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Introduction

Mini-course divided into 4 lectures
I Lecture 1: SD on f.g. groups: a computational approach.
I Lecture 2: Domino Problem, Part I: Wang tiles.
I Lecture 3: Domino Problem, Part II: f.g. groups.
I Lecture 4: Effective subshifts.
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Lecture 1: Symbolic Dynamics on f.g. groups: a
computational approach.

1 Symbolic Dynamics on Finitely Generated Groups
Generalities
Aperiodicity
Emptyness Problem

2 Word Problem
Definition
Word Problem and the one-or-less subshift

3 Free groups and Virtually free groups
Aperiodicity
Emptyness Problem

4 Ends of a group
Definition and examples
Number of ends and soficness
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Why subshifts on groups ?

From a computer scientist point of view:
I Z2-subshifts as a computational model.
I Decidability gap between Z-subshifts and Z2-subshifts
I Understand where is the limit: study subshifts on other structures.
I Preserve the duality dynamical/combinatorial approach.
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Why finitely generated groups ?

Two restrictions: finitely generated (f.g.) and recursively presented
(r.p.) groups.

I Understand computational properties of SFTs/sofic subshifts.
I We need a finite encoding/description of the group.
I How to encode computation inside SFTs ?
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Configurations and Subshifts (I)

I Let A be a finite alphabet, G be a finitely generated group.
I Colorings x : G → A are called configurations.
I Endowed with the prodiscrete topology AG is a compact and

metrizable set.
I Cylinders form a clopen basis

[a]g =
{
x ∈ AG | xg = a

}
.

I A pattern is a finite intersection of cylinders, or equivalently a finite
configuration p : S → A

I A metric for the cylinder topology is

d(x , y) = 2− inf{|g | | g∈G : xg 6=yg},

where |g | is the length of the shortest path from 1G to g in Γ(G , S).



Symbolic Dynamics on f.g. groups Word Problem Free groups and Virtually free groups Ends of a group

Configurations and Subshifts (II)

The shift action σ : G × AG → AG is given by

(σg (x))h = xg -1h.

The dynamical system (AG , σ) is called the G -fullshift over A.

Definition

A G -subshift is a closed and σ-invariant subset X ⊂ AG .

A pattern p ∈ AS appears in a configuration x ∈ AG if (σg (x))S = p for
some g ∈ G .

Proposition

X is a G -subshift iff there exists a set F of forbidden patterns s.t.

X = XF :=
{
x ∈ AG | no pattern of F appears in x

}
.
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G -SFT, block maps and sofic G -subshifts

A block map φ : AG → BG is a continuous and σ-commuting map.

I A G -subshift X is of finite type (G -SFT) if there exists a finite set
of forbidden patterns F that defines it: X = XF .

I A G -subshift X is sofic if there exists a G -SFT Y and a block map
φ s.t. X = φ(Y ).

Proposition

If a G -subshift X is sofic, then there exists a nearest neighbor SFT Y
and a letter-to-letter block map φ s.t. X = φ(Y ).

Remark: These notions of G -SFT and sofic G -subshifts do not depend
on the presentation of the group G .
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Example 1: the one-or-less subshift

X≤1 =
{
x ∈ {0, 1}G | |{g ∈ G : xg = 1}| ≤ 1

}
Question
On which f.g. groups is the one-or-less subshift sofic ?

Sofic on multidimensional grids Zd

1

1
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Example 1: the one-or-less subshift

X≤1 =
{
x ∈ {0, 1}G | |{g ∈ G : xg = 1}| ≤ 1

}
Question

On which f.g. groups is the one-or-less subshift sofic ? Zd , Fk , BS(m,n)

Sofic on BS(m,n)
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Example 1: the one-or-less subshift

X≤1 =
{
x ∈ {0, 1}G | |{g ∈ G : xg = 1}| ≤ 1

}
Question

On which f.g. groups is the one-or-less subshift sofic ? Zd , Fk , BS(m,n)

Proposition (Dahmani & Yaman, 2002)

I If X≤1 is sofic for G1 and G2, then it is also sofic for G1 ⊗ G2.
I Let H 6G be a subgroup with [G : H] <∞, then X≤1 is sofic for G

if and only if it is sofic for H.
I If G is an hyperbolic group, then X≤1 is sofic for G .
I . . .

