Recent advances

How to go further ?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Sofic (and Effective) Subshifts on f.g. Groups Lecture 3: Domino Problem, Part II: f.g. groups.

Nathalie Aubrun

LIP, ENS de Lyon, CNRS

December 18, 2014

Recent advances

How to go further ?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Introduction

Mini-course divided into 4 lectures

- ▶ Lecture 1: SD on f.g. groups: a computational approach.
- ▶ Lecture 2: Domino Problem, Part I: Wang tiles.
- ▶ Lecture 3: Domino Problem, Part II: f.g. groups.
- ▶ Lecture 4: Effective subshifts.

Recent advances

How to go further ?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Previously on Lecture 2

- ▶ Domino Problem is decidable on \mathbb{Z} .
- Encode Turing machines inside \mathbb{Z}^2 -SFT, Robinson tiling.
- Domino Problem is undecidable on \mathbb{Z}^2 .

Recent advances

How to go further ?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Reminder: Domino Problem for f.g. groups

Fix G a f.g. group and S a generating set for G.

Domino Problem for G-SFTs

Input: *F* a finite set of forbidden patterns on *S*. **Output:** Yes if there exists a configuration in X_F , No otherwise.

Recent advances

How to go further ?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Reminder: Domino Problem for f.g. groups

Fix G a f.g. group and S a generating set for G.

Domino Problem for G-SFTs

Input: F a finite set of forbidden patterns on S. **Output:** Yes if there exists a configuration in X_F , No otherwise.

Question

Which f.g. groups have decidable Domino Problem ?

Recent advances

How to go further ?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Lecture 3: Domino Problem, Part II: f.g. groups.

Basic facts about DP for f.g. groups

- Domino Problem and subgroups
- Word Problem vs. Domino Problem
- Domino Problem as a Markov property
- Toward a characterization

Recent advances

- Kari-Culik aperiodic tileset
- DP on the hyperbolic plane \mathbb{H}^2
- Baumslag-Solitar groups
- Virtually nilpotent groups

3 How to go further ?

- Aperiodic SFT and DP
- How to go further ?

Recent advances

How to go further ?

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Domino Problem and subgroups (I)

Proposition

Let H and G be two f.g. groups s.t. H is a subgroup of G. If G has decidable Domino Problem, then so has H.

Sketch of the proof:

- Let X be an H-SFT given by $X = X_{\mathcal{F}}$, \mathcal{F} finite.
- Consider *H*-patterns in \mathcal{F} as *G*-patterns.
- Define X' the G-SFT given by $X' = X_{\mathcal{F}}$.
- Then $X = \emptyset \Leftrightarrow X' = \emptyset$.

Recent advances

How to go further ?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Domino Problem and subgroups (II)

Proposition

Let H and G be two f.g. groups s.t. H is a subgroup of G of finite index. If H has decidable Domino Problem, then so has G.

Sketch of the proof: Let τ be a finite set of Wang tiles on *G*.

- Since [G : H] < ∞ there are finitely many left cosets g₁H,..., g_kH (choose g_i of minimal length).
- Construct \(\tau'\) ⊂ \(\tau^k\) the finite set of Wang tiles on H compatible with the choice of the g_i.
- $\triangleright \ X_{\tau} = \emptyset \Leftrightarrow X_{\tau'} = \emptyset.$

Basic facts about DP for f.g. groups $\bigcirc \bullet \circ \circ \circ$

Recent advances

How to go further ?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Reminder: Word Problem

Does there exist an algorithm that decides whether two words w_1 and w_2 on the generators and their inverses represent the same element in G $(w_1 =_G w_2)$?

$$WP(G) = \left\{ w \in \left(S \cup S^{-1} \right)^* \mid w =_G \mathbb{1}_G \right\}.$$

Definition

A f.g. group *G* has **decidable WP** if there exists an algorithm that takes two words w_1 and w_2 as input and outputs **Yes** if $w_1 =_G w_2$ and **No** if $w_1 \neq_G w_2$.

