| Symbolic Dynamics on f.g. groups | Word Problem | Free groups and Virtually free groups | Ends of a group |
|----------------------------------|--------------|---------------------------------------|-----------------|
| 00000000000                      | 000          | 000                                   | 00000           |
|                                  |              |                                       |                 |

## **Sofic (and Effective) Subshifts on f.g. Groups** Lecture 1: Symbolic Dynamics on f.g. groups: a computational approach.

Nathalie Aubrun

LIP, ENS de Lyon, CNRS

December 15, 2014

ション ふゆ く 山 マ チャット しょうくしゃ

| Symbolic Dynamics on f.g. groups | Word Problem | Free groups and Virtually free groups | Ends of a group |
|----------------------------------|--------------|---------------------------------------|-----------------|
| Introduction                     |              |                                       |                 |

Mini-course divided into 4 lectures

▶ Lecture 1: SD on f.g. groups: a computational approach.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- ▶ Lecture 2: Domino Problem, Part I: Wang tiles.
- ▶ Lecture 3: Domino Problem, Part II: f.g. groups.
- Lecture 4: Effective subshifts.

| Symbolic Dynamics on f.g. groups | Word Problem | Free groups and Virtually free groups | Ends of a group |
|----------------------------------|--------------|---------------------------------------|-----------------|
| Introduction                     |              |                                       |                 |

Mini-course divided into 4 lectures

▶ Lecture 1: SD on f.g. groups: a computational approach.

- ▶ Lecture 2: Domino Problem, Part I: Wang tiles.
- ▶ Lecture 3: Domino Problem, Part II: f.g. groups.
- Lecture 4: Effective subshifts.

Symbolic Dynamics on f.g. groups

Word Problem

Free groups and Virtually free groups

Ends of a group

# Lecture 1: Symbolic Dynamics on f.g. groups: a computational approach.

### Symbolic Dynamics on Finitely Generated Groups

- Generalities
- Aperiodicity
- Emptyness Problem

### 2 Word Problem

- Definition
- Word Problem and the one-or-less subshift

### Free groups and Virtually free groups

- Aperiodicity
- Emptyness Problem

### 4 Ends of a group

- Definition and examples
- Number of ends and soficness

| Symbolic Dynamics on f.g. groups | Word Problem | Free groups and Virtually free groups | Ends of a group |
|----------------------------------|--------------|---------------------------------------|-----------------|
| 000000000000                     | 000          | 000                                   | 00000           |
| Why subshifts on g               | roups ?      |                                       |                 |

From a computer scientist point of view:

- $\triangleright$   $\mathbb{Z}^2$ -subshifts as a computational model.
- $\blacktriangleright$  Decidability gap between  $\mathbb Z\text{-subshifts}$  and  $\mathbb Z^2\text{-subshifts}$
- ▶ Understand where is the limit: study subshifts on other structures.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

▶ Preserve the duality dynamical/combinatorial approach.

| Symbolic Dynamics on f.g. groups | Word Problem | Free groups and Virtually free groups | Ends of a group |
|----------------------------------|--------------|---------------------------------------|-----------------|
| 00000000000                      | 000          | 000                                   | 00000           |
| Why finitely genera              | ted groups   | ?                                     |                 |

Two restrictions: finitely generated (f.g.) and recursively presented (r.p.) groups.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

- ▶ Understand computational properties of SFTs/sofic subshifts.
- ▶ We need a finite encoding/description of the group.
- How to encode computation inside SFTs ?

- Let A be a finite alphabet, G be a finitely generated group.
- Colorings  $x : G \to A$  are called **configurations**.
- Endowed with the prodiscrete topology A<sup>G</sup> is a compact and metrizable set.
- Cylinders form a clopen basis

$$[a]_g = \left\{ x \in A^G \mid x_g = a \right\}.$$

- A pattern is a finite intersection of cylinders, or equivalently a finite configuration p : S → A
- A metric for the cylinder topology is

$$d(x,y) = 2^{-\inf\{|g| \mid g \in G: x_g \neq y_g\}},$$

where |g| is the length of the shortest path from  $1_G$  to g in  $\Gamma(G, S)$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Symbolic Dynamics on f.g. groups Word Problem Free groups and Virtually free groups Ends of a group 000 Configurations and Subshifts (II)

The **shift** action  $\sigma: G \times A^G \to A^G$  is given by

 $(\sigma_g(x))_h = x_{g^{-1}h}.$ 

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The dynamical system  $(A^G, \sigma)$  is called the *G*-fullshift over *A*.

Definition

A *G*-subshift is a closed and  $\sigma$ -invariant subset  $X \subset A^G$ .

 Symbolic Dynamics on f.g. groups
 Word Problem
 Free groups and Virtually free groups
 Ends of a group

 000
 000
 000
 000
 0000

 Configurations and Subshifts (II)
 000
 0000

The **shift** action  $\sigma: G \times A^G \to A^G$  is given by

 $(\sigma_g(x))_h = x_{g^{-1}h}.$ 

The dynamical system  $(A^{\mathcal{G}}, \sigma)$  is called the *G*-fullshift over *A*.

Definition

A *G*-subshift is a closed and  $\sigma$ -invariant subset  $X \subset A^G$ .

A pattern  $p \in A^S$  appears in a configuration  $x \in A^G$  if  $(\sigma_g(x))_S = p$  for some  $g \in G$ .

#### Proposition

X is a G-subshift iff there exists a set  $\mathcal{F}$  of forbidden patterns s.t.

$$X = X_{\mathcal{F}} := \left\{ x \in A^{\mathcal{G}} \mid \text{ no pattern of } \mathcal{F} \text{ appears in } x 
ight\}.$$

Symbolic Dynamics on f.g. groupsWord Problem<br/> $\infty = 0$ Free groups and Virtually free groupsEnds of a group<br/> $\infty = 0$ G-SFT, block maps and sofic G-subshifts

A block map  $\phi: A^{\mathcal{G}} \to B^{\mathcal{G}}$  is a continuous and  $\sigma$ -commuting map.

