Sofic (and Effective) Subshifts on f.g. Groups
 Lecture 3: Domino Problem, Part II: f.g. groups.

Nathalie Aubrun
LIP, ENS de Lyon, CNRS

December 18, 2014

Introduction

Mini-course divided into 4 lectures

- Lecture 1: SD on f.g. groups: a computational approach.
- Lecture 2: Domino Problem, Part I: Wang tiles.
- Lecture 3: Domino Problem, Part II: f.g. groups.
- Lecture 4: Effective subshifts.

Previously on Lecture 2

- Domino Problem is decidable on \mathbb{Z}.
- Encode Turing machines inside \mathbb{Z}^{2}-SFT, Robinson tiling.
- Domino Problem is undecidable on \mathbb{Z}^{2}.

Reminder: Domino Problem for f.g. groups

Fix G a f.g. group and S a generating set for G.

Domino Problem for G-SFTs

Input: F a finite set of forbidden patterns on S.
Output: Yes if there exists a configuration in X_{F}, No otherwise.

Reminder: Domino Problem for f.g. groups

Fix G a f.g. group and S a generating set for G.

Domino Problem for G-SFTs

Input: F a finite set of forbidden patterns on S.
Output: Yes if there exists a configuration in X_{F}, No otherwise.

Question

Which f.g. groups have decidable Domino Problem ?

Lecture 3: Domino Problem, Part II: f.g. groups.

(1) Basic facts about DP for f.g. groups

- Domino Problem and subgroups
- Word Problem vs. Domino Problem
- Domino Problem as a Markov property
- Toward a characterization
(2) Recent advances
- Kari-Culik aperiodic tileset
- DP on the hyperbolic plane \mathbb{H}^{2}
- Baumslag-Solitar groups
- Virtually nilpotent groups
(3) How to go further?
- Aperiodic SFT and DP
- How to go further ?

Domino Problem and subgroups (I)

Proposition

Let H and G be two f.g. groups s.t. H is a subgroup of G. If G has decidable Domino Problem, then so has H.

Sketch of the proof:

- Let X be an H-SFT given by $X=X_{\mathcal{F}}, \mathcal{F}$ finite.
- Consider H-patterns in \mathcal{F} as G-patterns.
- Define X^{\prime} the G-SFT given by $X^{\prime}=X_{\mathcal{F}}$.
- Then $X=\emptyset \Leftrightarrow X^{\prime}=\emptyset$.

Domino Problem and subgroups (II)

Proposition

Let H and G be two f.g. groups s.t. H is a subgroup of G of finite index. If H has decidable Domino Problem, then so has G.

Sketch of the proof: Let τ be a finite set of Wang tiles on G.

- Since $[G: H]<\infty$ there are finitely many left cosets $g_{1} H, \ldots, g_{k} H$ (choose g_{i} of minimal length).
- Construct $\tau^{\prime} \subset \tau^{k}$ the finite set of Wang tiles on H compatible with the choice of the g_{i}.
- $X_{\tau}=\emptyset \Leftrightarrow X_{\tau^{\prime}}=\emptyset$.

Reminder: Word Problem

Does there exist an algorithm that decides whether two words w_{1} and w_{2} on the generators and their inverses represent the same element in G $\left(w_{1}=G w_{2}\right)$?

$$
W P(G)=\left\{w \in\left(S \cup S^{-1}\right)^{*} \mid w=_{G} 1_{G}\right\} .
$$

Definition

A f.g. group G has decidable WP if there exists an algorithm that takes two words w_{1} and w_{2} as input and outputs Yes if $w_{1}={ }_{G} w_{2}$ and No if $w_{1} \neq G \quad w_{2}$.

Remark: Decidability of WP does not depend on the choice of S.

Word Problem vs. Domino Problem

Property

Let G be a finitely generated group with decidable domino problem, then G has decidable word problem.

Sketch of the proof:

- Suppose that S generates G.
- Consider a word $w \in\left(S \cup S^{-1}\right)^{*}$ s.t. $w={ }_{G} g$.
- Define the SFT $X_{\mathcal{F}}$ on $A(|A| \geq 3)$ by forbidden patterns

$$
\mathcal{F}=\left\{p_{a}\right\}_{a \in A}
$$

where p_{a} has support $\left\{1_{G}, g\right\}$ s.t. $\left(p_{a}\right)_{1_{G}}=\left(p_{a}\right)_{g}=a$.

- Lemma: $w={ }_{G} 1_{G} \Leftrightarrow X_{\mathcal{F}}=\emptyset$.

Domino Problem as a Markov property

A property of f.p. groups is a Markov property if
(i) there exists a f.p. group with this property,
(ii) there exists a f.p. group that cannot be embedded in any f.p. group with the property.
Examples: being trivial, abelian, nilpotent, solvable, free, torsion-free. . . are Markov properties.

