Effective 1D subshifts as PSA of 2D sofic subshifts

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Computational Aspects of \mathbb{Z}^d Symbolic Dynamics

Mathematical Congress of the Americas 2013

Nathalie Aubrun (ENS de Lyon, CNRS)

August 8, 2013

In this talk. . .

Effective 1D subshifts as PSA of 2D sofic subshifts

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- Multidimensional SFT and effective subshifts
- Turing machines, Computability obstruction
- Projective subdynamics

Outline

Effective 1D subshifts as PSA of 2D sofic subshifts

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

1 Multidimensional subshifts and Computability

- Background and definitions
- The Wang tiles model
- Computability and 2D subshifts

Effective 1D subshifts as PSA of 2D sofic subshifts

- Some elements of the proof
- Remarks about the construction
- How to go further ?

Effective 1D subshifts as PSA of 2D sofic subshifts

ション ふゆ アメリア メリア しょうくの

Multidimensional subshifts

- \mathcal{A} a finite alphabet and $d \in \mathbb{N}$
- $\mathcal{A}^{\mathbb{Z}^d}$, the *set of configurations*, is a compact metric space (for the prodiscrete topology)
- shift action $\sigma : \mathbb{Z}^d \times \mathcal{A}^{\mathbb{Z}^d} \to \mathcal{A}^{\mathbb{Z}^d}$, $(\sigma_{(n_1,...,n_d)}(x))_{(i_1,...,i_d)} = x_{(i_1+n_1,...,i_d+n_d)}$
- the dynamical system $\left(\mathcal{A}^{\mathbb{Z}^d},\sigma\right)$ is the *d*-dimensional full-shift on \mathcal{A}

Effective 1D subshifts as PSA of 2D sofic subshifts

Multidimensional subshifts

- \mathcal{A} a finite alphabet and $d \in \mathbb{N}$
- $\mathcal{A}^{\mathbb{Z}^d}$, the *set of configurations*, is a compact metric space (for the prodiscrete topology)
- shift action $\sigma : \mathbb{Z}^d \times \mathcal{A}^{\mathbb{Z}^d} \to \mathcal{A}^{\mathbb{Z}^d}$, $(\sigma_{(n_1,...,n_d)}(x))_{(i_1,...,i_d)} = x_{(i_1+n_1,...,i_d+n_d)}$
- the dynamical system $\left(\mathcal{A}^{\mathbb{Z}^d},\sigma\right)$ is the *d*-dimensional full-shift on \mathcal{A}

Definitions

- (topological) A subshift is a closed and σ -invariant subset of $\mathcal{A}^{\mathbb{Z}^d}$.
- (combinatorial) If F is a set of patterns, the subshift generated by F is

$$X_F = \left\{ x \in \mathcal{A}^{\mathbb{Z}^d} : \text{ no pattern of } F \text{ appears in } x \right\}$$

Effective subshifts

Effective 1D subshifts as PSA of 2D sofic subshifts

$\mathsf{SFT} \subsetneq \mathsf{Sofic} \ \mathsf{susbhifts} \subsetneq \textit{Effectively closed}$

Definition

A subshift is *effectively closed* (or *effective*) if its complement is a computable union of cylinders.

Property

 \boldsymbol{X} is effectively closed if and only one of the followings holds

(i) $X = X_F$ for some recursively enumerable set F of forbbiden patterns (ii) $X = X_F$ for some recursive set F of forbbiden patterns

Effective 1D subshifts as PSA of 2D sofic subshifts

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Wang tiles and SFT

We consider tilings of \mathbb{R}^2 by unit squares with one color on each edge, such that two adjacent squares wear the same color on their common edge.

Effective 1D subshifts as PSA of 2D sofic subshifts

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Wang tiles and SFT

We consider tilings of \mathbb{R}^2 by unit squares with one color on each edge, such that two adjacent squares wear the same color on their common edge.