Remark: Decidability of WP does not depend on the choice of *S*.

Basic facts about DP for f.g. groups $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Recent advances

How to go further ?

Word Problem vs. Domino Problem

Property

Let G be a finitely generated group with decidable domino problem, then G has decidable word problem.

Sketch of the proof:

- ▶ Suppose that *S* generates *G*.
- Consider a word $w \in (S \cup S^{-1})^*$ s.t. $w =_G g$.
- ▶ Define the SFT X_F on A ($|A| \ge 3$) by forbidden patterns

$$\mathcal{F} = \{p_a\}_{a \in \mathcal{A}}$$

where p_a has support $\{1_G, g\}$ s.t. $(p_a)_{1_G} = (p_a)_g = a$.

• Lemma:
$$w =_G 1_G \Leftrightarrow X_F = \emptyset$$
.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへ⊙

Recent advances

How to go further ?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Domino Problem as a Markov property

A property of f.p. groups is a Markov property if

- (i) there exists a f.p. group with this property,
- (ii) there exists a f.p. group that cannot be embedded in any f.p. group with the property.

Examples: being trivial, abelian, nilpotent, solvable, free, torsion-free... are Markov properties.

Recent advances

How to go further ?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Domino Problem as a Markov property

A property of f.p. groups is a Markov property if

- (i) there exists a f.p. group with this property,
- (ii) there exists a f.p. group that cannot be embedded in any f.p. group with the property.

Examples: being trivial, abelian, nilpotent, solvable, free, torsion-free... are Markov properties.

Theorem (Adian & Rabin, 1955-1958)

If ${\cal P}$ is a Markov property, the problem of deciding whether a f.p. group has property ${\cal P}$ is undecidable.

Recent advances

How to go further ?

Domino Problem as a Markov property

A property of f.p. groups is a Markov property if

- (i) there exists a f.p. group with this property,
- (ii) there exists a f.p. group that cannot be embedded in any f.p. group with the property.

Examples: being trivial, abelian, nilpotent, solvable, free, torsion-free... are Markov properties.

Theorem (Adian & Rabin, 1955-1958)

If ${\cal P}$ is a Markov property, the problem of deciding whether a f.p. group has property ${\cal P}$ is undecidable.

Proposition

The group property G has decidable domino problem is a Markov property.

Recent advances

How to go further ?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

What do we know ? (in 2012)

Domino Problem is

- decidable on \mathbb{Z} , \mathbb{F}_k , VF groups.
- undecidable on \mathbb{Z}^d $(d \ge 2)$, all f.g. groups having \mathbb{Z}^2 as subgroup.

Recent advances

How to go further ?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

What do we know ? (in 2012)

Domino Problem is

- decidable on \mathbb{Z} , \mathbb{F}_k , VF groups.
- undecidable on \mathbb{Z}^d $(d \ge 2)$, all f.g. groups having \mathbb{Z}^2 as subgroup.

Conjecture (Ballier)

A f.g. group G has decidable Domino Problem iff G is virtually free.

Recent advances

How to go further ?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Lecture 3: Domino Problem, Part II: f.g. groups.

Basic facts about DP for f.g. groups

- Domino Problem and subgroups
- Word Problem vs. Domino Problem
- Domino Problem as a Markov property
- Toward a characterization

Recent advances

- Kari-Culik aperiodic tileset
- DP on the hyperbolic plane \mathbb{H}^2
- Baumslag-Solitar groups
- Virtually nilpotent groups

3 How to go further ?

- Aperiodic SFT and DP
- How to go further ?

Recent advances

How to go further ?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

KC aperiodic tileset: Principle

Encode a small *aperiodic dynamical system* **T** inside a *finite set of Wang tiles*.

