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Group presentations

generators: a,b
relations: a−1b−1ab = ε (or ab = ba)

elements of the group: words on the alphabet {a,b, a−1,b−1}
aba = a2b = ba2 = b−1a2b2 = . . .
< a,b ∣ab = ba > ≈ Z2 ≈ < a,b, c ∣ab = ba, ab = c , ac = ca,bc = cb >
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Cayley graph
Representation of a group with an undirected graph:

vertices are elements of the group
edges are labelled by the generators gi
an edge labelled by gi between h and h.gi

Z
2 ≈< a,b/ab = ba > < a,b/a4 = b2 = ε,b.a = a3.b >
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Tilings on groups
On Z2: Wang tiles

Generalization to a group G :
a tile = pattern with one colour for each generator and each inverse ;
finite tile set τ ;
a configuration (or tiling) ∈ τG = colouring of the Cayley graph that respects
the neighbourhood rule.
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Finitely presented groups

A group is finitely presented if it possesses a presentation having
a finite number of generators ;
a finite number of relations.

Interest:
structure with a finite representation. . .
which may nevertheless be complex:

Theorem (Novikov, 1955 & Boone, 1957)
There are finitely presented groups with an undecidable word problem.
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Classical problems: aperiodic tile sets

A tiling x ∈ AG is m-periodic with m ∈ G non-trivial if

∀g ∈ G , xg = xm.g .

The set of periods of a tiling x , denoted by Per(x), is thus a sub-group of G .

x is weakly periodic if Per(x) contains an infinite cyclic subgroup
x is strongly non-periodic if it is not weakly periodic
τ is strongly aperiodic if a valid tiling exists and if it admits only strongly
non-periodic tilings.
x is strongly periodic if Per(x) is a finite index subgroup of G
x is weakly non-periodic if it is not strongly periodic
τ is weakly aperiodic if a valid tiling exists and if it admits only weakly
non-periodic tilings.
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Classical problems: aperiodic tile sets

Remarks:

Strong aperiodicity implies weak aperiodicity.
On Z2 the two notions coincide (but not on Z3. . . ).

Question: Given a group G , is it possible to build a weakly/strongly aperiodic tile
set ?

Aperiodicity
On free groups, every tile set has a strongly periodic configuration
(compactness argument).
There exist strongly aperiodic tile sets on Z2 [Ber66, Rob71].
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Classical problems: domino problem

Question: Let G b a group generated by G. Is it possible to find an algorithm
that takes as input a finite set of Wang tiles τ on G, and outputs Yes if and only
if there exists a valid tiling by τ ?

Remark: The problem does not depend on the set of generators chosen for G .

Domino problem
Decidable on free groups.
Undecidable on Z2 [Ber66, Rob71]
Undecidable on the hyperbolic plane [Kar07, Mar08].
Decidable when G is virtually free [MS85] (= has a free sub-group of finite
index).
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Domino problem on a group

Word problem algebraic on GG has finite tree-width

G is virtually free

Domino problem decidable on G
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Why Baumslag-Solitar groups ?

Aim: Necessary condition on G to make the domino problem decidable ?

Examples of groups:
non virtually free (otherwise DP is decidable)
with decidable word problem (otherwise. . ./)
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Definition
Baumslag-Solitar group: BS(m,n) =< a,b∣amb = ban >

Theorem (Magnus, 1932)
Every finitely presented group defined by a single relation has a decidable word
problem.

Theorem (Baumslag-Solitar, 1962)
The groups BS(m,n) are not virtually free.

In the sequel: BS(2,3) =< a,b∣a2b = ba3 >

x x .a x .a2

x .b x .ba x .ba2 x .ba3
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Structure

b−1

ε

b ba

bab−1

bab−2
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Techniques known
How to build aperiodic tile sets ?

give ad-hoc local rules
↝ strongly aperiodic tile set on Z2 [Rob71], H2 [GS10]
use substitutions [Oll08] or fixpoint theorem [DRS09]
↝ gives self-similar tilings, hence strongly aperiodic tile set, but only for Zd

(or amenable groups)
simulate an aperiodic dynamical system
↝ strongly aperiodic tile set on Z2 [Kar96], and H2 [Kar07]
. . .

How to prove the undecidability of the domino problem ?
reduction from the Halting problem
reduction from the immortality problem for piecewise affine maps
. . .

Remark: On Zd the undecidability of DP implies the existence of a strongly
aperiodic tile set !
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Which technique on BS groups ?

Infinitely many layers that merge infinitely often.
Each layer is isomorphic to a tesselation of H2.
But we cannot directly use the tileset of [Kar07] ↝ synchronization problems
!!
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An aperiodic tile set: sketch of the construction

Let T ∶ [ 23 ;2]→ [ 23 ;2] be the piecewise linear map defined by

T ∶ x ↦ {
2x if x ∈ [ 23 ;1]
2
3x if x ∈]1;2]

Properties
The dynamical system T is aperiodic.
Following [Kar07], we construct a finite tile set τ .
There does not exist a strongly periodic valid tiling by τ .
There exists a weakly periodic valid tiling by τ (period
ω = bab−1a2ba−1b−1a−2).
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The tile set τ

1 2

0 0

(2 tiles)
1 1 1

2 2

0 0

(3 tiles)
1 1 2

1 2

0 0

(2 tiles)
1 1 1

1 1

0 0

(3 tiles)
0 1 1

1 1

0 2
3

(3 tiles)
1 1 2

1 1

c c + 1
3

c ∈ {0, 1
3 }(6 tiles)

1 2 2

1 1

c c

c ∈ {0, 1
3 ,

2
3 }(3 tiles)

2 2 2

0 1

c c

c ∈ {0, 1
3 ,

2
3 }(6 tiles)

1 1 1

0 1

c c − 1
3

c ∈ { 1
3 ,

2
3 }(12 tiles)

1 1 2

0 1
2
3 0

(6 tiles)
1 2 2
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Example of tiling by τ

5
6

5
4

5
4 5

4

5
35

3

×2

× 2
3

2 2 2 1 1 1 1 1 2 2 2 2 1 1 2 2 2 2
2 1 1 2 2 2 2 1 2 1 1 1 2 2 2

1 1 0 1 1 1 1 1 0 1 1 1

1 1 1 2 1 1 1 2

1 1 2 1 1 1

1 1 1 2 1 1

Tiling by τ corresponding to the orbit (. . . , 54 ,
5
6 ,

5
3 , . . . ) in T .
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Tiling problems on BS groups

Theorem (A.& Kari)
There exist weakly aperiodic tile sets on BS(m,n) for every m,n > 0.

Theorem (A.& Kari)
The domino problem is undecidable on BS(m,n).

Proof: Reduction from the undecidability of the mortality problem for piecewise
affine maps.
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Conclusion

⇒ A class of groups with undecidable domino problem. . .

but no progress about the reciprocal statement of [MS85].
More interesting: what happens on < a,b∣abm = ban > ?
Use different characterizations of virtually free groups.

Thank you for your attention !
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