Every SFT is equivalent (up to conjugacy) to a finite set of Wang tiles

Effective 1D subshifts as PSA of 2D sofic subshifts

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Turing machines and Wang tiles (I)

- A *Turing machine* is a tuple $\mathcal{M} = (Q, \Gamma, \sharp, q_0, \delta, Q_F)$ where:
 - Q is a finite set of states, $q_0 \in Q$ is the initial state;
 - Γ is a finite alphabet;
 - $\sharp \notin \Gamma$ blank symbol
 - $\delta: Q \times \Gamma \to Q \times \Gamma \times \{\leftarrow, \downarrow, \rightarrow\}$ transition function;
 - $F \subset Q_F$ finite set of final states.

Effective 1D subshifts as PSA of 2D sofic subshifts

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Turing machines and Wang tiles (I)

- A *Turing machine* is a tuple $\mathcal{M} = (Q, \Gamma, \sharp, q_0, \delta, Q_F)$ where:
 - Q is a finite set of states, $q_0 \in Q$ is the initial state;
 - Γ is a finite alphabet;
 - # ∉ Γ blank symbol
 - $\delta: Q \times \Gamma \to Q \times \Gamma \times \{\leftarrow, \downarrow, \rightarrow\}$ transition function;
 - $F \subset Q_F$ finite set of final states.

The rule $\delta(q, a) = (q', a', \leftarrow)$ will be encoded by the Wang tile

Turing machine $\mathcal{M} \rightsquigarrow$ finite set of Wang tiles $\tau_{\mathcal{M}}$

Effective 1D subshifts as PSA of 2D sofic subshifts

Turing machines and Wang tiles (II)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Effective 1D subshifts as PSA of 2D sofic subshifts

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Turing machines and Wang tiles (II)

But the set of tilings by $\tau_{\mathcal{M}}$ may contain more than valid computations by \mathcal{M} ...

Consequences for 2D SFT

Effective 1D subshifts as PSA of 2D sofic subshifts

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

From the previous encoding, one can prove that there exists no algorithm to decide whether

- a SFT is empty [Berger, 1964]
- a pattern is globally admissible [Robinson, 1971]
- an SFT has periodic configurations [Gurevich & Koryakov, 1972]

2D vs 1D sofic subshifts

1D sofic subshifts

- ► $X_F = \emptyset$? is decidable
- entropy is computable (nonnegative rational multiples of log of Perron numbers)
- representation by finite automata/matrix
- every SFT has a periodic configuration
- ► soficness ⇔ finite number of followers set

Effective 1D subshifts as PSA of 2D sofic subshifts

2D sofic subshifts

- ► $X_F = \emptyset$? is undecidable
- entropy is not computable (right recursively enumerable numbers)
- representation by Wang tiles, textile systems

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

► ∃ aperiodic SFT

Outline

Effective 1D subshifts as PSA of 2D sofic subshifts

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

1 Multidimensional subshifts and Computability

- Background and definitions
- The Wang tiles model
- Computability and 2D subshifts

Effective 1D subshifts as PSA of 2D sofic subshifts

- Some elements of the proof
- Remarks about the construction
- How to go further ?

Projective subdynamics

Effective 1D subshifts as PSA of 2D sofic subshifts

ション ふゆ く 山 マ チャット しょうくしゃ

Initially introduced by Johnson, Kass and Madden in 2007.

Definition

Let $X \subseteq \mathcal{A}^{\mathbb{Z}^d}$ be a \mathbb{Z}^d subshift and $L \lneq \mathbb{Z}^d$ a k-dimensional sublattice $(1 \leq k < d)$. The *L-projective subdynamics of* X is

$$P_L(X) := \{x|_L : x \in L\} \subseteq \mathcal{A}^L.$$

- $(P_L(X), \sigma_{L \times P_L(X)})$ is a \mathbb{Z}^k -subshift.
- $P_L(X)$: globally admissible configurations of shape L in X.
- Loss of information about the original subshift.

Projective subdynamics

Effective 1D subshifts as PSA of 2D sofic subshifts

Initially introduced by Johnson, Kass and Madden in 2007.