Domino Problem as a Markov property

A property of f.p. groups is a Markov property if
(i) there exists a f.p. group with this property,
(ii) there exists a f.p. group that cannot be embedded in any f.p. group with the property.
Examples: being trivial, abelian, nilpotent, solvable, free, torsion-free. . . are Markov properties.

Theorem (Adian \& Rabin, 1955-1958)

If \mathcal{P} is a Markov property, the problem of deciding whether a f.p. group has property \mathcal{P} is undecidable.

Domino Problem as a Markov property

A property of f.p. groups is a Markov property if
(i) there exists a f.p. group with this property,
(ii) there exists a f.p. group that cannot be embedded in any f.p. group with the property.
Examples: being trivial, abelian, nilpotent, solvable, free, torsion-free. . . are Markov properties.

Theorem (Adian \& Rabin, 1955-1958)

If \mathcal{P} is a Markov property, the problem of deciding whether a f.p. group has property \mathcal{P} is undecidable.

Proposition

The group property G has decidable domino problem is a Markov property.

What do we know ? (in 2012)

Domino Problem is

- decidable on $\mathbb{Z}, \mathbb{F}_{k}, \mathrm{VF}$ groups.
- undecidable on $\mathbb{Z}^{d}(d \geq 2)$, all f.g. groups having \mathbb{Z}^{2} as subgroup.

What do we know ? (in 2012)

Domino Problem is

- decidable on $\mathbb{Z}, \mathbb{F}_{k}, \mathrm{VF}$ groups.
- undecidable on $\mathbb{Z}^{d}(d \geq 2)$, all f.g. groups having \mathbb{Z}^{2} as subgroup.

Conjecture (Ballier)

A f.g. group G has decidable Domino Problem iff G is virtually free.

Lecture 3: Domino Problem, Part II: f.g. groups.

(1) Basic facts about DP for f.g. groups

- Domino Problem and subgroups
- Word Problem vs. Domino Problem
- Domino Problem as a Markov property
- Toward a characterization
(2) Recent advances
- Kari-Culik aperiodic tileset
- DP on the hyperbolic plane \mathbb{H}^{2}
- Baumslag-Solitar groups
- Virtually nilpotent groups
(3) How to go further ?
- Aperiodic SFT and DP
- How to go further ?

KC aperiodic tileset: Principle
Encode a small aperiodic dynamical system T inside a finite set of Wang tiles.

$\mathbf{T}^{3}(x)$
$\mathbf{T}^{2}(x)$
$\mathbf{T}^{1}(x)$
x
$\mathbf{T}^{-1}(x)$
$\mathbf{T}^{-2}(x)$
$\mathbf{T}^{-3}(x)$

Representation of reals numbers

Given x a real number, a representation of x is a sequence of integers $\left(x_{k}\right)_{k \in \mathbb{Z}}$ such that:

- $\forall k \in \mathbb{Z}, x_{k} \in\{\lfloor x\rfloor,\lfloor x\rfloor+1\}$;
- $\forall k \in \mathbb{Z}$,

$$
\lim _{n \rightarrow \infty} \frac{x_{k-n}+x_{k+1}+\cdots+x_{k+n}}{2 n+1}=x
$$

Representation of reals numbers

Given x a real number, a representation of x is a sequence of integers $\left(x_{k}\right)_{k \in \mathbb{Z}}$ such that:

- $\forall k \in \mathbb{Z}, x_{k} \in\{\lfloor x\rfloor,\lfloor x\rfloor+1\}$;
- $\forall k \in \mathbb{Z}$,

$$
\lim _{n \rightarrow \infty} \frac{x_{k-n}+x_{k+1}+\cdots+x_{k+n}}{2 n+1}=x
$$

Remark: If $\left(x_{k}\right)_{k \in \mathbb{Z}}$ is a representation of x, then so is $\forall \ell \in \mathbb{Z}$, $\left(x_{k+\ell}\right)_{k \in \mathbb{Z}}$.

Balanced representation of reals numbers

Let $x \in \mathbb{R}$ be arbitrary. For every $k \in \mathbb{Z}$, let

$$
B_{k}=\lfloor k x\rfloor-\lfloor(k-1) x\rfloor .
$$

The bi-infinite sequence $\left(B_{k}\right)_{k \in \mathbb{Z}}$ is a balanced representation of x.

Balanced representation of reals numbers

Let $x \in \mathbb{R}$ be arbitrary. For every $k \in \mathbb{Z}$, let

$$
B_{k}=\lfloor k x\rfloor-\lfloor(k-1) x\rfloor .
$$

The bi-infinite sequence $\left(B_{k}\right)_{k \in \mathbb{Z}}$ is a balanced representation of x.