 $\mathbf{T}^{3}(x)$ $\mathbf{T}^{2}(x)$ $\mathbf{T}^{1}(x)$ Х $T^{-1}(x)$ $T^{-2}(x)$ $T^{-3}(x)$

Recent advances

How to go further ?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Representation of reals numbers

Given x a real number, a **representation of** x is a sequence of integers $(x_k)_{k \in \mathbb{Z}}$ such that :

∀k ∈ Z, x_k ∈ { [x], [x] + 1 };
∀k ∈ Z,

$$\lim_{n \to \infty} \frac{x_{k-n} + x_{k+1} + \dots + x_{k+n}}{2n+1} = x$$

Recent advances

How to go further ?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Representation of reals numbers

Given x a real number, a **representation of** x is a sequence of integers $(x_k)_{k \in \mathbb{Z}}$ such that :

∀k ∈ Z, x_k ∈ {[x], [x] + 1};
∀k ∈ Z,
$$\lim_{n \to \infty} \frac{x_{k-n} + x_{k+1} + \dots + x_{k+n}}{2n+1} = x.$$

Remark: If $(x_k)_{k \in \mathbb{Z}}$ is a representation of x, then so is $\forall \ell \in \mathbb{Z}$, $(x_{k+\ell})_{k \in \mathbb{Z}}$.

Recent advances

How to go further ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Balanced representation of reals numbers

Let $x \in \mathbb{R}$ be arbitrary. For every $k \in \mathbb{Z}$, let

$$B_k = \lfloor kx \rfloor - \lfloor (k-1)x \rfloor.$$

The bi-infinite sequence $(B_k)_{k \in \mathbb{Z}}$ is a **balanced representation of** *x*.

Recent advances

How to go further ?

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Balanced representation of reals numbers

Let $x \in \mathbb{R}$ be arbitrary. For every $k \in \mathbb{Z}$, let

$$B_k = \lfloor kx \rfloor - \lfloor (k-1)x \rfloor.$$

The bi-infinite sequence $(B_k)_{k \in \mathbb{Z}}$ is a **balanced representation of** *x*.

- $(B_k)_{k\in\mathbb{Z}}$ is a representation of x in the sense defined before.
- Balanced representations of irrational x are sturmian sequences, while for rational x the sequence is periodic.

Recent advances

How to go further ?

A piecewise linear affine map T

Let $T : [\frac{1}{3}; 2] \to [\frac{1}{3}; 2]$ be the piecewise linear map defined by

$$T: x \mapsto \begin{cases} 2x \text{ if } x \in [\frac{1}{3}; 1] \\ \frac{1}{3}x \text{ if } x \in]1; 2 \end{cases}$$

イロト 不得下 不良下 不良下

Э

Recent advances

How to go further ?

A piecewise linear affine map T

Let $T: [\frac{1}{3}; 2] \rightarrow [\frac{1}{3}; 2]$ be the piecewise linear map defined by

$$T: x \mapsto \begin{cases} 2x \text{ if } x \in [\frac{1}{3}; 1] \\ \frac{1}{3}x \text{ if } x \in]1; 2] \end{cases}$$

Proposition

The dynamical system **T** is aperiodic.

Recent advances

How to go further ?

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Encoding multiplications inside Wang tiles

A λ -multiplication tile is a Wang tile such that

$$\lambda \cdot \mathbf{s} + \mathbf{w} = \mathbf{n} + \mathbf{e}.$$

	n	
w		е
	s	

Recent advances

How to go further ?

Encoding multiplications inside Wang tiles

A λ -multiplication tile is a Wang tile such that

$$\lambda \cdot \mathbf{s} + \mathbf{w} = \mathbf{n} + \mathbf{e}.$$

Such tiles perform multiplication by λ with some errors that propagate.

n_1	<i>n</i> ₂	<i>n</i> 3	n ₄	n ₅	n ₆
w					e
<i>s</i> ₁	<i>s</i> ₂	<i>S</i> 3	<i>S</i> 4	<i>S</i> 5	<i>s</i> 6

$$\lambda \cdot \frac{s_1 + \dots + s_6}{6} + \frac{w}{6} = \frac{n_1 + \dots + n_6}{6} + \frac{e}{6}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Recent advances

How to go further ?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Kari-Culik aperiodic set of 13 Wang tiles

All tiles are λ -multiplication tiles, with $\lambda = 2$ or $\frac{1}{3}$.