Definition

Let $X \subseteq \mathcal{A}^{\mathbb{Z}^d}$ be a \mathbb{Z}^d subshift and $L \lneq \mathbb{Z}^d$ a k-dimensional sublattice $(1 \leq k < d)$. The *L-projective subdynamics of* X is

$$P_L(X) := \{x|_L : x \in L\} \subseteq \mathcal{A}^L.$$

- $(P_L(X), \sigma_{L \times P_L(X)})$ is a \mathbb{Z}^k -subshift.
- $P_L(X)$: globally admissible configurations of shape L in X.
- Loss of information about the original subshift.

In the sequel, we will concentrate on $P_{\vec{e}_1\mathbb{Z}}(X)$ (PS along the horizontal direction).

Effective 1D subshifts as PSA of 2D sofic subshifts

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Projective subdynamics of sofic subshifts

Proposition

Projective subdynamics of SFT (sofic subshifts) are effective subshifts.

Effective 1D subshifts as PSA of 2D sofic subshifts

ション ふゆ く 山 マ チャット しょうくしゃ

Projective subdynamics of sofic subshifts

Proposition

Projective subdynamics of SFT (sofic subshifts) are effective subshifts.

Theorem (Hochman 2008)

Any effective \mathbb{Z}^d subshift may be obtained as the projective subdynamics of a \mathbb{Z}^{d+2} sofic subshift.

The proof is based on

- the use of *Turing machines as SFT*,
- *substitutive tilings* to construct computation zones in 3D.

Effective 1D subshifts as PSA of 2D sofic subshifts

Projective subdynamics of sofic subshifts

Proposition

Projective subdynamics of SFT (sofic subshifts) are effective subshifts.

Theorem (Hochman 2008)

Any effective \mathbb{Z}^d subshift may be obtained as the projective subdynamics of a \mathbb{Z}^{d+2} sofic subshift.

The proof is based on

- the use of *Turing machines as SFT*,
- *substitutive tilings* to construct computation zones in 3D.

Theorem (Durand, Romaschenko & Shen 2011, A.& Sablik 2013)

Any effective \mathbb{Z}^d -subshift may be obtained as the projective subdynamics of a \mathbb{Z}^{d+1} sofic subshift.

Effective 1D subshifts as PSA of 2D sofic subshifts

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

A four layers construction

How to realize an effective 1D-subshift $\Sigma\subset \mathcal{A}_{\Sigma}{}^{\mathbb{Z}}$ as PS of a 2D sofic subshift ?

- SFT made of four layers
 - first layer: configuration $x \in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ that will be checked
 - second layer: hierarchical structure: computation zones for TM
 - third layer: TM \mathcal{M}_F that enumerates forbidden patterns of Σ and checks if $x\in\Sigma$
 - $\bullet\,$ fourth layer: TM $\mathcal{M}_{\texttt{Search}}$ that helps the TM \mathcal{M}_F to scan entirely x
- all layers but the first are finally erased with a letter-to-letter block map

 $x \in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$

Effective 1D subshifts as PSA of 2D sofic subshifts

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のへで

A four layers construction

- SFT made of four layers
 - first layer: configuration $x \in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ that will be checked
 - second layer: hierarchical structure: computation zones for TM
 - third layer: TM \mathcal{M}_F that enumerates forbidden patterns of Σ and checks if $x\in\Sigma$
 - $\bullet\,$ fourth layer: TM $\mathcal{M}_{\texttt{Search}}$ that helps the TM \mathcal{M}_F to scan entirely x
- all layers but the first are finally erased with a letter-to-letter block map

$x\in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$
$x\in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$
$x\in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$
$x\in \mathcal{A}_{\boldsymbol{\Sigma}}^{\mathbb{Z}}$
$x\in\mathcal{A}_{\Sigma}^{\mathbb{Z}}$
$x\in\mathcal{A}_{\Sigma}^{\mathbb{Z}}$
$x\in\mathcal{A}_{\Sigma}^{\mathbb{Z}}$

