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Introduction

Mini-course divided into 4 lectures
I Lecture 1: SD on f.g. groups: a computational approach.
I Lecture 2: Domino Problem, Part I: Wang tiles.
I Lecture 3: Domino Problem, Part II: f.g. groups.
I Lecture 4: Effective subshifts.
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Lecture 2: Domino Problem, Part I: Wang tiles.

1 Wang tiles and Domino Problem
Logics and Tilings
Periodicity in Z2

Wang’s conjecture
Robinson’s tiling

2 Wang tiles as a computational model
Turing machines
Encoding Turing machines inside Wang tilesets
The undecidability of the Domino Problem

3 Tilings of the hyperbolic plane
Tilings in H2

Turing machines inside H2

Undecidability of DP in H2
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FO Logic and the ∀∃∀ fragment

Variables (x , y , z , . . . ), predicates (P(x),Q(y , y), . . . ).
Quantify over variables.
Formula ψ : ∀x∃y ,Q(x , y), ∃x∀y ,P(y)⇒ Q(y , x),. . .

Study the unsolvability of the ∀∃∀-prefix class:

Satisfiability problem for ∀∃∀
Input: ψ a ∀∃∀-formula
Output: Yes if there exists a model M � ψ, No otherwise.
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Wang tiles model and the Domino Problem

Finite set of Wang tiles τ (infinitely many copies of each tile)

Local adjacency rules

X ×

Example of tiling by τ

Domino Problem
Input: A finite set of Wang tiles τ
Output: Yes if there exists a valid tiling by τ , No otherwise.
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Domino Problem and the ∀∃∀ fragment (I)

How to formalize tilings by τ in FO logics ? (= build a theory)

FO variables: points in Z2

Model M: configuration t in τZ
2

Binary predicates {Pi : i ∈ τ}: P (x , y) is true iff t(x,y) =
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Domino Problem and the ∀∃∀ fragment (II)

Define H and V the subsets of τ × τ that code the horizontal and
vertical allowed adjacencies.

Let ψτ be the MSO formula ∀x∃x ′∀y φτ where φτ (x , x ′, y) is

∧
i 6=j

¬ (Pi (x , y) ∧ Pj (x , y))︸ ︷︷ ︸
at most one tile at each (x,y)

∧

∨
(i,j)∈H

(
Pi (x , y) ∧ Pj (x ′, y)

)
︸ ︷︷ ︸
every column has a right neighbor

∧
∨

(i,j)∈V

(
Pi (y , x) ∧ Pj (y , x ′)

)
︸ ︷︷ ︸

every row has a top neighbor

Proposition

ψτ has a model ⇔ ∃ tiling of N× N by τ .

Remark: ∃ tiling of N× N by τ ⇔ ∃ tiling of Z× Z by τ (by König’s
lemma).
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Domino Problem and the ∀∃∀ fragment (III)

Putting everything together:

Comparison of Decidability

If Satisfiability of ∀∃∀ is decidable, then Domino Problem is
decidable.
If Domino Problem is undecidable, then Satisfiability of ∀∃∀ is
undecidable.
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Periodicity in Z2 (I)

Reminder

I A configuration x ∈ AZ2
is weakly periodic if its stabilizer is infinite.

⇔ x admits a non-trivial direction −→u of periodicity.

I A configuration x ∈ AZ2
is strongly periodic if its stabilizer is of

finite index in Z2: [Z2 : Stab(x)] <∞.

⇔ x admits two non-colinear directions −→u ,−→v of periodicity.

I A subshift X ⊂ AZ2
is weakly aperiodic (resp. strongly aperiodic)

if it contains no strongly periodic (resp. weakly periodic)
configuration.
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Periodicity in Z2 (II)

Proposition

Any Z2-SFT that contains a weakly periodic configuration also contains a
strongly periodic configuration.

Proof: Let x be a configuration with period −→u .
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Periodicity in Z2 (II)

Proposition

Any Z2-SFT that contains a weakly periodic configuration also contains a
strongly periodic configuration.

Proof: Let x be a configuration with period −→u .

Consequence: On Z2, weakly aperiodic SFT are strongly aperiodic !
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Semi-algorithm for periodicity (I)

Let τ be a finite set of Wang tiles.

It is easy to generate, for every integers n,m ∈ N, all locally admissible
patterns of size n ×m.