Theorem (Kari-Culik, 1996)

KC tileset is aperiodic.

Recent advances

How to go further ?

An example of tiling

_			_						_			_			_						_			_			_		_
1	1	0	0	2	0	0	2	0	0	2	0	0	2	0	0	2	0	0	1	1	1	1	0	0	2	0	0	1	1
0	0′ 0′	0	0	1	1	1	1	0	0	1	1	1	1	0	0	1	1	1	1	0	0	0'	0	0	1	1	1	1	0
$\frac{1}{3}$	0	$\frac{2}{3}$	2 3	1 1	$\frac{0}{3}$	<u>0</u> 3	0	$\frac{2}{3}$	2 3	1 1	$\frac{0}{3}$	<u>0</u> 3	0	$\frac{1}{3}$	$\frac{1}{3}$	1	$\frac{0}{3}$	<u>0</u> 3	0	$\frac{1}{3}$	$\frac{1}{3}$	0	$\frac{2}{3}$	2 3	1 1	$\frac{0}{3}$	<u>0</u> 3	0	$\frac{1}{3}$
1	1 0	0	0	1	1	1	2	1	1	1 0	0	0	1	1	1	2	1	1	1 0	0	0	1 1	1	1	1 0	0	0	1	1
$\frac{0}{3}$	0	$\frac{2}{3}$	$\frac{2}{3}$	1	$\frac{1}{3}$	$\frac{1}{3}$	1	$\frac{0}{3}$	$\frac{0}{3}$	0	$\frac{2}{3}$	$\frac{2}{3}$	1	$\frac{1}{3}$	$\frac{1}{3}$	1	$\frac{0}{3}$	$\frac{0}{3}$	0	$\frac{1}{3}$	$\frac{1}{3}$	1	$\frac{0}{3}$	$\frac{0}{3}$	0	$\frac{1}{3}$	$\frac{1}{3}$	1	0 3
0	2	0	0	2	0	0	2	0	0	2	0	0	2	0	0	2	0	0	2	1	1	2	1	1	1 0'	0	0	2	0
0	1	1	1	1 0	0	0	1	1	1	1 0	0	0	1	1	1	1 0	0	0	1	1	1	1	0	0	0′ 0	0	0	1	1
$\frac{1}{3}$	1 2	<u>0</u> 3	<u>0</u> 3	0	$\frac{2}{3}$	<u>2</u> 3	1 1	<u>0</u> 3	<u>0</u> 3	0	$\frac{2}{3}$	<u>2</u> 3	1 2	<u>0</u> 3	<u>0</u> 3	0	$\frac{2}{3}$	$\frac{2}{3}$	1 2	<u>0</u> 3	<u>0</u> 3	0	$\frac{2}{3}$	<u>2</u> 3	0	<u>0</u> 3	<u>0</u> 3	1 1	<u>2</u> 3
1	2	1	1	2	1	1	1 0	0	0	1	1	1	2	1	1	1	0	0	2	0	0	1 1	1	1	1	0	0	1	1

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Recent advances

How to go further ?

An example of tiling

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Recent advances

How to go further ?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Kari's proof of undecidability of DP on \mathbb{Z}^2

Theorem (Kari, 2007)

The mortality problem for rational piecewise affine maps is undecidable.

Given any piecewise affine map f with rational coefficients, there exists a finite tileset τ s.t.

f has an immortal point $\Leftrightarrow X_{\tau} \neq \emptyset$.

Theorem (Kari, 2007)

Domino Problem is undecidable on \mathbb{Z}^2 .

Recent advances

How to go further ?

DP on the hyperbolic plane \mathbb{H}^2

A λ -multiplication -tile is a -tile such that $\lambda \cdot n + w = \frac{s_1 + s_2}{2} + e.$ $w = \frac{s_1}{2} + e.$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ - 厘 - 釣�?

Recent advances

How to go further ?