Effective 1D subshifts as PSA of 2D sofic subshifts

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のへで

A four layers construction

- SFT made of four layers
 - first layer: configuration $x \in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ that will be checked
 - second layer: hierarchical structure: computation zones for TM
 - third layer: TM \mathcal{M}_F that enumerates forbidden patterns of Σ and checks if $x\in\Sigma$
 - $\bullet\,$ fourth layer: TM $\mathcal{M}_{\texttt{Search}}$ that helps the TM \mathcal{M}_F to scan entirely x
- all layers but the first are finally erased with a letter-to-letter block map

Effective 1D subshifts as PSA of 2D sofic subshifts

ション ふゆ アメリア メリア しょうくの

A four layers construction

- SFT made of four layers
 - first layer: configuration $x \in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ that will be checked
 - second layer: hierarchical structure: computation zones for TM
 - third layer: TM \mathcal{M}_F that enumerates forbidden patterns of Σ and checks if $x\in\Sigma$
 - $\bullet\,$ fourth layer: TM $\mathcal{M}_{\texttt{Search}}$ that helps the TM \mathcal{M}_F to scan entirely x
- all layers but the first are finally erased with a letter-to-letter block map

Effective 1D subshifts as PSA of 2D sofic subshifts

A four layers construction

- SFT made of four layers
 - first layer: configuration $x \in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ that will be checked
 - second layer: hierarchical structure: computation zones for TM
 - third layer: TM \mathcal{M}_F that enumerates forbidden patterns of Σ and checks if $x\in\Sigma$
 - $\bullet\,$ fourth layer: TM $\mathcal{M}_{\texttt{Search}}$ that helps the TM \mathcal{M}_F to scan entirely x
- all layers but the first are finally erased with a letter-to-letter block map

Effective 1D subshifts as PSA of 2D sofic subshifts

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のへで

A four layers construction

- SFT made of four layers
 - first layer: configuration $x \in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ that will be checked
 - second layer: hierarchical structure: computation zones for TM
 - third layer: TM \mathcal{M}_F that enumerates forbidden patterns of Σ and checks if $x\in\Sigma$
 - $\bullet\,$ fourth layer: TM $\mathcal{M}_{\texttt{Search}}$ that helps the TM \mathcal{M}_F to scan entirely x
- all layers but the first are finally erased with a letter-to-letter block map

$x\in\Sigma$
$x\in\Sigma$
$x \in \Sigma$

What are PSA of SFT ?

Effective 1D subshifts as PSA of 2D sofic subshifts

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Previous theorems completely characterize PSA of sofic subshifts (the computability obstruction is the only one).

Concerning PSA of SFT, there are only partial answers

- Complete classification of 1D sofic subshifts as PSA of 2D SFT. [Pavlov & Schraudner, preprint]
- Every \mathbb{Z} -effective subshift that contains a sofic subshift of positive entropy is the PSA of some \mathbb{Z}^2 -SFT. [Guillon, 2011]
- A certain class of Z-effective subshifts that contains a subshift of positive entropy is the PSA of some Z²-SFT. [Sablik & Schraudner, preprint]

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Possible improvements

The construction is optimal in terms of dimension, but can we go further $? \end{tabular}$

- Is it possible to determinize the construction (deterministic SFT) ?
 →→ It should be... [Guillon & Zinoviadis, in progress]
- The construction is highly constrained, in the sense that the sofic subshift is constant along the vertical direction (⇒ zero entropy).
 → What are PS of mixing sofic subshifts/SFT ?

Conclusion

Effective 1D subshifts as PSA of 2D sofic subshifts ○○○●

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Challenging question: characterize soficness in higher dimension.
- PSA: decrease dimension to better understand 2D subshifts.
- Example of result where computability obstruction is the only one.
- Another approach: impose that lines are in some subshift X_H , what subshift X_V can you get on the columns ?

Conclusion

Effective 1D subshifts as PSA of 2D sofic subshifts

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Challenging question: characterize soficness in higher dimension.
- PSA: decrease dimension to better understand 2D subshifts.
- Example of result where computability obstruction is the only one.
- Another approach: impose that lines are in some subshift X_H , what subshift X_V can you get on the columns ?

Thank you for your attention !