Lecture 3: Domino problem and (a)periodicity.

CANT 2016, CIRM (Marseille)

Nathalie Aubrun

LIP, ENS de Lyon, CNRS

2nd December 2016

Outline of the talk.

- 1 Domino problem and periodicity
- Strongly aperiodic subshifts
- 4 Lovász Local Lemma in Symbolic Dynamics

We can define two notions of **periodic** configuration:

- ▶ A configuration $x \in A^{\mathbb{Z}^2}$ is **weakly periodic** if its stabilizer is infinite.
 - \Leftrightarrow x admits a non-trivial direction \overrightarrow{u} of periodicity.
- A configuration $x \in A^{\mathbb{Z}^2}$ is **strongly periodic** if its stabilizer is of finite index in \mathbb{Z}^2 : $[\mathbb{Z}^2 : \mathsf{Stab}(x)] < \infty$.
 - \Leftrightarrow x admits two non-collinear directions \overrightarrow{u} , \overrightarrow{v} of periodicity.

We can define two notions of **periodic** configuration:

- ▶ A configuration $x \in A^{\mathbb{Z}^2}$ is **weakly periodic** if its stabilizer is infinite.
 - \Leftrightarrow x admits a non-trivial direction \overrightarrow{u} of periodicity.
- A configuration $x \in A^{\mathbb{Z}^2}$ is **strongly periodic** if its stabilizer is of finite index in \mathbb{Z}^2 : $[\mathbb{Z}^2 : \mathsf{Stab}(x)] < \infty$.
 - \Leftrightarrow x admits two non-collinear directions \overrightarrow{u} , \overrightarrow{v} of periodicity.

Proposition

On \mathbb{Z}^2 , if an SFT contains a weakly periodic configuration, then it contains a strongly periodic one.

Proof: on the blackboard.

Wang's conjecture (1961)

If a set of Wang tiles can tile the plane, then they can always be arranged to do so periodically.

Wang's conjecture (1961)

A non-empty SFT contains a periodic configuration.

Wang's conjecture (1961)

A non-empty SFT contains a periodic configuration.

Suppose Wang's conjecture is true. Then you can decide DP!

Semi-algorithm 1:

- gives a finite periodic pattern, if it exists
- loops otherwise

Semi-algorithm 2:

- gives an integer n so that there is no $[1; n] \times [1; n]$ locally admissible pattern, if it exists
- loops otherwise

Wang's conjecture (1961)

A non-empty SFT contains a periodic configuration.

Suppose Wang's conjecture is true. Then you can decide DP!

Semi-algorithm 1:

- gives a finite periodic pattern, if it exists
- loops otherwise

Semi-algorithm 2:

- **9** gives an integer n so that there is no $[1; n] \times [1; n]$ locally admissible pattern, if it exists
- loops otherwise

Consequence

The undecidability of **DP** implies existence of an aperiodic SFT.

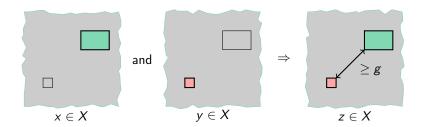
Outline of the talk.

- Domino problem and periodicity
- Strongly aperiodic subshifts
- 4 Lovász Local Lemma in Symbolic Dynamics

Block gluing subshifts on \mathbb{Z}^2 (I)

A subshift $X\subset A^{\mathbb{Z}^2}$ is **block-gluing** with gap $g\in\mathbb{N}$ if for any two finite supports $S_1,S_2\subset\mathbb{Z}^2$ at distance at least g, and for any $x,y\in X$

there exists
$$z \in X$$
 s.t. $z_{|S_1} = x_{|S_1}$ and $z_{|S_2} = y_{|S_2}$.



Remark: this is a uniform mixing condition.

Block gluing subshifts on \mathbb{Z}^2 (II)

Proposition (Folklore, written in Pavlov & Schraudner 2015)

A non-empty block-gluing SFT has a periodic configuration.