DP on the hyperbolic plane \mathbb{H}^2

Such tiles perform multiplication by λ with some errors that propagate.

$$\lambda \cdot \frac{n_1 + \dots + n_k}{k} + \frac{w}{k} = \frac{s_1 + \dots + s_{2k}}{2k} + \frac{e}{k}.$$

Theorem (Kari, 2007)

Domino Problem is undecidable on \mathbb{H}^2 .

Recent advances

How to go further ?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Baumslag-Solitar groups (I)

Baumslag-Solitar group: $BS(m, n) = \langle a, b | a^m b = ba^n \rangle$

Properties

- Decidable WP (Magnus, 1932)
- ▶ Not VF (Baumslag-Solitar, 1962)
- ▶ Does not contain \mathbb{Z}^2 as a subgroup (but contains arbitrarily large finite grids) for $m \land n = 1$.

Recent advances

How to go further ?

Baumslag-Solitar groups (I)

Baumslag-Solitar group: $BS(m, n) = \langle a, b | a^m b = ba^n \rangle$

Properties

- Decidable WP (Magnus, 1932)
- ▶ Not VF (Baumslag-Solitar, 1962)
- ▶ Does not contain \mathbb{Z}^2 as a subgroup (but contains arbitrarily large finite grids) for $m \land n = 1$.

In the sequel: $\mathsf{BS}(2,3) = \langle a, b | a^2 b = b a^3 \rangle$

▲ロト ▲圖 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● のへで

Recent advances

How to go further ?

Structure

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Structure

Recent advances

How to go further ?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Recent advances

How to go further ?

λ -multiplication tiles in BS(2,3))

A λ -multiplication BS(2,3)-tile is a BS(2,3)-tile such that

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

Recent advances

How to go further ?

An example of tiling

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Recent advances

How to go further ?

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Baumslag-Solitar groups (II)

Theorem (A.& Kari, 2013)

There exist weakly aperiodic SFT on BS(m, n) for every m, n > 0.

But the SFT constructed is not strongly aperiodic (cannot avoid period like $bab^{-1}a^{m-1}ba^{-1}a^{-(m-1)}$).

Theorem (A.& Kari, 2013)

The domino problem is undecidable on BS(m, n).

Question

Does BS(m, n) admits strongly aperiodic SFT ?

Recent advances

How to go further ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Virtually nilpotent groups (I)

Theorem (Ballier & Stein, 2014)

Let G be a f.g. and virtually nilpotent group. Then the following are equivalent

- (i) G is virtually free,
- (ii) G has decidable domino problem.

Recent advances

How to go further ?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Virtually nilpotent groups (I)

Theorem (Ballier & Stein, 2014)

Let G be a f.g. and virtually nilpotent group. Then the following are equivalent

- (i) G is virtually free,
- (ii) G has decidable domino problem.

Theorem (Kuske & Lorhey, Muller & Schupp)

Let G be a f.g. group. Then the following conditions are equivalent

- (i) G is virtually free.
- (ii) G has finite tree-width.
- (iii) MSO is decidable on G.
- (iv) G has context-free WP.

Recent advances

How to go further ?

Virtually nilpotent groups (II)

Theorem (Ballier & Stein, 2014)

If G is a f.g. virtually nilpotent group with infinite tree-width, then DP is undecidable on G.

Sketch of the proof:

- ▶ If G has infinite tree-width, then G has a **thick end**.
- ▶ If $[G : H] < \infty$, then G has a thick end iff H has a thick end.
- A nilpotent group G has a torsion free subgroup H of finite index.
- If H is a f.g. torsion-free nilpotent group with a thick end, then H contains a N × Z structure
- ▶ Reduction from the DP on $\mathbb{Z}^2 \Rightarrow$ DP is undecidable on *H*.
- \blacktriangleright \Rightarrow DP is undecidable on G.

Recent advances

How to go further ?

Lecture 3: Domino Problem, Part II: f.g. groups.

