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Introduction

Mini-course divided into 4 lectures
I Lecture 1: SD on f.g. groups: a computational approach.
I Lecture 2: Domino Problem, Part I: Wang tiles.
I Lecture 3: Domino Problem, Part II: f.g. groups.
I Lecture 4: Effective subshifts.
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Lecture 4: Effective subshifts.

1 Z-effective subshifts
Why effective subshifts ?
Z-effectiveness
Limitations

2 A stronger notion of effectiveness
G -machines
G -effectiveness
Effectiveness and other classes of subshifts

3 G -Effective vs Sofic subshifts
Some groups with stricly G -effective subshifts
What about the hyperbolic plane ?



Z-effective subshifts A stronger notion of effectiveness G-Effective vs Sofic subshifts

Reminder: Turing machines
A Turing machine is

] ] ] ] ] ] ]a b ‖

q‖



Z-effective subshifts A stronger notion of effectiveness G-Effective vs Sofic subshifts

Reminder: Turing machines
A Turing machine is

] ] ] ] ] ] ]a b ‖

q‖



Z-effective subshifts A stronger notion of effectiveness G-Effective vs Sofic subshifts

Reminder: Turing machines
A Turing machine is

] ] ] ] ] ] ]a b ‖

q‖



Z-effective subshifts A stronger notion of effectiveness G-Effective vs Sofic subshifts

Reminder: Turing machines
A Turing machine is

] ] ] ] ] ] ]a b ‖

qa+



Z-effective subshifts A stronger notion of effectiveness G-Effective vs Sofic subshifts

Reminder: Turing machines
A Turing machine is

] ] ] ] ] ] ]a a ‖

qb++



Z-effective subshifts A stronger notion of effectiveness G-Effective vs Sofic subshifts

Reminder: Turing machines
A Turing machine is

] ] ] ] ] ] ]a a ‖

qb++

A finite word w ∈ A∗ is accepted (resp. rejected) by a Turing
machineM if starting from the tape . . . ] · w] . . . , the machineM
reaches an accepting (resp. rejecting) state in finite time.



Z-effective subshifts A stronger notion of effectiveness G-Effective vs Sofic subshifts

Reminder: Turing machines
A Turing machine is

] ] ] ] ] ] ]a a ‖

qb++

A finite word w ∈ A∗ is accepted (resp. rejected) by a Turing
machineM if starting from the tape . . . ] · w] . . . , the machineM
reaches an accepting (resp. rejecting) state in finite time.

A set of finite words L ⊂ A∗ is decidable if there exists a TM that
accepts w if w ∈ L and rejects w if w /∈ L.



Z-effective subshifts A stronger notion of effectiveness G-Effective vs Sofic subshifts

Reminder: Turing machines
A Turing machine is

] ] ] ] ] ] ]a a ‖

qb++

A finite word w ∈ A∗ is accepted (resp. rejected) by a Turing
machineM if starting from the tape . . . ] · w] . . . , the machineM
reaches an accepting (resp. rejecting) state in finite time.

A set of finite words L ⊂ A∗ is decidable if there exists a TM that
accepts w if w ∈ L and rejects w if w /∈ L.

A set of finite words L ⊂ A∗ is recognizable if there exists a TM that
accepts w iff w ∈ L.
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Effective subshifts on Z

Definition
A Z-subshift is effective if there exists a recognizable set of forbidden
patterns that defines it.

Remark: The set of forbidden patterns F can be chosen to be maximal.

Examples:
I Sofic subshifts are effective.
I The sets of configurations on {a, b, c} made of anbn-blocks inside a

sea of c ’s is an effective subshift.

Fact: There exist subshifts which are not effective (cardinality argument).

Proposition

A Z-subshift is effective iff there exists a decidable set of forbidden
patterns that defines it.
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Why effective subshifts ?

I Chosmky hierarchy for formal languages.

I Z-effective subshifts naturally appear as projective subdynamics of
sofic Z2-subshifts.
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Projective Subdynamics

Initially introduced by Johnson, Kass and Madden in 2007.

Idea: consider subsystems of lower dimension.

Definition

Let X ⊆ AZd
be a Zd subshift and L � Zd a k-dimensional sub-lattice

(1 ≤ k < d). The L-projective subdynamics of X is

PL(X ) := {x |L : x ∈ X} ⊆ AL.

I
(
PL(X ), σL×PL(X )

)
is a Zk -subshift.

I PL(X ): globally admissible configurations of shape L in X .
I Loss of information about the original subshift.
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Example of projective subdynamics

L = {(i , j) ∈ Z2 : i = j} x =

PL(x) = . . . . . .



Z-effective subshifts A stronger notion of effectiveness G-Effective vs Sofic subshifts

Example of projective subdynamics

L = {(i , j) ∈ Z2 : i = j} x =

PL
(
σ(1,1)(x)

)
= . . . . . .
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Example of projective subdynamics

L = {(i , j) ∈ Z2 : i = j} x =

PL
(
σ(2,2)(x)

)
= . . . . . .
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Example of projective subdynamics

L = {(i , j) ∈ Z2 : i = j} x =

PL
(
σ(2,2)(x)

)
= . . . . . .