- ► A G-subshift X is of finite type (G-SFT) if there exists a finite set of forbidden patterns F that defines it: X = X<sub>F</sub>.
- A *G*-subshift X is **sofic** if there exists a *G*-SFT Y and a block map  $\phi$  s.t.  $X = \phi(Y)$ .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Symbolic Dynamics on f.g. groupsWord Problem<br/> $\infty \rightarrow \infty$ Free groups and Virtually free groupsEnds of a group<br/> $\infty \rightarrow \infty \rightarrow \infty$ G-SFT, block maps and sofic G-subshifts

A **block map**  $\phi: A^{\mathcal{G}} \to B^{\mathcal{G}}$  is a continuous and  $\sigma$ -commuting map.

► A G-subshift X is of finite type (G-SFT) if there exists a finite set of forbidden patterns F that defines it: X = X<sub>F</sub>.

A *G*-subshift X is **sofic** if there exists a *G*-SFT Y and a block map  $\phi$  s.t.  $X = \phi(Y)$ .

#### Proposition

If a *G*-subshift *X* is sofic, then there exists a nearest neighbor SFT *Y* and a letter-to-letter block map  $\phi$  s.t.  $X = \phi(Y)$ .

**Remark:** These notions of G-SFT and sofic G-subshifts do not depend on the presentation of the group G.

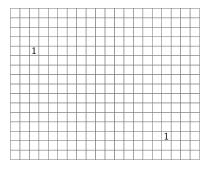
### Example 1: the one-or-less subshift

$$X_{\leq 1} = \left\{ x \in \{0,1\}^{\mathcal{G}} \mid |\{g \in \mathcal{G} : x_g = 1\}| \leq 1 \right\}$$

### Question

On which f.g. groups is the one-or-less subshift sofic ?

Sofic on multidimensional grids  $\mathbb{Z}^d$ 



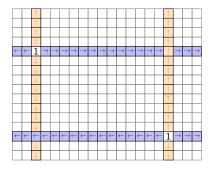
### Example 1: the one-or-less subshift

$$X_{\leq 1} = \left\{ x \in \{0,1\}^{\mathcal{G}} \mid |\{g \in \mathcal{G} : x_g = 1\}| \leq 1 \right\}$$

### Question

On which f.g. groups is the one-or-less subshift sofic ?

Sofic on multidimensional grids  $\mathbb{Z}^d$ 



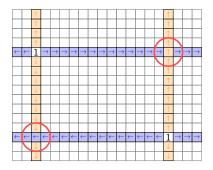
### Example 1: the one-or-less subshift

$$X_{\leq 1} = \left\{ x \in \{0,1\}^{\mathcal{G}} \mid |\{g \in \mathcal{G} : x_g = 1\}| \leq 1 \right\}$$

### Question

On which f.g. groups is the one-or-less subshift sofic ?  $\mathbb{Z}^d$ 

Sofic on multidimensional grids  $\mathbb{Z}^d$ 



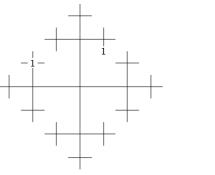
### Example 1: the one-or-less subshift

$$X_{\leq 1} = \left\{ x \in \{0,1\}^{\mathcal{G}} \mid |\{g \in \mathcal{G} : x_g = 1\}| \leq 1 \right\}$$

#### Question

On which f.g. groups is the one-or-less subshift sofic ?  $\mathbb{Z}^d$ 

Sofic on free groups  $\mathbb{F}_k$ 



◆□▶ ◆圖▶ ◆厘▶ ◆厘▶

ж

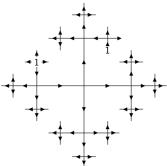
### Example 1: the one-or-less subshift

$$X_{\leq 1} = \left\{ x \in \{0,1\}^{\mathcal{G}} \mid |\{g \in \mathcal{G} : x_g = 1\}| \leq 1 \right\}$$

### Question

On which f.g. groups is the one-or-less subshift sofic ?  $\mathbb{Z}^d$ 

Sofic on free groups  $\mathbb{F}_k$ 



| Symbolic Dynamics on f.g. groups | Word Problem | Free groups and Virtually free groups | Ends of a group |  |
|----------------------------------|--------------|---------------------------------------|-----------------|--|
| 00000000000                      | 000          | 000                                   | 00000           |  |
|                                  |              |                                       |                 |  |

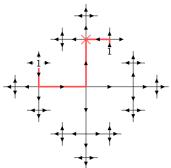
### Example 1: the one-or-less subshift

$$X_{\leq 1} = \left\{ x \in \{0,1\}^{\mathcal{G}} \mid |\{g \in \mathcal{G} : x_g = 1\}| \leq 1 \right\}$$

### Question

On which f.g. groups is the one-or-less subshift sofic ?  $\mathbb{Z}^d$ ,  $\mathbb{F}_k$ 

Sofic on free groups  $\mathbb{F}_k$ 



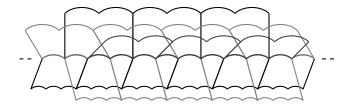
### Example 1: the one-or-less subshift

$$X_{\leq 1} = \left\{ x \in \{0,1\}^{\mathcal{G}} \mid |\{g \in \mathcal{G} : x_g = 1\}| \leq 1 \right\}$$

#### Question

On which f.g. groups is the one-or-less subshift sofic ?  $\mathbb{Z}^d$ ,  $\mathbb{F}_k$ , BS(m,n)

Sofic on BS(m,n)



### Example 1: the one-or-less subshift

$$X_{\leq 1} = \left\{ x \in \{0,1\}^{G} \mid |\{g \in G : x_g = 1\}| \leq 1 \right\}$$

#### Question

On which f.g. groups is the one-or-less subshift sofic ?  $\mathbb{Z}^d$ ,  $\mathbb{F}_k$ , BS(m,n)

#### Proposition (Dahmani & Yaman, 2002)

- If  $X_{\leq 1}$  is sofic for  $G_1$  and  $G_2$ , then it is also sofic for  $G_1 \otimes G_2$ .
- Let H ≤G be a subgroup with [G : H] < ∞, then X<sub>≤1</sub> is sofic for G if and only if it is sofic for H.
- ▶ If G is an hyperbolic group, then  $X_{\leq 1}$  is sofic for G.

#### • • • •

### Question

Does there exists a f.g. group on which  $X_{<1}$  is not sofic ?

Symbolic Dynamics on f.g. groups

Word Problem

Free groups and Virtually free groups

Ends of a group

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへぐ

### Example 2: the even shift

$$X_{\text{even}} = \{x \in \{0,1\}^G | \text{ finite CC of 1's have even size } \}.$$

#### Proposition

The even shift  $X_{\text{even}}$  is sofic for every f.g. group G.