Question
Does there exists a f.g. group on which X≤1 is not sofic ?
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Example 2: the even shift
Xeven =

{
x ∈ {0, 1}G | finite CC of 1’s have even size

}
.

Proposition

The even shift Xeven is sofic for every f.g. group G .
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Example 2: the even shift
Xeven =

{
x ∈ {0, 1}G | finite CC of 1’s have even size

}
.

Proposition

The even shift Xeven is sofic for every f.g. group G .

Proof: Consider the G -SFT Xk , where k = |B1|, with alphabet

A3 = { , , } + rotations

A4 = { , , } + rotations

A5 = { , , , , } + rotations

A6 = { , , , , } + rotations and reflections

etc. . .
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Example 2: the even shift
Xeven =

{
x ∈ {0, 1}G | finite CC of 1’s have even size

}
.

Proposition

The even shift Xeven is sofic for every f.g. group G .

Proof: Take for instance k = 4 (for Z2 or BS(m, n))

A4 = { , , } + rotations

and chose the letter-to-letter map

φ( ) = 0 φ( ) = φ ( ) = 1
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Example 2: the even shift
Xeven =

{
x ∈ {0, 1}G | finite CC of 1’s have even size

}
.

Proposition

The even shift Xeven is sofic for every f.g. group G .

Proof: Take for instance k = 4 (for Z2 or BS(m, n))

A4 = { , , } + rotations

and chose the letter-to-letter map

φ( ) = 0 φ( ) = φ ( ) = 1

Green components have even size (handshaking lemma)⇒ φ(Xk) ⊆ Xeven

φ−→

1 1 1
1 1 1 1

1 1 1
1 1 1 1
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Example 2: the even shift
Xeven =

{
x ∈ {0, 1}G | finite CC of 1’s have even size

}
.

Proposition

The even shift Xeven is sofic for every f.g. group G .

Conversely, for some x ∈ Xeven, consider C a maximal CC of 1.

1 1 1
1 1 1 1

1 1 1
1 1 1 1



Symbolic Dynamics on f.g. groups Word Problem Free groups and Virtually free groups Ends of a group

Example 2: the even shift
Xeven =

{
x ∈ {0, 1}G | finite CC of 1’s have even size

}
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Proposition

The even shift Xeven is sofic for every f.g. group G .
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1 1 1
1 1 1 1

1 1 1
1 1 1 1

I Chose T a tree covering of C.
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Example 2: the even shift
Xeven =

{
x ∈ {0, 1}G | finite CC of 1’s have even size

}
.

Proposition

The even shift Xeven is sofic for every f.g. group G .

Conversely, for some x ∈ Xeven, consider C a maximal CC of 1.

I Chose T a tree covering of C.
I If all vertices in T have odd degree, then we are done.
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Soficness on f.g. groups

Two previous examples:
I Exhibit the SFT cover to prove soficness. . .
I . . . and actually it is almost the only technique known !
I One-or-less subshift: illustrates how information can flow inside the

group by local rules.
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Periodic configurations and aperiodic subshifts (I)

The stabilizer of a configuration x ∈ AG is the set of translations that
leave it unchanged

Stab(x) = {g ∈ G | σg (x) = x} 6 G .

I A configuration x ∈ AG is weakly periodic if its stabilizer is infinite.
A configuration x ∈ AG is strongly aperiodic if x is not weakly periodic.

I A configuration x ∈ AG is strongly periodic if its stabilizer is of
finite index in G

[G : Stab(x)] <∞.