Proof: on the blackboard.

Block gluing subshifts on \mathbb{Z}^2 (II)

Proposition (Folklore, written in Pavlov & Schraudner 2015)

A non-empty block-gluing SFT has a periodic configuration.

Proof: on the blackboard.

Consequence

The Domino problem is decidable for block-gluing SFTs.

Block gluing subshifts on \mathbb{Z}^2 (II)

Proposition (Folklore, written in Pavlov & Schraudner 2015)

A non-empty block-gluing SFT has a periodic configuration.

Proof: on the blackboard.

Consequence

The Domino problem is decidable for block-gluing SFTs.

Remark: Actually we prove something stronger: we can decide whether a locally admissible pattern is globally admissible (the language is decidable).

Outline of the talk.

- Domino problem and periodicity
- Strongly aperiodic subshifts
- 4 Lovász Local Lemma in Symbolic Dynamics

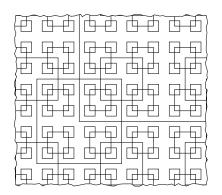
A subshift $X \subset A^G$ is **strongly aperiodic** if all its configurations have trivial stabilizer

$$\forall x \in X, \forall g \in G, \ \sigma^g(x) = x \Rightarrow g = 1_G.$$

A subshift $X \subset A^G$ is **strongly aperiodic** if all its configurations have trivial stabilizer

$$\forall x \in X, \forall g \in G, \ \sigma^g(x) = x \Rightarrow g = 1_G.$$

Example: Robinson's SFT is strongly aperiodic



Question

Question

Which f.g. groups admit strongly aperiodic SFTs?

▶ If G is r.p. with a strongly aperiodic SFT, then G has decidable **WP** (Jeandel, 2015).

Question

- ▶ If G is r.p. with a strongly aperiodic SFT, then G has decidable **WP** (Jeandel, 2015).
- ▶ If G has at least two ends, then it has no strongly aperiodic SFTs (Cohen, 2015)

Question

- ▶ If G is r.p. with a strongly aperiodic SFT, then G has decidable **WP** (Jeandel, 2015).
- ▶ If G has at least two ends, then it has no strongly aperiodic SFTs (Cohen, 2015)
- ▶ Generalization of Kari's construction to some $G \times \mathbb{Z}$ (Jeandel, 2015).

Question

- ▶ If G is r.p. with a strongly aperiodic SFT, then G has decidable **WP** (Jeandel, 2015).
- ▶ If G has at least two ends, then it has no strongly aperiodic SFTs (Cohen, 2015)
- ▶ Generalization of Kari's construction to some $G \times \mathbb{Z}$ (Jeandel, 2015).
- $ightharpoonup \mathbb{Z}^n$, Heisenberg group (Sahin, Schraudner & Ugarcovici, 2015).

Question

- ▶ If G is r.p. with a strongly aperiodic SFT, then G has decidable **WP** (Jeandel, 2015).
- ▶ If G has at least two ends, then it has no strongly aperiodic SFTs (Cohen, 2015)
- ▶ Generalization of Kari's construction to some $G \times \mathbb{Z}$ (Jeandel, 2015).
- $ightharpoonup \mathbb{Z}^n$, Heisenberg group (Sahin, Schraudner & Ugarcovici, 2015).
- Surface groups (Cohen & Goodman-Strauss, 2015).

Question

- ▶ If G is r.p. with a strongly aperiodic SFT, then G has decidable **WP** (Jeandel, 2015).
- ▶ If G has at least two ends, then it has no strongly aperiodic SFTs (Cohen, 2015)
- ▶ Generalization of Kari's construction to some $G \times \mathbb{Z}$ (Jeandel, 2015).
- $ightharpoonup \mathbb{Z}^n$, Heisenberg group (Sahin, Schraudner & Ugarcovici, 2015).
- ▶ Surface groups (Cohen & Goodman-Strauss, 2015).
- ▶ groups $\mathbb{Z}^2 \times H$ where H has decidable **WP** (Barbieri & Sablik, 2016).