Symbolic Dynamics on f.g. groups

Word Problem

Free groups and Virtually free groups

Ends of a group

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

### Example 2: the even shift

 $\sim$ 

$$X_{ ext{even}} = \left\{ x \in \{0,1\}^{\mathsf{G}} | ext{ finite CC of 1's have even size } 
ight\}.$$

#### Proposition

The even shift  $X_{\text{even}}$  is sofic for every f.g. group G.

**Proof:** Consider the *G*-SFT 
$$X_k$$
, where  $k = |B_1|$ , with alphabet  $A_3 = \{ \bigtriangleup, \bigstar, \checkmark, \checkmark \} + \text{rotations} \}$ 

$$A_4 = \left\{ \left[ \right], \left[ \bullet \right], \left[ \bullet \right] \right\} + \text{rotations}$$

 $\sim$ 

$$A_{5} = \left\{ \left( \begin{array}{c} \\ \\ \end{array} \right), \left( \begin{array}{c} \\ \end{array} \right), \left( \begin{array}{c} \\ \\ \end{array} \right), \left( \begin{array}{c} \end{array} \right), \left( \begin{array}{c} \\ \end{array}), \left( \begin{array}{c} \end{array} \right), \left( \begin{array}{c} \end{array} \right), \left( \end{array}), \left( \begin{array}{c} \end{array} \right), \left( \end{array}), \left($$

 $\sim$ 

 $\sim$ 

etc. . .

Free groups and Virtually free groups

Ends of a group

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

### Example 2: the even shift

$$X_{\text{even}} = \{x \in \{0,1\}^{G} | \text{ finite CC of 1's have even size } \}.$$

#### Proposition

The even shift  $X_{\text{even}}$  is sofic for every f.g. group G.

**Proof:** Take for instance 
$$k = 4$$
 (for  $\mathbb{Z}^2$  or  $BS(m, n)$ )  
 $A_4 = \left\{ \boxed{1}, \boxed{\bullet}, \boxed{\bullet} \right\} + \text{rotations}$ 

and chose the letter-to-letter map

$$\phi\left(\begin{array}{c} \end{array}\right) = 0 \quad \phi\left(\begin{array}{c} \bullet \end{array}\right) = \phi\left(\begin{array}{c} \bullet \bullet \end{array}\right) = 1$$

Ends of a group

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

### Example 2: the even shift

$$X_{ ext{even}} = \left\{ x \in \{0,1\}^{\mathsf{G}} | ext{ finite CC of 1's have even size } 
ight\}.$$

#### Proposition

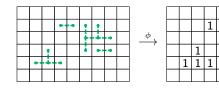
The even shift  $X_{even}$  is sofic for every f.g. group G.

**Proof:** Take for instance 
$$k = 4$$
 (for  $\mathbb{Z}^2$  or  $BS(m, n)$ )  
$$A_4 = \left\{ \boxed{1}, \boxed{\bullet}, \boxed{\bullet} \right\} + \text{rotations}$$

and chose the letter-to-letter map

$$\phi\left(\begin{array}{c} \end{array}\right) = 0 \quad \phi\left(\begin{array}{c} \bullet \end{array}\right) = \phi\left(\begin{array}{c} \bullet \bullet \end{array}\right) = 1$$

Green components have even size (handshaking lemma)  $\Rightarrow \phi(X_k) \subseteq X_{even}$ 



Symbolic Dynamics on f.g. groups

Word Problem

Free groups and Virtually free groups

Ends of a group

### Example 2: the even shift

$$X_{ ext{even}} = \left\{ x \in \{0,1\}^{\mathcal{G}} | ext{ finite CC of 1's have even size } 
ight\}.$$

#### Proposition

The even shift  $X_{\text{even}}$  is sofic for every f.g. group G.

Conversely, for some  $x \in X_{even}$ , consider C a maximal CC of 1.

|   |   | 1 | 1 | 1 | 1 |   |  |
|---|---|---|---|---|---|---|--|
|   |   |   |   | 1 | 1 | 1 |  |
|   | 1 |   |   | 1 | 1 | 1 |  |
| 1 | 1 | 1 |   |   |   |   |  |
|   |   |   |   |   |   |   |  |

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ - 厘 - 釣�?

Word Problem

Free groups and Virtually free groups

Ends of a group

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

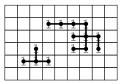
### Example 2: the even shift

$$X_{\texttt{even}} = \{x \in \{0,1\}^{\mathsf{G}} | \text{ finite CC of 1's have even size } \}.$$

#### Proposition

The even shift  $X_{even}$  is sofic for every f.g. group G.

Conversely, for some  $x \in X_{even}$ , consider C a maximal CC of 1.



• Chose  $\mathcal{T}$  a tree covering of  $\mathcal{C}$ .

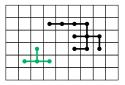
### Example 2: the even shift

$$X_{ ext{even}} = \left\{ x \in \{0,1\}^G | ext{ finite CC of 1's have even size } 
ight\}.$$

#### Proposition

The even shift  $X_{\text{even}}$  is sofic for every f.g. group G.

Conversely, for some  $x \in X_{\texttt{even}}$ , consider  $\mathcal C$  a maximal CC of 1.



- Chose  $\mathcal{T}$  a tree covering of  $\mathcal{C}$ .
- $\blacktriangleright$  If all vertices in  ${\cal T}$  have odd degree, then we are done.

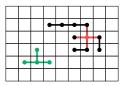
### Example 2: the even shift

$$X_{ ext{even}} = \left\{ x \in \{0,1\}^G | ext{ finite CC of 1's have even size } 
ight\}.$$

#### Proposition

The even shift  $X_{\text{even}}$  is sofic for every f.g. group G.

Conversely, for some  $x \in X_{\texttt{even}}$ , consider  $\mathcal C$  a maximal CC of 1.



- Chose  $\mathcal{T}$  a tree covering of  $\mathcal{C}$ .
- $\blacktriangleright$  If all vertices in  ${\cal T}$  have odd degree, then we are done.
- ▶ Otherwise, delete a vertex v with even degree  $\Rightarrow$  forest of CC of 1.

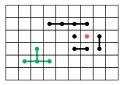
### Example 2: the even shift

$$X_{\text{even}} = \{x \in \{0,1\}^{G} | \text{ finite CC of 1's have even size } \}.$$

#### Proposition

The even shift  $X_{\text{even}}$  is sofic for every f.g. group G.