In the sequel, we will concentrate on P~e1Z(X ) (PS along the horizontal
direction).
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Stability under projective subdynamics

Fact: Sofic subshifts are not closed under PS.
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Proposition

The class of effective subshifts is stable under projective subdynamics.
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The class of effective subshifts is stable under projective subdynamics.
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Motivation: Hochman’s result

Theorem (Hochman 2008)

Any effective Z-subshift may be obtained as the projective subdynamics
of a sofic Z3-subshift.

The proof is based on
I the use of Turing machines as SFT,
I substitutive subshifts to construct computation zones in 3D.

Theorem (A.& Sablik 2013, Durand, Romaschenko & Shen 2012)

Any effective Z-subshift may be obtained as the projective subdynamics
of a sofic Z2-subshift.
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Hochman’s result: idea of the proof
What about Robinson tiling ?

But words produced will be disconnected !
I Go to dimension 3 to define rectangular computations zones.
I Use a hierarchy of Turing machines to compare disconnected words

with the content of the tape.
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How to go further ?

Question 1
Does there exist a f.g. group such that Effective = Sofic ?

I Candidate: group containing a structure similar to H2 ?

Question 2
Which groups admit a Hochman like result ?

I Which G s.t. effective G -subshifts can be embedded inside sofic
G × Z-subshifts ?

I Which G s.t. effective G -subshifts can be embedded inside sofic
G × Z2-subshifts ? (easier ?)

⇒ Define a notion of effectiveness for G -subshifts.
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Z-effectiveness

Let G be a f.g. group. How to define effectiveness for G -subshifts ?

First idea: Use Turing machines.

Problem: Turing machines take words as input and not patterns on G .

Tentative: Encode patterns inside words.
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Pattern codings

How to encode a pattern p ∈ A∗G on G inside a word wp ∈ A∗ ?

Case of F2

(1F2 , ), (a, ), (b, ), (a-1, ), (b-1, )

Definition
Let S ⊂ G be a finite generator. A pattern coding c is a finite set of
tuples c = (wi , ai )1≤i≤n where wi ∈ (S ∪ S−1)∗ and ai ∈ A.
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Case of F2
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Consistent pattern codings

Suppose now you are given a word on A×
(
S ∪ S−1

)∗, does it code a
pattern on G ?

Examples: On BS(1, 2) = 〈a, b | ab = ba2〉,

I
(ε, 0) (b, 1) (a, 1)

(ab, 0) (ba2, 0) (ba, 1)
corresponds to a pattern,

I
(ε, 0) (a2, 1) (bab−1a, 1)
(a, 1) (ba, 1) (abab−1, 0)

does not ! (abab−1 and bab−1a)

Definition
A pattern coding c is consistent if for every words wi ,wj that represent
the same element in G one has ai = aj .

If c is a consistent pattern coding, we define the pattern Π(c) ∈ A∗G such
that supp(Π(c)) =

⋃
i∈I wi and Π(c)wi = ai .



Z-effective subshifts A stronger notion of effectiveness G-Effective vs Sofic subshifts

Consistent pattern codings

Suppose now you are given a word on A×
(
S ∪ S−1

)∗, does it code a
pattern on G ?

Examples: On BS(1, 2) = 〈a, b | ab = ba2〉,

I
(ε, 0) (b, 1) (a, 1)

(ab, 0) (ba2, 0) (ba, 1)
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does not ! (abab−1 and bab−1a)

Definition
A pattern coding c is consistent if for every words wi ,wj that represent
the same element in G one has ai = aj .

If c is a consistent pattern coding, we define the pattern Π(c) ∈ A∗G such
that supp(Π(c)) =

⋃
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Z-effective susbhifts

Let G be a f.g. group and S ⊂ G a finite generating set.

Definition

A G -subshift X ⊂ AG is Z-effective if there exists F ⊂ A∗G such that
X = XF and a Turing machineM that accepts a pattern coding c if and
only if it is either inconsistent or Π(c) ∈ F .

Question: Is it always possible to recognize if a pattern coding is
inconsistent?
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Limitations of Z-effectiveness: recursively presented groups.

Question: Is it always possible to recognize if a pattern coding is
inconsistent?

Theorem

Let |A| ≥ 2 then the following are equivalent:
I G is recursively presented.
I The WP(G ) is recognizable.
I The set of inconsistent patterns codings is recognizable.
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Limitations of Z-effectiveness: decidable Word Problem.

Remark: Even if G is finitely presented, there may be simple G -subshifts
which are not Z-effective !