If you find a locally admissible pattern with matching edges, then τ tiles
the plane periodically.
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Semi-algorithm for periodicity (II)

Semi-algorithm:
1 gives a pattern that tiles the plane periodically if it exists
2 loops otherwise

Questions:
Can you check whether the locally admissible patterns are globally
admissible ?
Is it true that if τ admits no periodic pattern, then τ does not tile
the plane ?
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Wang’s conjecture and the tiling problem

Wang’s conjecture (1961)

If a set of Wang tiles can tile the plane, then they can always be arranged
to do so periodically.

Suppose Wang’s conjecture is true. Then you can decide the tiling
problem !

Semi-algorithm 1:
1 gives a pattern that tiles the plane periodically if it exists
2 loops otherwise

Semi-algorithm 2:
1 gives an integer n so that [1; n]× [1; n] cannot be tiled if it exists
2 loops otherwise
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Back to Wang’s conjecture

Wang’s conjecture (1961)

If a set of Wang tiles can tile the plane, then they can always be arranged
to do so periodically.

Refuted by Berger (Wang’s student) in 1966: he exhibited an
aperiodic set of 20426 Wang tiles.
Robinson (1971): aperiodic set of 56 Wang tiles (32 square tiles)!
Kari (1996): aperiodic set of 14 Wang tiles !
Culik (1996): aperiodic set of 13 Wang tiles !
. . . suspicions about a set of 11 Wang tiles . . .



Wang tiles and Domino Problem Wang tiles as a computational model Tilings of the hyperbolic plane

Back to Wang’s conjecture

Wang’s conjecture (1961)

If a set of Wang tiles can tile the plane, then they can always be arranged
to do so periodically.

Refuted by Berger (Wang’s student) in 1966: he exhibited an
aperiodic set of 20426 Wang tiles.

Robinson (1971): aperiodic set of 56 Wang tiles (32 square tiles)!
Kari (1996): aperiodic set of 14 Wang tiles !
Culik (1996): aperiodic set of 13 Wang tiles !
. . . suspicions about a set of 11 Wang tiles . . .



Wang tiles and Domino Problem Wang tiles as a computational model Tilings of the hyperbolic plane

Back to Wang’s conjecture

Wang’s conjecture (1961)

If a set of Wang tiles can tile the plane, then they can always be arranged
to do so periodically.

Refuted by Berger (Wang’s student) in 1966: he exhibited an
aperiodic set of 20426 Wang tiles.
Robinson (1971): aperiodic set of 56 Wang tiles (32 square tiles)!

Kari (1996): aperiodic set of 14 Wang tiles !
Culik (1996): aperiodic set of 13 Wang tiles !
. . . suspicions about a set of 11 Wang tiles . . .



Wang tiles and Domino Problem Wang tiles as a computational model Tilings of the hyperbolic plane

Back to Wang’s conjecture

Wang’s conjecture (1961)

If a set of Wang tiles can tile the plane, then they can always be arranged
to do so periodically.

Refuted by Berger (Wang’s student) in 1966: he exhibited an
aperiodic set of 20426 Wang tiles.
Robinson (1971): aperiodic set of 56 Wang tiles (32 square tiles)!
Kari (1996): aperiodic set of 14 Wang tiles !

Culik (1996): aperiodic set of 13 Wang tiles !
. . . suspicions about a set of 11 Wang tiles . . .



Wang tiles and Domino Problem Wang tiles as a computational model Tilings of the hyperbolic plane

Back to Wang’s conjecture

Wang’s conjecture (1961)

If a set of Wang tiles can tile the plane, then they can always be arranged
to do so periodically.

Refuted by Berger (Wang’s student) in 1966: he exhibited an
aperiodic set of 20426 Wang tiles.
Robinson (1971): aperiodic set of 56 Wang tiles (32 square tiles)!
Kari (1996): aperiodic set of 14 Wang tiles !
Culik (1996): aperiodic set of 13 Wang tiles !

. . . suspicions about a set of 11 Wang tiles . . .



Wang tiles and Domino Problem Wang tiles as a computational model Tilings of the hyperbolic plane

Back to Wang’s conjecture

Wang’s conjecture (1961)

If a set of Wang tiles can tile the plane, then they can always be arranged
to do so periodically.

Refuted by Berger (Wang’s student) in 1966: he exhibited an
aperiodic set of 20426 Wang tiles.
Robinson (1971): aperiodic set of 56 Wang tiles (32 square tiles)!
Kari (1996): aperiodic set of 14 Wang tiles !
Culik (1996): aperiodic set of 13 Wang tiles !
. . . suspicions about a set of 11 Wang tiles . . .



Wang tiles and Domino Problem Wang tiles as a computational model Tilings of the hyperbolic plane

Back to Wang’s conjecture

Wang’s conjecture (1961)

If a set of Wang tiles can tile the plane, then they can always be arranged
to do so periodically.