Conversely, for some  $x \in X_{\texttt{even}}$ , consider  $\mathcal C$  a maximal CC of 1.



- Chose  $\mathcal{T}$  a tree covering of  $\mathcal{C}$ .
- $\blacktriangleright$  If all vertices in  ${\cal T}$  have odd degree, then we are done.
- Otherwise, delete a vertex v with even degree  $\Rightarrow$  forest of CC of 1.

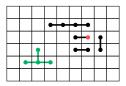
### Example 2: the even shift

$$X_{\text{even}} = \{x \in \{0,1\}^{G} | \text{ finite CC of 1's have even size } \}.$$

#### Proposition

The even shift  $X_{\text{even}}$  is sofic for every f.g. group G.

Conversely, for some  $x \in X_{\texttt{even}}$ , consider C a maximal CC of 1.



- Chose  $\mathcal{T}$  a tree covering of  $\mathcal{C}$ .
- $\blacktriangleright$  If all vertices in  ${\cal T}$  have odd degree, then we are done.
- Otherwise, delete a vertex v with even degree  $\Rightarrow$  forest of CC of 1.

▶ In  $\mathcal{T} \setminus \{v\}$ , odd number of trees with odd cardinality: connect v to them.

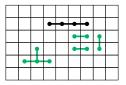
### Example 2: the even shift

$$X_{ ext{even}} = \left\{ x \in \{0,1\}^G | ext{ finite CC of 1's have even size } 
ight\}.$$

#### Proposition

The even shift  $X_{\text{even}}$  is sofic for every f.g. group G.

Conversely, for some  $x \in X_{\texttt{even}}$ , consider  $\mathcal C$  a maximal CC of 1.



- Chose  $\mathcal{T}$  a tree covering of  $\mathcal{C}$ .
- $\blacktriangleright$  If all vertices in  ${\cal T}$  have odd degree, then we are done.
- ▶ Otherwise, delete a vertex v with even degree  $\Rightarrow$  forest of CC of 1.

▶ In  $\mathcal{T} \setminus \{v\}$ , odd number of trees with odd cardinality: connect v to them.

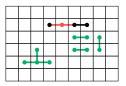
### Example 2: the even shift

$$X_{ ext{even}} = \left\{ x \in \{0,1\}^G | ext{ finite CC of 1's have even size } 
ight\}.$$

#### Proposition

The even shift  $X_{\text{even}}$  is sofic for every f.g. group G.

Conversely, for some  $x \in X_{\texttt{even}}$ , consider  $\mathcal C$  a maximal CC of 1.



- Chose  $\mathcal{T}$  a tree covering of  $\mathcal{C}$ .
- $\blacktriangleright$  If all vertices in  ${\cal T}$  have odd degree, then we are done.
- ▶ Otherwise, delete a vertex v with even degree  $\Rightarrow$  forest of CC of 1.

▶ In  $\mathcal{T} \setminus \{v\}$ , odd number of trees with odd cardinality: connect v to them.

Ends of a group

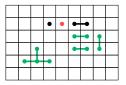
### Example 2: the even shift

$$X_{ ext{even}} = \left\{ x \in \{0,1\}^G | ext{ finite CC of 1's have even size } 
ight\}.$$

#### Proposition

The even shift  $X_{\text{even}}$  is sofic for every f.g. group G.

Conversely, for some  $x \in X_{even}$ , consider C a maximal CC of 1.



- Chose  $\mathcal{T}$  a tree covering of  $\mathcal{C}$ .
- $\blacktriangleright$  If all vertices in  ${\cal T}$  have odd degree, then we are done.
- ▶ Otherwise, delete a vertex v with even degree  $\Rightarrow$  forest of CC of 1.

▶ In  $\mathcal{T} \setminus \{v\}$ , odd number of trees with odd cardinality: connect v to them.

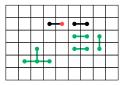
### Example 2: the even shift

$$X_{ ext{even}} = \left\{ x \in \{0,1\}^{\mathcal{G}} | ext{ finite CC of 1's have even size } 
ight\}.$$

#### Proposition

The even shift  $X_{even}$  is sofic for every f.g. group G.

Conversely, for some  $x \in X_{even}$ , consider C a maximal CC of 1.



- Chose  $\mathcal{T}$  a tree covering of  $\mathcal{C}$ .
- $\blacktriangleright$  If all vertices in  ${\cal T}$  have odd degree, then we are done.
- ▶ Otherwise, delete a vertex v with even degree  $\Rightarrow$  forest of CC of 1.

▶ In  $\mathcal{T} \setminus \{v\}$ , odd number of trees with odd cardinality: connect v to them.

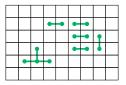
### Example 2: the even shift

$$X_{ ext{even}} = \left\{ x \in \{0,1\}^G | ext{ finite CC of 1's have even size } 
ight\}.$$

#### Proposition

The even shift  $X_{\text{even}}$  is sofic for every f.g. group G.

Conversely, for some  $x \in X_{\texttt{even}}$ , consider  $\mathcal C$  a maximal CC of 1.



- Chose  $\mathcal{T}$  a tree covering of  $\mathcal{C}$ .
- $\blacktriangleright$  If all vertices in  ${\cal T}$  have odd degree, then we are done.
- ▶ Otherwise, delete a vertex v with even degree  $\Rightarrow$  forest of CC of 1.