A configuration x ∈ AG is weakly aperiodic if x is not strongly periodic.

Remark: x strongly (a)periodic ⇒ x weakly (a)periodic
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Periodic configurations and aperiodic subshifts (II)

A non-empty subshift is
I weakly aperiodic if it contains no strongly periodic configuration.
I strongly aperiodic if it contains no weakly periodic configuration.

Remark 1: X strongly aperiodic ⇒ X weakly aperiodic.
Remark 2: On Z and Z2 the notions are equivalent (see Lecture 2).

Examples:
I On Z there exists no (weakly/strongly) aperiodic SFT.
I On Z2 there exists (weakly/strongly) aperiodic SFT.
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Aperiodic SFT

Questions
I Which f.g. groups admit weakly aperiodic SFT ?
I Which f.g. groups admit weakly aperiodic SFT but no strongly

aperiodic SFT ?
I Which f.g. groups admit strongly aperiodic SFT ?

More about this on Wednesday :

Ayse Sahin (12:10) and David Cohen (14:30)
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Emptyness Problem (I)

I Let k ∈ N∗ and A a finite alphabet
A1 = { , } .

I Let F be a set of nearest neighbors rules.

F1 ={ }
I Let G be a group generated by k generators.

I Does the G -SFT XF contain a configuration ?



Symbolic Dynamics on f.g. groups Word Problem Free groups and Virtually free groups Ends of a group

Emptyness Problem (I)

I Let k ∈ N∗ and A a finite alphabet
A1 = { , } .

I Let F be a set of nearest neighbors rules.

F1 ={ }
I Let G be a group generated by k generators.

I Does the G -SFT XF contain a configuration ?



Symbolic Dynamics on f.g. groups Word Problem Free groups and Virtually free groups Ends of a group

Emptyness Problem (I)

I Let k ∈ N∗ and A a finite alphabet
A1 = { , } .

I Let F be a set of nearest neighbors rules.

F1 ={ }
I Let G be a group generated by k generators.

I Does the G -SFT XF contain a configuration ?



Symbolic Dynamics on f.g. groups Word Problem Free groups and Virtually free groups Ends of a group

Emptyness Problem (I)

I Let k ∈ N∗ and A a finite alphabet
A1 = { , } .

I Let F be a set of nearest neighbors rules.

F1 ={ }
I Let G be a group generated by k generators.

××

I Does the G -SFT XF contain a configuration ?
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Emptyness Problem (II)

Fix G a f.g. group and S a generating set for G .

Emptyness Problem for G -SFTs

Input: F a finite set of forbidden patterns on S .
Output: Yes if there exists a configuration in XF , No otherwise.

Question
Which f.g. groups have decidable Emptyness Problem ?

More about this on Tuesday (Z2) and Thursday :

Lecture 2 (11:00) and Lecture 3 (09:30)
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Lecture 1: Symbolic Dynamics on f.g. groups: a
computational approach.

1 Symbolic Dynamics on Finitely Generated Groups
Generalities
Aperiodicity
Emptyness Problem

2 Word Problem
Definition
Word Problem and the one-or-less subshift

3 Free groups and Virtually free groups
Aperiodicity
Emptyness Problem

4 Ends of a group
Definition and examples
Number of ends and soficness
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Word Problem for f.g. groups (I)

Does there exist an algorithm that decides whether two words w1 and w2
on the generators and their inverses represent the same element in G
(w1 =G w2)?

WP(G ) =
{
w ∈

(
S ∪ S−1

)∗ | w =G 1G

}
.

Definition
A f.g. group G has decidable WP if there exists an algorithm that takes
two words w1 and w2 as input and outputs Yes if w1 =G w2 and No if
w1 6=G w2.

Remark: Decidability of WP does not depend on the choice of S .
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Word Problem for f.g. groups (II)

Theorem
The word problem is decidable for the following classes

I f.g. groups defined by a single relator (Magnus, 1932)
I f.p. simple groups (Simmons, 1973)
I f.p. residually finite groups
I . . .