Theorem
The one-or-less subshift

X≤1 := {x ∈ {0, 1}G | |{g ∈ G : xg = 1}| ≤ 1}

is not Z-effective if G has undecidable WP.
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G -machines

Definition
A G -machine is a Turing machine whose tape has been replaced by the
group G . The transition function is
δ : Q × Σ→ Q × Σ× (S ∪ S−1 ∪ {1G}) where S is a finite set of
generators of G .

s1

s2

q1

s1

s2

q2

δ(q1, ) = (q2, , s1)
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G -machines as computational model

Similarly to TM, we define notions of G -decidable and G -recognizable
languages of patterns L ⊂ A∗G .

Proposition

Let L be a language that can be decided by a multiple head G -machine.
Then L can be decided by a G -machine.



Z-effective subshifts A stronger notion of effectiveness G-Effective vs Sofic subshifts

G -effectiveness

Definition

A G -subshift X ⊂ AG is G -effective if there exists a set of forbidden
patterns F ⊂ A∗G such that X = XF and F is G -recognizable.

Example: The one-or-less subshift is G -effective.

Theorem
Let G be an infinite, finitely generated group, then every Z-effective
subshift is G -effective.

I Initiate a backtracking over G in order to mark a one-sided infinite
path.

I Use the path to simulate one-sided Turing machines.
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Z-effective subshifts are G -effective

B
Layer 5 T

{ B ( 1G , ) ( s1 , ) · · ·
Writing tape of T .

B · · ·
Working tape of T .

Layer 4 Nexus

B
×
Bn

Layer 3 MVISIT

B ×××××

Layer 2 MPATH

P

Layer 1 Reading

Layer 3.1 MPATH

B ×××
××

Layer 3.2 Counter

B
n = 1{ B
×
Bn

Layer 3.3 M′PATH
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Effectiveness and other classes of subshifts

Theorem
I If G has decidable WP then every G -effective subshift is Z-effective.
I The class of G -effective subshifts is closed under factors.
I Every G -SFT is G -effective.
I Every Sofic G -subshift is G -effective.

Sofic Z-effective G -effective
r.p

decidable WP
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Groups with stricly effective subshifts

Proposition

If G is a recursively presented group with undecidable WP there exists
G -effective subshifts which are not sofic.

Proof: X≤1.

Question: Is it possible to construct G -effective subshifts which are not
sofic in big classes of groups?



Z-effective subshifts A stronger notion of effectiveness G-Effective vs Sofic subshifts

Groups with stricly effective subshifts

Proposition

If G is a recursively presented group with undecidable WP there exists
G -effective subshifts which are not sofic.

Proof: X≤1.

Question: Is it possible to construct G -effective subshifts which are not
sofic in big classes of groups?



Z-effective subshifts A stronger notion of effectiveness G-Effective vs Sofic subshifts

Mirror subshift in Z2

Let A = { , , } and Xmirror = XFmirror ⊂ AZ2 where

Fmirror =
{

, , ,
}
∪
⋃

w∈A∗
{ w , w w̃ , w w̃ }

where w̃ denotes the mirror image of the word w .
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The mirror subshift is not sofic

y1 ∈ Xmirror

P1P̃1

y2 ∈ Xmirror

P2P̃2

ỹ /∈ Xmirror

P2P̃1

x1 ∈ X

Q1

x2 ∈ X

Q2

x̃ ∈ X

Q2

↓ φ ↓ φ ↓ φ



Z-effective subshifts A stronger notion of effectiveness G-Effective vs Sofic subshifts

Amenable groups

Key ingredients in the previous proof
I A Z2-effective subshift X with highly non-local conditions.
I The existence of an increasing sequence of finite sets whose border

grows slower than the sets themselves.

Theorem
If G is an amenable f.g. group, then there exist G -effective subshifts
which are not sofic.

Proof: Ball mimic subshift (S. Barbieri’s poster)
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Groups with more than two ends

Theorem

If G is a f.g. group where e(G ) ≥ 2, then there exist G -effective subshifts
which are not sofic.

Proof: Mimic subshift (S. Barbieri’s poster)
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What about the hyperbolic plane ?

Question
Can we construct a f.g. group s.t. all G -effective subshifts are sofic?
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Information Compression in H2 (II)

This coding can be imposed by local rules of the form

?? ??

We thus add finite type constraints which ensure that
I for every row, the kth row above is coded every 2k ;
I every row codes its upper half-plane.

Proposition

If X is an SFT (resp. sofic subshift, effective subshift), then Φ (X) is an
SFT (resp. sofic subshift, effective subshift).
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Groups with a dyadic encoding ?

With dyadic encoding, patterns can be replaced by words.

Can this encoding be used to get rid of the extra dimension(s) needed in
results for effective Z-subshifts ?

Examples of groups with dyadic encoding ?
I Natural candidate: Baumslag-Solitar groups BS(1, n). . .
I . . . but (un)fortunately they are amenable.
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Conclusion

I Two notions of effectiveness for G -subshifts, that coincide iff G has
decidable WP

I Are these two notions always weaker than soficness ?
I Find groups that admit a Hochman like theorem ?
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Thank you for your attention !!
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