▶ In  $\mathcal{T} \setminus \{v\}$ , odd number of trees with odd cardinality: connect v to them.

| Symbolic Dynamics on f.g. groups | Word Problem | Free groups and Virtually free groups | Ends of a group |
|----------------------------------|--------------|---------------------------------------|-----------------|
| Soficness on f.g. g              | roups        |                                       |                 |

Two previous examples:

- ▶ Exhibit the SFT cover to prove soficness...
- ...and actually it is almost the only technique known !
- One-or-less subshift: illustrates how information can flow inside the group by local rules.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 Symbolic Dynamics on f.g. groups
 Word Problem
 Free groups and Virtually free groups
 Ends of a group

 OOO
 OOO
 OOO
 OOO
 OOO
 OOO

 Periodic configurations and aperiodic subshifts (I)

The **stabilizer** of a configuration  $x \in A^G$  is the set of translations that leave it unchanged

$$\operatorname{Stab}(x) = \{g \in G \mid \sigma_g(x) = x\} \leqslant G.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 Symbolic Dynamics on f.g. groups
 Word Problem
 Free groups and Virtually free groups
 Ends of a group

 OOO
 OOO
 OOO
 OOO
 OOO
 OOO

 Periodic configurations and aperiodic subshifts (I)

The **stabilizer** of a configuration  $x \in A^G$  is the set of translations that leave it unchanged

$$\operatorname{Stab}(x) = \{g \in G \mid \sigma_g(x) = x\} \leqslant G.$$

- ► A configuration x ∈ A<sup>G</sup> is weakly periodic if its stabilizer is infinite. A configuration x ∈ A<sup>G</sup> is strongly aperiodic if x is not weakly periodic.
- ► A configuration x ∈ A<sup>G</sup> is strongly periodic if its stabilizer is of finite index in G

$$[G:\mathsf{Stab}(x)]<\infty.$$

ション ふゆ く 山 マ チャット しょうくしゃ

A configuration  $x \in A^{\mathbf{G}}$  is weakly aperiodic if x is not strongly periodic.

**Remark:** x strongly (a)periodic  $\Rightarrow$  x weakly (a)periodic

 Symbolic Dynamics on f.g. groups
 Word Problem
 Free groups and Virtually free groups
 Ends of a group

 OOO
 OOO
 OOO
 OOO
 OOO
 OOO

 Periodic configurations and aperiodic subshifts (II)

A non-empty subshift is

- **weakly aperiodic** if it contains no strongly periodic configuration.
- **strongly aperiodic** if it contains no weakly periodic configuration.

**Remark 1:** X strongly aperiodic  $\Rightarrow$  X weakly aperiodic. **Remark 2:** On  $\mathbb{Z}$  and  $\mathbb{Z}^2$  the notions are equivalent (see Lecture 2).

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

## Examples:

- On  $\mathbb{Z}$  there exists no (weakly/strongly) aperiodic SFT.
- On  $\mathbb{Z}^2$  there exists (weakly/strongly) aperiodic SFT.

| Symbolic Dynamics on f.g. groups        | Word Problem | Free groups and Virtually free groups | Ends of a group |
|-----------------------------------------|--------------|---------------------------------------|-----------------|
| 000000000000000000000000000000000000000 | 000          | 000                                   | 00000           |
| Aperiodic SFT                           |              |                                       |                 |

### Questions

- ▶ Which f.g. groups admit weakly aperiodic SFT ?
- Which f.g. groups admit weakly aperiodic SFT but no strongly aperiodic SFT ?
- ▶ Which f.g. groups admit strongly aperiodic SFT ?

More about this on *Wednesday*:

Ayse Sahin (12:10) and David Cohen (14:30)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

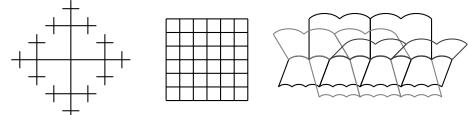
| Symbolic Dynamics on f.g. groups        | Word Problem | Free groups and Virtually free groups | Ends of a group |
|-----------------------------------------|--------------|---------------------------------------|-----------------|
| 000000000000000000000000000000000000000 | 000          | 000                                   | 00000           |
| Emptyness Problem                       | ı (I)        |                                       |                 |



 $\blacktriangleright$  Let  ${\mathcal F}$  be a set of nearest neighbors rules.

$$\overline{\mathcal{F}_1} = \left\{ \blacksquare \blacksquare \blacksquare \blacksquare \right\}$$

• Let G be a group generated by k generators.



ション ふゆ アメリア メリア しょうくの

▶ Does the *G*-SFT  $X_{\mathcal{F}}$  contain a configuration ?

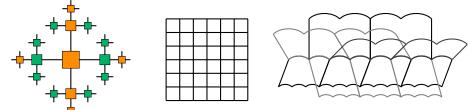
| Symbolic Dynamics on f.g. groups | Word Problem | Free groups and Virtually free groups | Ends of a group |
|----------------------------------|--------------|---------------------------------------|-----------------|
| Emptyness Problem                | (I)          |                                       |                 |



 $\blacktriangleright$  Let  ${\mathcal F}$  be a set of nearest neighbors rules.

$$\overline{\mathcal{F}_1} = \left\{ \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \right\}$$

• Let G be a group generated by k generators.



ション ふゆ アメリア メリア しょうくの

▶ Does the *G*-SFT  $X_F$  contain a configuration ?

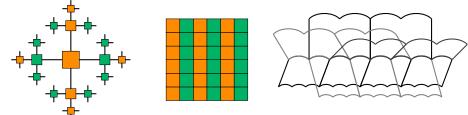
| Symbolic Dynamics on f.g. groups | Word Problem | Free groups and Virtually free groups | Ends of a group |
|----------------------------------|--------------|---------------------------------------|-----------------|
| Emptyness Problem                | (1)          |                                       |                 |



 $\blacktriangleright$  Let  ${\mathcal F}$  be a set of nearest neighbors rules.

$$\overline{\mathcal{F}_1} = \left\{ \blacksquare \blacksquare \blacksquare \blacksquare \right\}$$

• Let G be a group generated by k generators.



ション ふゆ アメリア メリア しょうくの

▶ Does the *G*-SFT  $X_{\mathcal{F}}$  contain a configuration ?

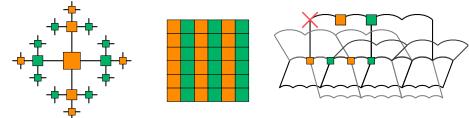
| Symbolic Dynamics on f.g. groups | Word Problem | Free groups and Virtually free groups | Ends of a group |
|----------------------------------|--------------|---------------------------------------|-----------------|
| Emptyness Problem                | (I)          |                                       |                 |



 $\blacktriangleright$  Let  ${\mathcal F}$  be a set of nearest neighbors rules.

$$\overline{\mathcal{F}_1} = \left\{ \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \right\}$$

• Let G be a group generated by k generators.



ション ふゆ アメリア メリア しょうくの

▶ Does the *G*-SFT  $X_{\mathcal{F}}$  contain a configuration ?

| Symbolic Dynamics on f.g. groups | Word Problem | Free groups and Virtually free groups | Ends of a group |
|----------------------------------|--------------|---------------------------------------|-----------------|
| 00000000000                      | 000          | 000                                   | 00000           |
| Emptyness Problem                | (11)         |                                       |                 |

Fix G a f.g. group and S a generating set for G.