Proposition

The word problem for a f.g. group G is recognizable iff G is recursively
presented.

Theorem (Novikov, 1955 and Boone, 1958)

There exist f.p. groups with undecidable word problem.

Why ? ≈ Encode Turing machine inside the presentation of the group.
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Proposition

The word problem for a f.g. group G is recognizable iff G is recursively
presented.

Theorem (Novikov, 1955 and Boone, 1958)

There exist f.p. groups with undecidable word problem.

Why ? ≈ Encode Turing machine inside the presentation of the group.
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Word Problem and soficness of X≤1

Proposition

If G has undecidable Word Problem, then X≤1 cannot be sofic.

Proof: Wait for Lecture 4

Questions
I Does there exists a f.g. group with decidable WP on which X≤1 is

not sofic ?
I X≤1 is sofic on G iff G has decidable WP ?
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Lecture 1: Symbolic Dynamics on f.g. groups: a
computational approach.

1 Symbolic Dynamics on Finitely Generated Groups
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2 Word Problem
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Definition and examples
Number of ends and soficness
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Free groups and virtually free groups

Free groups FS = 〈S |∅〉
A f.g. group G is virtually free if it has a free subgroup of finite index.
Examples:

I The twisted free group 〈a, b, c |bc = ca, ac = b-1c〉.
I Every semi-direct product F o N with F free and N finite.
I F2 is virtually Fn for every n ≥ 2.
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Weak periodicity
Consider the free group F2 = 〈a, b|∅〉.

Theorem (Piantadossi, 2006)

Every non empty F2-SFT X contains a weakly periodic configuration.

Proof: Take a configuration x ∈ X .

Consider the Z-subshift π〈a〉(X ): it is a non-empty Z-SFT, so it contains
a periodic configuration y with period p ∈ N∗.
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Weak aperiodicity
Consider the free group F2 = 〈a, b|∅〉.

Theorem (Piantadossi, 2006)

There exists weakly aperiodic F2-SFTs.

Proof: Consider the following F2-SFT X .

a

a

a

b

b

b

b

There can be a period p for x ∈ X only if p = a3n or p = b2m (but not
both !).
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Emptyness Problem on F2

Theorem
The Emptyness Problem is decidable on F2.

Proof: Take a n.n. SFT X on F2 with alphabet A.
Erase from A all symbols that cannot be extend to a locally
admissible pattern of size 1.
Iterate until you cannot erase symbol.
Then A 6= ∅ iff X 6= ∅.
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Definition

The number of ends of a f.g. group G is the limit

lim
n→∞

|CC (ΓG \ Bn) |

Remark: The number of ends does not depend on the choice of ΓG .

Proposition

A f.g. group has 0,1,2 or infinitely many ends.
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Number of ends

Stallings theorem and consequences

Let G be a f.g. group. Then
I e(G ) = 0 iff G is finite,
I if G is virtually free then e(G ) ≥ 2,
I e(G ) = 2 iff G is virtually cyclic,
I if e(G ) =∞ then G contains a non-abelian free subgroup.
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Number of ends and soficness

Groups with more than two ends can be disconnected by a finite set.

I In sofic subshifts, only a finite amount of information can go
through this disconnecting set.
⇒ use Communication Complexity to formalize this notion ? (see
Emmanuel Jeandel’s talk)

I Can be used to prove some subshifts with highly non-local
conditions are not sofic on groups G with e(G ) ≥ 2. (see
Sebastián Barbieri’s poster)
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Conclusion

I Sofic subshifts: information flow through the group.
I Computational restriction: groups with decidable Word Problem.
I Free groups: easy case.

Tomorrow: more about Domino Problem on Z2.



Symbolic Dynamics on f.g. groups Word Problem Free groups and Virtually free groups Ends of a group

Thank you for your attention !!
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