Basic facts about DP for f.g. groups

- Domino Problem and subgroups
- Word Problem vs. Domino Problem
- Domino Problem as a Markov property
- Toward a characterization

Recent advances

- Kari-Culik aperiodic tileset
- DP on the hyperbolic plane \mathbb{H}^2
- Baumslag-Solitar groups
- Virtually nilpotent groups

3 How to go further ?

- Aperiodic SFT and DP
- How to go further ?

Recent advances

How to go further ?

Domino Problem and Aperiodicity

	$e(G) \ge 2$? Cohen's Conjecture $e(G) = 1$?									
	∄ weakly aperiodic SFT	∄ strongly aperiodic SFT ∃ weakly aperiodic SFT	∃ strongly aperiodic SFT							
Decidable DP	Z	Free groups	?							
Undecidable DP	?	? BS(m	$\mathbb{Z}^2, \mathbb{Z}^3$ Heisenberg							

Groups with Undecidable WP ?

Remark

Recent advances

How to go further ? ○●○○○○○

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Proposition

Let H and G be two f.g. groups s.t. H is a subgroup of G of finite index. Then H has decidable DP iff G has decidable DP.

Proposition

Let *H* and *G* be two f.g. groups s.t. *H* is a subgroup of *G* of finite index. Let τ be a finite tileset on *H*.

- X_{τ} is weakly aperiodic on H iff X_{τ} is weakly aperiodic on G.
- X_{τ} is strongly aperiodic on H iff X_{τ} is strongly aperiodic on G.

Recent advances

How to go further ?

Domino Problem and Aperiodicity

	$e(G) \ge 2$? Cohen's Conjecture $e(G) = 1$?									
	∄ weakly aperiodic SFT	∄ strongly aperiodic SFT ∃ weakly aperiodic SFT	∃ strongly aperiodic SFT							
Decidable DP	Z	Free groups	?							
Undecidable DP	?	? BS(m	$\mathbb{Z}^2, \mathbb{Z}^3$ Heisenberg							

Groups with Undecidable WP ?

Recent advances

How to go further ?

Domino Problem and Aperiodicity

	$e(G) \ge 2$? Cohen's Conjecture $e(G) = 1$?									
	∄ weakly aperiodic SFT	∄ strongly aperiodic SFT ∃ weakly aperiodic SFT	∃ strongly aperiodic SFT							
Decidable DP	<i>e</i> (<i>G</i>) = 2	VF groups	?							
Undecidable DP	?	? BS(m	$\mathbb{Z}^2, \mathbb{Z}^3$ Heisenberg							

Groups with Undecidable WP ?

Recent advances

How to go further ?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Some questions and conjectures (I)

Conjecture

Let G be a f.g. group. Then e(G) = 2 iff G has decidable DP and no weakly aperiodic SFT.

Conjecture (generalizes Wang's original idea)

If G is f.g. and does not admit weakly aperiodic SFT, then G has decidable DP.

Recent advances

How to go further ?

Domino Problem and Aperiodicity

	e(G)	≥ 2 ? Cohen's Conjec	ture $e(G) = 1$?
	∄ weakly aperiodic SFT	∄ strongly aperiodic SFT ∃ weakly aperiodic SFT	∃ strongly aperiodic SFT
Decidable DP	Z	Free groups	?
Undecidable DP	?	? BS(m	$\mathbb{Z}^2, \mathbb{Z}^3$ Heisenberg

Groups with Undecidable WP ?

Recent advances

How to go further ? 00000●00

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Some questions and conjectures (II)

Questions

- ▶ Does BS(m,n) admits strongly aperiodic SFTs ?
- Which groups admits weakly but not strongly aperiodic SFTs ?

Question

Does there exists a f.g. group with decidable Domino Problem that admits a strongly aperiodic SFT ?

Question

What about weakly/aperiodic SFTs and f.g. groups with undecidable WP ?

Recent advances

How to go further ?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

How to go further ?

- Use different characterizations of VF groups (decidable MSO logic, finite tree-width, context-free WP,...) ?
- Encode TM computation inside G ? or another computational model (which one) ?
- Construct (weakly/strongly) aperiodic SFT ?

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Thank you for your attention !!