### Emptyness Problem for G-SFTs

**Input:** *F* a finite set of forbidden patterns on *S*. **Output:** Yes if there exists a configuration in  $X_F$ , No otherwise.

ヘロト 人間 とうほどう ほどう

3

| Symbolic Dynamics on f.g. groups | Word Problem | Free groups and Virtually free groups | Ends of a group |
|----------------------------------|--------------|---------------------------------------|-----------------|
| 00000000000                      | 000          | 000                                   | 00000           |
| Emptyness Problem                | (11)         |                                       |                 |

Fix G a f.g. group and S a generating set for G.

# Emptyness Problem for *G*-SFTs **Input:** F a finite set of forbidden patterns on S. **Output:** Yes if there exists a configuration in $X_F$ , No otherwise.

## Question

Which f.g. groups have decidable Emptyness Problem ?

More about this on **Tuesday**  $(\mathbb{Z}^2)$  and **Thursday**:

Lecture 2 (11:00) and Lecture 3 (09:30)

ション ふゆ く 山 マ チャット しょうくしゃ

Symbolic Dynamics on f.g. groups

Word Problem

Free groups and Virtually free groups

Ends of a group

# Lecture 1: Symbolic Dynamics on f.g. groups: a computational approach.

# Symbolic Dynamics on Finitely Generated Groups

- Generalities
- Aperiodicity
- Emptyness Problem

# 2 Word Problem

- Definition
- Word Problem and the one-or-less subshift
- Free groups and Virtually free groups
  - Aperiodicity
  - Emptyness Problem

# 4 Ends of a group

- Definition and examples
- Number of ends and soficness



Does there exist an algorithm that decides whether two words  $w_1$  and  $w_2$  on the generators and their inverses represent the same element in G  $(w_1 =_G w_2)$ ?

$$WP(G) = \left\{ w \in \left( S \cup S^{-1} \right)^* \mid w =_G \mathbb{1}_G \right\}.$$

### Definition

A f.g. group *G* has **decidable WP** if there exists an algorithm that takes two words  $w_1$  and  $w_2$  as input and outputs **Yes** if  $w_1 =_G w_2$  and **No** if  $w_1 \neq_G w_2$ .

ション ふゆ アメリア メリア しょうくの

**Remark:** Decidability of WP does not depend on the choice of *S*.

 Symbolic Dynamics on f.g. groups
 Word Problem
 Free groups and Virtually free groups
 Ends of a group

 Word Problem for f.g. groups (II)
 000
 0000
 0000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

#### Theorem

...

The word problem is decidable for the following classes

- ▶ f.g. groups defined by a single relator (Magnus, 1932)
- ▶ f.p. simple groups (Simmons, 1973)
- f.p. residually finite groups

 Symbolic Dynamics on f.g. groups
 Word Problem
 Free groups and Virtually free groups
 Ends of a group

 Word Problem for f.g. groups (II)
 000
 0000
 0000

#### Theorem

The word problem is decidable for the following classes

- ▶ f.g. groups defined by a single relator (Magnus, 1932)
- f.p. simple groups (Simmons, 1973)
- f.p. residually finite groups

### Proposition

. . .

The word problem for a f.g. group G is **recognizable** iff G is recursively presented.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

 Symbolic Dynamics on f.g. groups
 Word Problem
 Free groups and Virtually free groups
 Ends of a group

 Word Problem for f.g. groups (II)
 000
 0000
 0000

#### Theorem

The word problem is decidable for the following classes

- ▶ f.g. groups defined by a single relator (Magnus, 1932)
- f.p. simple groups (Simmons, 1973)
- f.p. residually finite groups

# Proposition

**>** . . .

The word problem for a f.g. group G is **recognizable** iff G is recursively presented.

### Theorem (Novikov, 1955 and Boone, 1958)

There exist f.p. groups with undecidable word problem.

Why ?  $\approx$  Encode Turing machine inside the presentation of the group.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

 $\begin{array}{c|c} \mbox{Symbolic Dynamics on f.g. groups} & \mbox{Word Problem} & \mbox{Free groups and Virtually free groups} & \mbox{Ends of a group} & \mbox{occ} & \mb$ 

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

## Proposition

If G has undecidable Word Problem, then  $X_{<1}$  cannot be sofic.

Proof: Wait for Lecture 4



### Proposition

If G has undecidable Word Problem, then  $X_{<1}$  cannot be sofic.

### Proof: Wait for Lecture 4

### Questions

▶ Does there exists a f.g. group with decidable WP on which X<sub>≤1</sub> is not sofic ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

•  $X_{\leq 1}$  is sofic on G iff G has decidable WP ?

Symbolic Dynamics on f.g. groups

Word Problem

Free groups and Virtually free groups

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Ends of a group

# Lecture 1: Symbolic Dynamics on f.g. groups: a computational approach.

# Symbolic Dynamics on Finitely Generated Groups

- Generalities
- Aperiodicity
- Emptyness Problem

# 2 Word Problem

- Definition
- Word Problem and the one-or-less subshift

# 3 Free groups and Virtually free groups

- Aperiodicity
- Emptyness Problem

# 4 Ends of a group

- Definition and examples
- Number of ends and soficness

 Symbolic Dynamics on f.g. groups
 Word Problem
 Free groups and Virtually free groups

 0000000000000
 000
 000

Ends of a group

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

# Free groups and virtually free groups

Free groups  $F_S = \langle S | \emptyset \rangle$ A f.g. group *G* is **virtually free** if it has a free subgroup of finite index. **Examples:** 

- The *twisted* free group  $\langle a, b, c | bc = ca, ac = b^{-1}c \rangle$ .
- Every semi-direct product  $F \rtimes N$  with F free and N finite.
- $\mathbb{F}_2$  is virtually  $\mathbb{F}_n$  for every  $n \geq 2$ .