Question

Which f.g. groups admit strongly aperiodic SFTs?

- ▶ If G is r.p. with a strongly aperiodic SFT, then G has decidable **WP** (Jeandel, 2015).
- ▶ If G has at least two ends, then it has no strongly aperiodic SFTs (Cohen, 2015)
- ▶ Generalization of Kari's construction to some $G \times \mathbb{Z}$ (Jeandel, 2015).
- $ightharpoonup \mathbb{Z}^n$, Heisenberg group (Sahin, Schraudner & Ugarcovici, 2015).
- ▶ Surface groups (Cohen & Goodman-Strauss, 2015).
- ▶ groups $\mathbb{Z}^2 \times H$ where H has decidable **WP** (Barbieri & Sablik, 2016).

Question (simpler)

Does every f.g. group admit strongly aperiodic subshifts?

Theorem (Gao, Jackson & Seward, 2009)

Every f.g. group G has a strongly aperiodic subshift on alphabet $\{0,1\}$.

Theorem (Gao, Jackson & Seward, 2009)

Every f.g. group G has a strongly aperiodic subshift on alphabet $\{0,1\}$.

Proof: ???

Theorem (Gao, Jackson & Seward, 2009)

Every f.g. group G has a strongly aperiodic subshift on alphabet $\{0,1\}$.

Proof: ???

Theorem (A. Barbieri & Thomassé, 2015)

Every f.g. group G has a strongly aperiodic subshift on alphabet $\{0,1\}$.

Outline of the talk.

- Domino problem and periodicity
- 2 Block gluing SFTs on \mathbb{Z}^2
- Strongly aperiodic subshifts
- 4 Lovász Local Lemma in Symbolic Dynamics

Lovász Local Lemma

(see Anton Chaplygin's talk yesterday)

$$(A_i)_{i=1...n}$$
 mutually independent
Each A_i can be avoided $\Rightarrow A_1, \ldots, A_n$ can be avoided.

Proposition

If events A_1, \ldots, A_n are mutually independent, then

$$Pr\left(\bigcap_{i=1}^{n} \bar{A}_{i}\right) = \prod_{i=1}^{n} \left(1 - Pr(A_{i})\right).$$

What about the dependent case ?

Lovász Local Lemma

(see Anton Chaplygin's talk yesterday)

$$(A_i)_{i=1...n}$$
 not very dependent
Each A_i can be avoided $\Rightarrow A_1, \ldots, A_n$ can be avoided.

Lovász Local Lemma (1975)

Let $\mathcal{A} = \{A_1, A_2, \dots, A_n\}$. For $A_i \in \mathcal{A}$, let $\Gamma(A_i)$ be the subset of \mathcal{A} such that A_i is independent of the collection $\mathcal{A} \setminus (\{A_i\} \cup \Gamma(A_i))$. Suppose there are x_i, \dots, x_n such that $0 \le x_i < 1$ and:

$$\forall A_i \in \mathcal{A} : Pr(A_i) \leq x_i \prod_{A_j \in \Gamma(A)} (1 - x_j)$$

then the probability of avoiding A_1, A_2, \ldots, A_n is positive.

Lovász Local Lemma in Symbolic Dynamics (I)

How to use LLL in Symbolic Dynamics?

Suppose you want to prove that the subshift X is non-empty.

- ▶ Uniform Bernoulli measure on configurations space.
- ▶ Bad events \approx forbidden patterns.
- Compactness + LLL (if applicable) show the non-emptiness of the subshift.

Lovász Local Lemma in Symbolic Dynamics (II)

Let G be a f.g. group, A a finite alphabet and μ the uniform Bernoulli probability measure on A^G .

