = s ⇒ (xgs)1 = s−1

But. . . we cannot avoid cycles !!

I Configurations of X are partitions of Γ(G , S) into cycles and
bi-infinite paths.

I By Seward’s result, there exist one configuration in X with no cycle.
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Domino problem on G1 × G2 groups

Theorem (Jeandel, 2015)

Let G1 and G2 be infinite f.g. groups. Then G1×G2 has undecidable DP.

Sketch of the proof:
I Idea: encode an SFT Y on Z2 inside an SFT Z on G1 × G2.

I Suppose Y given by forbidden patterns FH and FV .
I Take Si generating set for Gi as in Seward result.
I Define Z ⊂ (S1 × S1 × S2 × S2 × A)G1×G2 as follows

g ∈ Z iff z ∈ X×AG1×G2 and∀g ∈ G1×G2 :

(
(zg )5, (z(zg )1g )5

)
/∈ FH(

(zg )5, (z(zg )3g )5
)
/∈ FV

I Check that Z 6= ∅ ⇔ Y 6= ∅.

Corollary

Grigorchuk group has undecidable DP.
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Corollary

Grigorchuk group has undecidable DP.
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Conjecture (I)

Conjecture

A f.g. group has decidable DP iff it is virtually free.

Virtually free groups have decidable DP:
I Why ? Explicit algorithm for free groups + stability by subgroup of

finite index.
I Why ?

DP can be expressed in MSO logic (Wang, 1961)
a group is virtually free if and only if it has finite tree-width (Muller
& Schupp, 1985)
graphs with finite tree-width are exactly those with decidable MSO
(Kuske & Lohrey, 2005)
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Conjecture (II)

Conjecture

A f.g. group has decidable DP iff it is virtually free.

Theorem (using Robertson & Seymour, 1986)

If a group is not virtually free, then it has arbitrarily large grids as minors.

A minor of a graph (V ,E ) is obtained by deleting vertices, deleting
edges and contracting edges.

I Remember Robinson’s construction. . .
I Can we use these grids as computation zones for Turing machines ?
I But we do not know where this grids appear !
I And even if we knew, how to code them inside an SFT ?
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Conclusion

I DP has good structural properties.
I Seems hard to adapt existing proofs on Z to the general case.
I Several characterizations of virtually free groups.

Thank you for your attention !!
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Domino Problem as a Markov property

A property of f.p. groups is a Markov property if
(i) there exists a f.p. group with this property,
(ii) there exists a f.p. group that cannot be embedded in any f.p. group

with the property.
Examples: being trivial, abelian, nilpotent, solvable, free,
torsion-free. . . are Markov properties.

Theorem (Adian & Rabin, 1955-1958)

If P is a Markov property, the problem of deciding whether a f.p. group
has property P is undecidable.

Proposition

The group property G has decidable domino problem is a Markov
property.
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