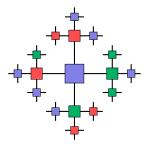
| Symbolic Dynamics on f.g. groups | Word Problem | Free groups and Virtually free groups | Ends of a group |
|----------------------------------|--------------|---------------------------------------|-----------------|
| 00000000000                      | 000          | • <b>0</b> 0                          | 00000           |
| Weak periodicity                 |              |                                       |                 |

Theorem (Piantadossi, 2006)

Every non empty  $\mathbb{F}_2$ -SFT X contains a weakly periodic configuration.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

**Proof:** Take a configuration  $x \in X$ .

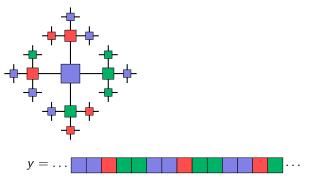


| Symbolic Dynamics on f.g. groups | Word Problem | Free groups and Virtually free groups | Ends of a group |
|----------------------------------|--------------|---------------------------------------|-----------------|
| 000000000000                     | 000          | • <b>0</b> 0                          | 00000           |
| Weak periodicity                 |              |                                       |                 |

Theorem (Piantadossi, 2006)

Every non empty  $\mathbb{F}_2$ -SFT X contains a weakly periodic configuration.

**Proof:** Take a configuration  $x \in X$ .



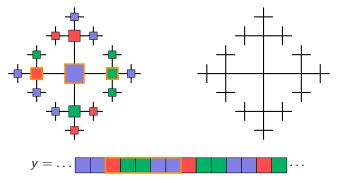
Consider the  $\mathbb{Z}$ -subshift  $\pi_{\langle a \rangle}(X)$ : it is a non-empty  $\mathbb{Z}$ -SFT, so it contains a periodic configuration y with period  $p \in \mathbb{N}^*$ .

| Symbolic Dynamics on f.g. groups | Word Problem | Free groups and Virtually free groups | Ends of a group |
|----------------------------------|--------------|---------------------------------------|-----------------|
| 00000000000                      | 000          | • <b>0</b> 0                          | 00000           |
| Weak periodicity                 |              |                                       |                 |

Theorem (Piantadossi, 2006)

Every non empty  $\mathbb{F}_2$ -SFT X contains a weakly periodic configuration.

**Proof:** Take a configuration  $x \in X$ . Construct  $x' \in X$  with period  $a^p$ .



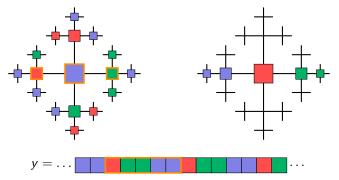
Consider the  $\mathbb{Z}$ -subshift  $\pi_{\langle a \rangle}(X)$ : it is a non-empty  $\mathbb{Z}$ -SFT, so it contains a periodic configuration y with period  $p \in \mathbb{N}^*$ .

| Symbolic Dynamics on f.g. groups | Word Problem | Free groups and Virtually free groups | Ends of a group |
|----------------------------------|--------------|---------------------------------------|-----------------|
| 00000000000                      | 000          | • <b>0</b> 0                          | 00000           |
| Weak periodicity                 |              |                                       |                 |

Theorem (Piantadossi, 2006)

Every non empty  $\mathbb{F}_2$ -SFT X contains a weakly periodic configuration.

**Proof:** Take a configuration  $x \in X$ . Construct  $x' \in X$  with period  $a^p$ .



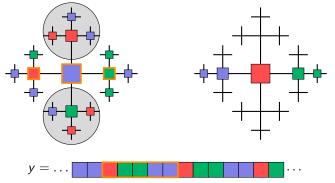
Consider the  $\mathbb{Z}$ -subshift  $\pi_{\langle a \rangle}(X)$ : it is a non-empty  $\mathbb{Z}$ -SFT, so it contains a periodic configuration y with period  $p \in \mathbb{N}^*$ .

| Symbolic Dynamics on f.g. groups | Word Problem | Free groups and Virtually free groups<br>●○○ | Ends of a group |
|----------------------------------|--------------|----------------------------------------------|-----------------|
| Weak periodicity                 |              |                                              |                 |

Theorem (Piantadossi, 2006)

Every non empty  $\mathbb{F}_2$ -SFT X contains a weakly periodic configuration.

**Proof:** Take a configuration  $x \in X$ . Construct  $x' \in X$  with period  $a^p$ .



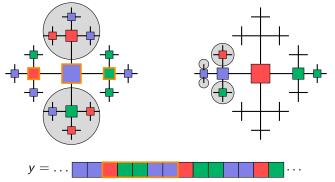
Consider the  $\mathbb{Z}$ -subshift  $\pi_{\langle a \rangle}(X)$ : it is a non-empty  $\mathbb{Z}$ -SFT, so it contains

| Symbolic Dynamics on f.g. groups | Word Problem | Free groups and Virtually free groups<br>●○○ | Ends of a group |
|----------------------------------|--------------|----------------------------------------------|-----------------|
| Weak periodicity                 |              |                                              |                 |

Theorem (Piantadossi, 2006)

Every non empty  $\mathbb{F}_2$ -SFT X contains a weakly periodic configuration.

**Proof:** Take a configuration  $x \in X$ . Construct  $x' \in X$  with period  $a^p$ .



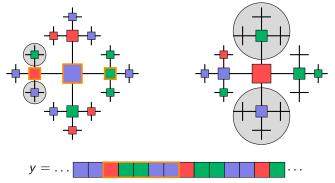
Consider the  $\mathbb{Z}$ -subshift  $\pi_{\langle a \rangle}(X)$ : it is a non-empty  $\mathbb{Z}$ -SFT, so it contains a periodic configuration  $\chi$  with period  $p \in \mathbb{N}^*$ 

| Symbolic Dynamics on f.g. groups | Word Problem | Free groups and Virtually free groups | Ends of a group |
|----------------------------------|--------------|---------------------------------------|-----------------|
| 00000000000                      | 000          | • <b>0</b> 0                          | 00000           |
| Weak periodicity                 |              |                                       |                 |

Theorem (Piantadossi, 2006)

Every non empty  $\mathbb{F}_2$ -SFT X contains a weakly periodic configuration.

**Proof:** Take a configuration  $x \in X$ . Construct  $x' \in X$  with period  $a^p$ .



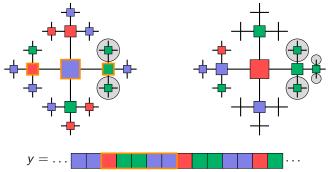
Consider the  $\mathbb{Z}$ -subshift  $\pi_{\langle a \rangle}(X)$ : it is a non-empty  $\mathbb{Z}$ -SFT, so it contains

| Symbolic Dynamics on f.g. groups | Word Problem | Free groups and Virtually free groups | Ends of a group |
|----------------------------------|--------------|---------------------------------------|-----------------|
| 00000000000                      | 000          | • <b>O</b> O                          | 00000           |
| Weak periodicity                 |              |                                       |                 |

## Theorem (Piantadossi, 2006)

Every non empty  $\mathbb{F}_2$ -SFT X contains a weakly periodic configuration.