A sufficient condition for being non-empty

Let $X \subset A^G$ be a subshift defined by $\mathcal{F} = \bigcup_{n \geq 1} \mathcal{F}_n$, where $\mathcal{F}_n \subset A^{B_n}$. Suppose that there exists a function $x : \mathbb{N} \times G \to (0,1)$ such that:

$$\forall n \in \mathbb{N}, g \in G, \ \mu(A_{n,g}) \leq x(n,g) \prod_{\substack{gS_n \cap hS_k \neq \emptyset \\ (k,h) \neq (n,g)}} (1 - x(k,h)),$$

where $A_{n,g} = \{x \in A^G : x|_{gS_n} \in \mathcal{F}_n\}$. Then the subshift X is non-empty.

Strong aperiodicity vs. the distinct neighborhood property

A subshift $X \subset A^G$ is **strongly aperiodic** if all its configurations have trivial stabilizer

$$\forall x \in X, \forall g \in G, \ \sigma^g(x) = x \Rightarrow g = 1_G.$$

Fix $A = \{0, 1\}$.

A configuration $x \in \{0,1\}^G$ has the **distinct neighborhood property** if for every $h \in G \setminus \{1_G\}$, there exists a finite $T \subset G$ s.t.

$$\forall g \in G, \ x_{|ghT} \neq x_{|gT}.$$

Strong aperiodicity vs. the distinct neighborhood property

A subshift $X \subset A^G$ is **strongly aperiodic** if all its configurations have trivial stabilizer

$$\forall x \in X, \forall g \in G, \ \sigma^g(x) = x \Rightarrow g = 1_G.$$

Fix $A = \{0, 1\}$.

A configuration $x \in \{0,1\}^G$ has the **distinct neighborhood property** if for every $h \in G \setminus \{1_G\}$, there exists a finite $T \subset G$ s.t.

$$\forall g \in G, \ x_{|ghT} \neq x_{|gT}.$$

Proposition

If $x \in \{0,1\}^G$ has the distinct neighborhood property, then the subshift $\overline{Orb_{\sigma}(x)}$ is strongly aperiodic.

Proof: on the blackboard.

Distinct neighborhood property with LL

Proposition

Every infinite f.g. group G has a configuration $x \in \{0,1\}^G$ with the distinct neighborhood property.

Proof:

- ▶ Take $(s_i)_{i \in \mathbb{N}}$ an enumeration of G with $s_0 = 1_G$.
- ▶ Choose $(T_i)_{i \in \mathbb{N}}$ a sequence of finite sets of G s.t.

$$T_i \cap s_i T_i = \emptyset$$
 and $|T_i| = Ci$ for some constant C .

- $A_{n,g} = \{ x \in \{0,1\}^G \mid x_{|gT_n} = x_{|gs_nT_n} \}.$
- $x(n,g) = 2^{-\frac{Cn}{2}}.$

Distinct neighborhood property with LL

Proposition

Every infinite f.g. group G has a configuration $x \in \{0,1\}^G$ with the distinct neighborhood property.

Proof:

- ▶ Take $(s_i)_{i \in \mathbb{N}}$ an enumeration of G with $s_0 = 1_G$.
- ▶ Choose $(T_i)_{i \in \mathbb{N}}$ a sequence of finite sets of G s.t.

$$T_i \cap s_i T_i = \emptyset$$
 and $|T_i| = Ci$ for some constant C .

- $A_{n,g} = \{ x \in \{0,1\}^G \mid x_{|gT_n} = x_{|gs_nT_n} \}.$
- $x(n,g) = 2^{-\frac{Cn}{2}}.$

Theorem

Every f.g. group G has a strongly aperiodic subshift on alphabet $\{0,1\}$.

An effectively closed strongly aperiodic subshift (I)

A subshift is G-effectively closed if it can be defined by a set of forbidden patterns recognizable by a Turing machine with oracle WP(G).

An effectively closed strongly aperiodic subshift (I)

A subshift is G-effectively closed if it can be defined by a set of forbidden patterns recognizable by a Turing machine with oracle WP(G).