Refuted by Berger (Wang’s student) in 1966: he exhibited an
aperiodic set of 20426 Wang tiles.
Robinson (1971): aperiodic set of 56 Wang tiles (32 square tiles)!
Kari (1996): aperiodic set of 14 Wang tiles !
Culik (1996): aperiodic set of 13 Wang tiles !
. . . suspicions about a set of 11 Wang tiles . . .

Remark
More than that, all these constructions actually show the undecidability
of the tiling problem (from which you deduce the existence of an
aperiodic tileset).
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Robinson tileset

The Robinson tileset, where tiles can be rotated and reflected.
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Existence of a valid tiling

Proposition

Robinson’s tileset admits at least one valid tiling.

Proof:
We can build arbitrarily large patterns (called macro-tiles) with the
same structure.
We thus conclude by compactness.
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Macro-tiles of level 1

Macro-tiles of level 1.

They behave like large .
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From macro-tiles of level 1 to macro-tiles of level 2
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From macro-tiles of level n to macro-tiles of level n + 1

⇒
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This valid tiling is aperiodic

Proposition

The valid tiling x obtained by compactness is aperiodic.

Proof:
Centers of macro-tiles of level n are located on the lattice
2n+1Z× 2n+1Z.
Suppose x admits a direction of periodicity −→u .
Then there exists an integer n s.t. 2n+1 > ‖−→u ‖.
Thus a macro-tile of level n overlaps with its translation.
⇒ contradiction.
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All valid tilings are aperiodic (I)

The two forms in Robinson tileset, cross (bumpy corners) and arms
(dented corners).

Obviously, two crosses cannot be in contact (neither through an edge nor
a vertex) thus a cross must be surrounded by eight arms.
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All valid tilings are aperiodic (II)
You cannot have things like

The only possibilities are thus
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All valid tilings are aperiodic (III)

So each is part of a macro tile of level 1

that behaves like a big , and so on. . .
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About Robinson’s tiling structure

Hierarchy of squares: squares of level n are gathered by 4 to form a
square of level n + 1

Proposition

The are uncountably many different valid tilings by the Robinson tileset.
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Fracture lines

Some sequences of choices (ultimately constant sequences) lead to

But it is possible to enrich the tiles to get rid of fracture lines ! (idea:
synchronize squares of same level)
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Turing machines: definition

A Turing machine is a tupleM = (Q, Γ, ], q0, δ,QF ) where

I Q is a finite set of states, q0 ∈ Q is the initial state,
I Γ is a finite alphabet,
I ] /∈ Γ is the blank symbol,
I δ : Q × Γ→ Q × Γ× {←, · ,→} is the transition function,
I QF ⊂ Q is the set of final states.
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Turing machines: example

δ(q, x)
Symbol x

a b ‖ ]
St
at
e

q
q0 ⊥ ⊥ ⊥ (qb+ , a,→)

qa+ ⊥ (qb++ , a,→) ⊥ ⊥
qb+ ⊥ ⊥ ⊥ (q‖, b,→)

qb++ ⊥ (qb++ , b,→) (qb+ , b,→) ⊥
q‖ (qa+ , a,→) (q‖, b,←) (q‖, ‖,←) (q‖, ‖, ·)

] ] ] ] ] ] ] ] ] ]

q0
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Turing machines: example

δ(q, x)
Symbol x

a b ‖ ]
St
at
e

q
q0 ⊥ ⊥ ⊥ (qb+ , a,→)

qa+ ⊥ (qb++ , a,→) ⊥ ⊥
qb+ ⊥ ⊥ ⊥ (q‖, b,→)

qb++ ⊥ (qb++ , b,→) (qb+ , b,→) ⊥
q‖ (qa+ , a,→) (q‖, b,←) (q‖, ‖,←) (q‖, ‖, ·)

] ] ] ] ] ] ]a a ‖

qb++
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Turing machines: example

δ(q, x)
Symbol x

a b ‖ ]
St
at
e

q
q0 ⊥ ⊥ ⊥ (qb+ , a,→)

qa+ ⊥ (qb++ , a,→) ⊥ ⊥
qb+ ⊥ ⊥ ⊥ (q‖, b,→)

qb++ ⊥ (qb++ , b,→) (qb+ , b,→) ⊥
q‖ (qa+ , a,→) (q‖, b,←) (q‖, ‖,←) (q‖, ‖, ·)

] ] ] ] ] ] ]a a b

qb+
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Turing machines: example