**Proof:** Take a configuration  $x \in X$ . Construct  $x' \in X$  with period  $a^p$ .



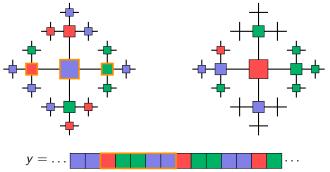
Consider the  $\mathbb{Z}$ -subshift  $\pi_{\langle a \rangle}(X)$ : it is a non-empty  $\mathbb{Z}$ -SFT, so it contains a periodic configuration y with period  $p \in \mathbb{N}^*$ .

| Symbolic Dynamics on f.g. groups | Word Problem | Free groups and Virtually free groups | Ends of a group |
|----------------------------------|--------------|---------------------------------------|-----------------|
| 00000000000                      | 000          | • <b>O</b> O                          | 00000           |
| Weak periodicity                 |              |                                       |                 |

## Theorem (Piantadossi, 2006)

Every non empty  $\mathbb{F}_2$ -SFT X contains a weakly periodic configuration.

**Proof:** Take a configuration  $x \in X$ . Construct  $x' \in X$  with period  $a^p$ .



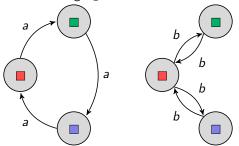
Consider the  $\mathbb{Z}$ -subshift  $\pi_{\langle a \rangle}(X)$ : it is a non-empty  $\mathbb{Z}$ -SFT, so it contains a periodic configuration y with period  $p \in \mathbb{N}^*$ .

| Symbolic Dynamics on f.g. groups | Word Problem | Free groups and Virtually free groups | Ends of a group |
|----------------------------------|--------------|---------------------------------------|-----------------|
| 00000000000                      | 000          | 000                                   | 00000           |
| Weak aperiodicity                |              |                                       |                 |

Theorem (Piantadossi, 2006)

There exists weakly aperiodic  $\mathbb{F}_2$ -SFTs.

**Proof:** Consider the following  $\mathbb{F}_2$ -SFT X.



There can be a period p for  $x \in X$  only if  $p = a^{3n}$  or  $p = b^{2m}$  (but not both !).

### Theorem

The Emptyness Problem is decidable on  $\mathbb{F}_2$ .

**Proof:** Take a n.n. SFT X on  $\mathbb{F}_2$  with alphabet A.

• Erase from A all symbols that cannot be extend to a locally admissible pattern of size 1.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Iterate until you cannot erase symbol.
- Then  $A \neq \emptyset$  iff  $X \neq \emptyset$ .

Symbolic Dynamics on f.g. groups

Word Problem

Free groups and Virtually free groups

Ends of a group

# Lecture 1: Symbolic Dynamics on f.g. groups: a computational approach.

# Symbolic Dynamics on Finitely Generated Groups

- Generalities
- Aperiodicity
- Emptyness Problem

# 2 Word Problem

- Definition
- Word Problem and the one-or-less subshift

## Free groups and Virtually free groups

- Aperiodicity
- Emptyness Problem

# 4 Ends of a group

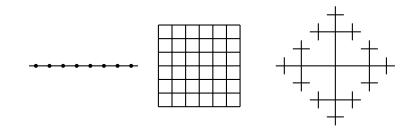
- Definition and examples
- Number of ends and soficness

| Symbolic Dynamics on f.g. groups | Word Problem | Free groups and Virtually free groups | Ends of a group<br>●○○○○ |
|----------------------------------|--------------|---------------------------------------|--------------------------|
| Definition                       |              |                                       |                          |

The **number of ends** of a f.g. group G is the limit

 $\lim_{n\to\infty}|\mathit{CC}(\Gamma_G\setminus B_n)|$ 

**Remark:** The number of ends does not depend on the choice of  $\Gamma_G$ .



### Proposition

A f.g. group has 0,1,2 or infinitely many ends.

| Symbolic Dynamics on f.g. groups | Word Problem | Free groups and Virtually free groups | Ends of a group<br>○●○○○ |
|----------------------------------|--------------|---------------------------------------|--------------------------|
| Number of ends                   |              |                                       |                          |

### Stallings theorem and consequences

Let G be a f.g. group. Then

- e(G) = 0 iff G is finite,
- if G is virtually free then  $e(G) \ge 2$ ,
- e(G) = 2 iff G is virtually cyclic,
- if  $e(G) = \infty$  then G contains a non-abelian free subgroup.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

| Symbolic Dynamics on f.g. groups | Word Problem | Free groups and Virtually free groups | Ends of a group |
|----------------------------------|--------------|---------------------------------------|-----------------|
| 00000000000                      | 000          | 000                                   | 0000            |
| Number of ends and               | d soficness  |                                       |                 |

Groups with more than two ends can be **disconnected by a finite set**.

In sofic subshifts, only a *finite amount of information* can go through this disconnecting set.
 ⇒ use Communication Complexity to formalize this notion ? (see Emmanuel Jeandel's talk)

ション ふゆ アメリア メリア しょうくしゃ

► Can be used to prove some subshifts with highly non-local conditions are not sofic on groups G with e(G) ≥ 2. (see Sebastián Barbieri's poster)

| Symbolic Dynamics on f.g. groups | Word Problem | Free groups and Virtually free groups | Ends of a group<br>○○○●○ |
|----------------------------------|--------------|---------------------------------------|--------------------------|
| Conclusion                       |              |                                       |                          |

- ▶ Sofic subshifts: information flow through the group.
- ▶ Computational restriction: groups with decidable Word Problem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Free groups: *easy* case.

**Tomorrow:** more about Domino Problem on  $\mathbb{Z}^2$ .

| Symbolic Dynamics on f.g. groups | Word Problem | Free groups and Virtually free groups | Ends of a group |
|----------------------------------|--------------|---------------------------------------|-----------------|
| 00000000000                      | 000          | 000                                   | 00000           |

# Thank you for your attention !!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?