- $\left(B_{k}\right)_{k \in \mathbb{Z}}$ is a representation of x in the sense defined before.
- Balanced representations of irrational x are sturmian sequences, while for rational x the sequence is periodic.

A piecewise linear affine map \mathbf{T}

Let $T:\left[\frac{1}{3} ; 2\right] \rightarrow\left[\frac{1}{3} ; 2\right]$ be the piecewise linear map defined by

$$
T: x \mapsto\left\{\begin{array}{l}
2 x \text { if } x \in\left[\frac{1}{3} ; 1\right] \\
\left.\left.\frac{1}{3} x \text { if } x \in\right] 1 ; 2\right]
\end{array}\right.
$$

A piecewise linear affine map \mathbf{T}

Let $T:\left[\frac{1}{3} ; 2\right] \rightarrow\left[\frac{1}{3} ; 2\right]$ be the piecewise linear map defined by

$$
T: x \mapsto\left\{\begin{array}{l}
2 x \text { if } x \in\left[\frac{1}{3} ; 1\right] \\
\left.\left.\frac{1}{3} x \text { if } x \in\right] 1 ; 2\right]
\end{array}\right.
$$

Proposition

The dynamical system \mathbf{T} is aperiodic.

Encoding multiplications inside Wang tiles

A λ-multiplication tile is a Wang tile such that

$$
\lambda \cdot s+w=n+e
$$

	e

Encoding multiplications inside Wang tiles

A λ-multiplication tile is a Wang tile such that

$$
\lambda \cdot s+w=n+e
$$

	e

Such tiles perform multiplication by λ with some errors that propagate.

m_{1}	n_{2}	n_{3}	n_{4}	n_{5}	n_{6}
s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}

$$
\lambda \cdot \frac{s_{1}+\cdots+s_{6}}{6}+\frac{w}{6}=\frac{n_{1}+\cdots+n_{6}}{6}+\frac{e}{6} .
$$

Kari-Culik aperiodic set of 13 Wang tiles

All tiles are λ-multiplication tiles, with $\lambda=2$ or $\frac{1}{3}$.

$$
\begin{aligned}
& \begin{array}{|cc|}
\hline 1 & 0 \\
1 & 0 \\
0^{\prime}
\end{array} \quad \begin{array}{|ll|}
\hline 1 & 0 \\
1 & \\
\hline
\end{array} \quad \begin{array}{|cc|}
\hline 0^{\prime} \\
1 & \\
\hline
\end{array} \quad \begin{array}{|cc|}
\hline & 2 \\
1 & \\
\hline
\end{array}
\end{aligned}
$$

Theorem (Kari-Culik, 1996)

KC tileset is aperiodic.

An example of tiling

An example of tiling

Theorem (Kari, 2007)

The mortality problem for rational piecewise affine maps is undecidable.
Given any piecewise affine map f with rational coefficients, there exists a finite tileset τ s.t.
f has an immortal point $\Leftrightarrow X_{\tau} \neq \emptyset$.

Theorem (Kari, 2007)

Domino Problem is undecidable on \mathbb{Z}^{2}.

DP on the hyperbolic plane \mathbb{H}^{2}

A λ-multiplication

$$
\lambda \cdot n+w=\frac{s_{1}+s_{2}}{2}+e
$$

DP on the hyperbolic plane \mathbb{H}^{2}

A λ-multiplication

$$
\lambda \cdot n+w=\frac{s_{1}+s_{2}}{2}+e
$$

Such tiles perform multiplication by λ with some errors that propagate.

$$
\lambda \cdot \frac{n_{1}+\cdots+n_{k}}{k}+\frac{w}{k}=\frac{s_{1}+\cdots+s_{2 k}}{2 k}+\frac{e}{k}
$$

Theorem (Kari,2007)

Domino Problem is undecidable on \mathbb{H}^{2}.

Baumslag-Solitar groups (I)

Baumslag-Solitar group: $\mathrm{BS}(m, n)=<a, b \mid a^{m} b=b a^{n}>$

Properties

- Decidable WP (Magnus, 1932)
- Not VF (Baumslag-Solitar, 1962)
- Does not contain \mathbb{Z}^{2} as a subgroup (but contains arbitrarily large finite grids) for $m \wedge n=1$.

Baumslag-Solitar groups (I)

Baumslag-Solitar group: $\mathrm{BS}(m, n)=<a, b \mid a^{m} b=b a^{n}>$

Properties

- Decidable WP (Magnus, 1932)
- Not VF (Baumslag-Solitar, 1962)
- Does not contain \mathbb{Z}^{2} as a subgroup (but contains arbitrarily large finite grids) for $m \wedge n=1$.