δ(q, x)
Symbol x

a b ‖ ]
St
at
e

q
q0 ⊥ ⊥ ⊥ (qb+ , a,→)

qa+ ⊥ (qb++ , a,→) ⊥ ⊥
qb+ ⊥ ⊥ ⊥ (q‖, b,→)

qb++ ⊥ (qb++ , b,→) (qb+ , b,→) ⊥
q‖ (qa+ , a,→) (q‖, b,←) (q‖, ‖,←) (q‖, ‖, ·)

] ] ] ] ] ]a a b b

q‖
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Turing machines: example

δ(q, x)
Symbol x

a b ‖ ]
St
at
e

q
q0 ⊥ ⊥ ⊥ (qb+ , a,→)

qa+ ⊥ (qb++ , a,→) ⊥ ⊥
qb+ ⊥ ⊥ ⊥ (q‖, b,→)

qb++ ⊥ (qb++ , b,→) (qb+ , b,→) ⊥
q‖ (qa+ , a,→) (q‖, b,←) (q‖, ‖,←) (q‖, ‖, ·)

] ] ] ] ]a a b b ‖

q‖
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Turing machines: Halting Problem

Take any enumeration of Turing machines (Mi )i∈N.

Halting Problem for Turing machines

Input: A Turing machineMi and an input word w .
Output: Yes ifMi reaches a final state when computing on w , No
otherwise.

Theorem (Turing, 1936)

The Halting Problem for Turing machines is undecidable.

Proof: Diagonal argument.
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TM inside Wang tilesets

]

q‖
q‖ a

q‖q‖
q‖

b ]

] a

q‖
q‖ b

q‖q‖
q‖

]

] a
qb+

q‖
qb+

b

q‖
q‖ ]

]

q0
qb+

q0

]

qb+

qb+ ] ]
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Undecidability of the Domino Problem (I)

Can we reduce Domino Problem from Halting Problem ?

Idea

Build a finite tileset τ s.t. Xτ 6= ∅ iffM halts on the empty input ∞]∞.

I Every Turing machineM can be associated with a finite tileset τM.
I IfM never stops on the empty intput then XτM is non-empty.
I Unfortunately this SFT is always non-empty (blank

configuration ]Z
2
) independently fromM. . .

Problem
How to initialize computations ?
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Undecidability of the Domino Problem (II)

Solution
Embed Turing machine computations inside the hierarchy of squares
given by Robinson’s tiling.
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Undecidability of the Domino Problem (II)

Solution
Embed Turing machine computations inside the hierarchy of squares
given by Robinson’s tiling.

q0
qb+

q0

]

qb+

qb+ ]

a
qb+

q‖
qb+

b
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Undecidability of the Domino Problem (II)

Solution
Embed Turing machine computations inside the hierarchy of squares
given by Robinson’s tiling.

Theorem (Berger, 1966)

The Domino Problem is undecidable.
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Lecture 2: Domino Problem, Part I: Wang tiles.

1 Wang tiles and Domino Problem
Logics and Tilings
Periodicity in Z2

Wang’s conjecture
Robinson’s tiling

2 Wang tiles as a computational model
Turing machines
Encoding Turing machines inside Wang tilesets
The undecidability of the Domino Problem

3 Tilings of the hyperbolic plane
Tilings in H2

Turing machines inside H2

Undecidability of DP in H2
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Tilings in H2

Wang tiles are replaced by -tiles.

Example: Let τ be the finite tileset

Then τ can produce tilings of H2
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Turing machines inside -tilesets (I)

• • • •

• • • •
• • • •
• • • •
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Turing machines inside -tilesets (II)

• ]
q0

qb+
q0

• ]

qb+

qb+• ] • ]

• ] • a
qb+

q‖
qb+

• ]

q‖q‖ q‖
q‖• ]

• ] • a
q‖

q‖• b
q‖q‖ q‖q‖ q‖q‖ q‖

q‖
q‖

• ]

• ] • a • b • ‖
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Undecidability of DP in H2

First proven by Kari (2007) (see Lecture 3) and Margenstern (2009).

Theorem
The Domino Problem is undecidable in the hyperbolic plane.

Idea: use Goodman-Strauss aperiodic hierarchical tiling of H2. . .
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Conclusion

I Strong links between existence of aperiodic SFTs and Domino
Problem.

I Undecidability comes from
(i) the existence of aperiodic SFT
(ii) encoding of Turing machines inside SFT

I Can be generalized to the hyperbolic plane.

On Thursday: what about Domino Problem on f.g. groups ?
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Thank you for your attention !!
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