Theorem (Alon, Grytczuk, Haluszczak & Riordan, 2002)

Every finite graph with degree $\leq \Delta$ has a square-free coloring with $2e^{16}\Delta^2$ colors.

An effectively closed strongly aperiodic subshift (I)

A subshift is G-effectively closed if it can be defined by a set of forbidden patterns recognizable by a Turing machine with oracle WP(G).

Theorem (Alon, Grytczuk, Haluszczak & Riordan, 2002)

Every finite graph with degree $\leq \Delta$ has a square-free coloring with $2e^{16}\Delta^2$ colors.

Proposition

Let G a f.g. group and S a generating set. Then $\Gamma(G,S)$ has a square-free coloring with $2^{19}|S|^2$ colors.

An effectively closed strongly aperiodic subshift (II)

Theorem (A. Barbieri & Thomassé, 2015)

Every f.g. group G has a G-effectively closed strongly aperiodic subshift.

Sketch of the proof:

- Fix S and take $X \subset A^G$ be the subshift such that every square in $\Gamma(G,S)$ is forbidden.
- Let $g \in G$ such that $\sigma^g(x) = x$ for some $x \in X$.
- Factorize g as uwv with $u=v^{-1}$ and |w| minimal (as a word on $(S \cup S^{-1})^*$). If |w|=0, then $g=1_G$.

An effectively closed strongly aperiodic subshift (II)

Theorem (A. Barbieri & Thomassé, 2015)

Every f.g. group G has a G-effectively closed strongly aperiodic subshift.

Sketch of the proof:

- Fix S and take $X \subset A^G$ be the subshift such that every square in $\Gamma(G,S)$ is forbidden.
- Let $g \in G$ such that $\sigma^g(x) = x$ for some $x \in X$.
- Factorize g as uwv with $u=v^{-1}$ and |w| minimal (as a word on $(S \cup S^{-1})^*$). If |w|=0, then $g=1_G$.
- If not, let $w = w_1 \dots w_n$ and consider the odd length walk $\pi = v_0 v_1 \dots v_{2n-1}$ on $\Gamma(G, S)$ defined by:

$$v_{i} = \begin{cases} 1_{G} & \text{if } i = 0 \\ w_{1} \dots w_{i} & \text{if } i \in \{1, \dots, n\} \\ ww_{1} \dots w_{i-n} & \text{if } i \in \{n+1, \dots, 2n-1\} \end{cases}$$

An effectively closed strongly aperiodic subshift (II)

Theorem (A. Barbieri & Thomassé, 2015)

Every f.g. group G has a G-effectively closed strongly aperiodic subshift.

Sketch of the proof:

- Fix S and take $X \subset A^G$ be the subshift such that every square in $\Gamma(G,S)$ is forbidden.
- Let $g \in G$ such that $\sigma^g(x) = x$ for some $x \in X$.
- Factorize g as uwv with $u=v^{-1}$ and |w| minimal (as a word on $(S \cup S^{-1})^*$). If |w|=0, then $g=1_G$.
- If not, let $w = w_1 \dots w_n$ and consider the odd length walk $\pi = v_0 v_1 \dots v_{2n-1}$ on $\Gamma(G, S)$ defined by:

$$v_{i} = \begin{cases} 1_{G} & \text{if } i = 0 \\ w_{1} \dots w_{i} & \text{if } i \in \{1, \dots, n\} \\ ww_{1} \dots w_{i-n} & \text{if } i \in \{n+1, \dots, 2n-1\} \end{cases}$$

• π is a path, and $x_{v_i} = x_{v_{i+n}} \Rightarrow g = 1_G$.

Conclusion

- ► Every one-ended f.g. group with decidable **WP** has strongly aperiodic SFTs?
- ▶ Does there exist *G* with decidable **DP** and strongly aperiodic SFTs?

Conclusion

- ► Every one-ended f.g. group with decidable **WP** has strongly aperiodic SFTs?
- ▶ Does there exist *G* with decidable **DP** and strongly aperiodic SFTs?

Thank you for your attention !!