In the sequel: $\mathrm{BS}(2,3)=<a, b \mid a^{2} b=b a^{3}>$

Structure

Structure

λ-multiplication tiles in $\mathrm{BS}(2,3))$

A λ-multiplication $\mathbf{B S}(2,3)$-tile is a $\mathrm{BS}(2,3)$-tile such that

An example of tiling

Baumslag-Solitar groups (II)

Theorem (A.\& Kari, 2013)

There exist weakly aperiodic SFT on $\mathrm{BS}(m, n)$ for every $m, n>0$.
But the SFT constructed is not strongly aperiodic (cannot avoid period like $\left.b a b^{-1} a^{m-1} b a^{-1} a^{-(m-1)}\right)$.

Theorem (A.\& Kari, 2013)

The domino problem is undecidable on $\mathrm{BS}(m, n)$.

Question

Does $\mathrm{BS}(m, n)$ admits strongly aperiodic SFT ?

Virtually nilpotent groups (I)

Theorem (Ballier \& Stein, 2014)
Let G be a f.g. and virtually nilpotent group. Then the following are equivalent
(i) G is virtually free,
(ii) G has decidable domino problem.

Virtually nilpotent groups (I)

Theorem (Ballier \& Stein, 2014)

Let G be a f.g. and virtually nilpotent group. Then the following are equivalent
(i) G is virtually free,
(ii) G has decidable domino problem.

Theorem (Kuske \& Lorhey, Muller \& Schupp)

Let G be a f.g. group. Then the following conditions are equivalent
(i) G is virtually free.
(ii) G has finite tree-width.
(iii) MSO is decidable on G.
(iv) G has context-free WP.

Virtually nilpotent groups (II)

Theorem (Ballier \& Stein, 2014)

If G is a f.g. virtually nilpotent group with infinite tree-width, then DP is undecidable on G.

Sketch of the proof:

- If G has infinite tree-width, then G has a thick end.
- If $[G: H]<\infty$, then G has a thick end iff H has a thick end.
- A nilpotent group G has a torsion free subgroup H of finite index.
- If H is a f.g. torsion-free nilpotent group with a thick end, then H contains a $\mathbb{N} \times \mathbb{Z}$ structure
- Reduction from the DP on $\mathbb{Z}^{2} \Rightarrow \mathrm{DP}$ is undecidable on H.
$\Rightarrow \Rightarrow D P$ is undecidable on G.

Lecture 3: Domino Problem, Part II: f.g. groups.

(1) Basic facts about DP for f.g. groups

- Domino Problem and subgroups
- Word Problem vs. Domino Problem
- Domino Problem as a Markov property
- Toward a characterization
(2) Recent advances
- Kari-Culik aperiodic tileset
- DP on the hyperbolic plane \mathbb{H}^{2}
- Baumslag-Solitar groups
- Virtually nilpotent groups
(3) How to go further?
- Aperiodic SFT and DP
- How to go further ?

Domino Problem and Aperiodicity

Groups with Undecidable WP ?

Remark

Proposition

Let H and G be two f.g. groups s.t. H is a subgroup of G of finite index. Then H has decidable DP iff G has decidable DP.

Proposition

Let H and G be two f.g. groups s.t. H is a subgroup of G of finite index. Let τ be a finite tileset on H.

- X_{τ} is weakly aperiodic on H iff X_{τ} is weakly aperiodic on G.
- X_{τ} is strongly aperiodic on H iff X_{τ} is strongly aperiodic on G.

Domino Problem and Aperiodicity

Groups with Undecidable WP ?

Domino Problem and Aperiodicity

Groups with Undecidable WP ?

Some questions and conjectures (I)

Conjecture
Let G be a f.g. group. Then $e(G)=2$ iff G has decidable DP and no weakly aperiodic SFT.

Conjecture (generalizes Wang's original idea)
If G is f.g. and does not admit weakly aperiodic SFT, then G has decidable DP.

Domino Problem and Aperiodicity

Groups with Undecidable WP ?

Some questions and conjectures (II)

Questions

- Does $\mathrm{BS}(\mathrm{m}, \mathrm{n})$ admits strongly aperiodic SFTs ?
- Which groups admits weakly but not strongly aperiodic SFTs ?

Question

Does there exists a f.g. group with decidable Domino Problem that admits a strongly aperiodic SFT ?

Question

What about weakly/aperiodic SFTs and f.g. groups with undecidable WP ?

How to go further?

- Use different characterizations of VF groups (decidable MSO logic, finite tree-width, context-free WP,...) ?
- Encode TM computation inside G ? or another computational model (which one) ?
- Construct (weakly/strongly) aperiodic SFT ?

Thank you for your attention !!

