(Projective) Subdynamics of Multidimensional Subshifts, part I.

SubTile 2013

Nathalie Aubrun
ENS de Lyon, CNRS
January 17, 2013

Outline

(1) Symbolic dynamics

- Shift spaces and subshifts
- Classes of subshifts
- 2D vs 1D sofic subshifts
(2) Projective Subdynamics and Subactions
- Definitions
- Introductive examples
- Effective subshifts as projective subdynamics

Full-shift, shift action and subshift

- \mathcal{A} a finite alphabet and $d \in \mathbb{N}$
- $x \in \mathcal{A}^{\mathbb{Z}^{d}}$ is a configuration
- $\mathcal{A}^{\mathbb{Z}^{d}}$ endowed with the prodiscrete topology is a compact metric space
- shift action $\sigma: \mathbb{Z}^{d} \times \mathcal{A}^{\mathbb{Z}^{d}} \rightarrow \mathcal{A}^{\mathbb{Z}^{d}}$, $\left(\sigma_{\left(n_{1}, \ldots, n_{d}\right)}(x)\right)_{\left(i_{1}, \ldots, i_{d}\right)}=x_{\left(i_{1}+n_{1}, \ldots, i_{d}+n_{d}\right)}$
- the dynamical system $\left(\mathcal{A}^{\mathbb{Z}^{d}}, \sigma\right)$ is the d-dimensional full-shift on \mathcal{A}

Full-shift, shift action and subshift

- \mathcal{A} a finite alphabet and $d \in \mathbb{N}$
- $x \in \mathcal{A}^{\mathbb{Z}^{d}}$ is a configuration
- $\mathcal{A}^{\mathbb{Z}^{d}}$ endowed with the prodiscrete topology is a compact metric space
- shift action $\sigma: \mathbb{Z}^{d} \times \mathcal{A}^{\mathbb{Z}^{d}} \rightarrow \mathcal{A}^{\mathbb{Z}^{d}}$, $\left(\sigma_{\left(n_{1}, \ldots, n_{d}\right)}(x)\right)_{\left(i_{1}, \ldots, i_{d}\right)}=x_{\left(i_{1}+n_{1}, \ldots, i_{d}+n_{d}\right)}$
- the dynamical system $\left(\mathcal{A}^{\mathbb{Z}^{d}}, \sigma\right)$ is the d-dimensional full-shift on \mathcal{A}

Definition

A subshift is a closed and σ-invariant subset of $\mathcal{A}^{\mathbb{Z}^{d}}$.
$\left\{x \in\{0,1\}^{\mathbb{Z}^{2}}: x_{(i, j)}=1 \Leftrightarrow i=j=0\right\}$ not σ-invariant!
$\left\{x \in\{0,1\}^{\mathbb{Z}^{2}}\right.$: only one 1 appears in $\left.x\right\}$ not closed!
$\left\{x \in\{0,1\}^{\mathbb{Z}^{2}}\right.$: at most one 1 appears in $\left.x\right\}$ is a subshift.

Combinatorial point of view

- A pattern is a local function $p: S \rightarrow \mathcal{A}$, where $S \subset \mathbb{Z}^{d}$ is finite.

- Given a pattern $u \in \mathcal{A}^{S}$, it generates the cylinder

$$
[u]=\left\{x \in \mathcal{A}^{z^{d}}: x \mid s=u\right\} .
$$

- If F is a set of patterns, the subshift generated by F is

$$
X_{F}=\left\{x \in \mathcal{A}^{Z^{d}}: \text { no pattern of } F \text { appears in } x\right\} .
$$

- A subshift is thus the complement of a union of cylinders

$$
X_{F}=\mathcal{A}^{\mathbb{Z}^{d}} \backslash\left(\bigcup_{i \in \mathbb{Z}^{d}, u \in F} \sigma_{i}([u])\right)
$$

Language of a subshift

Definition

The language of size n of a \mathbb{Z}^{d}-subshift X is

$$
\mathcal{L}_{n}(X):=\left\{p:[-n ; n]^{d} \rightarrow \mathcal{A}: \exists x \in X, p \text { appears in } x\right\}
$$

The language of a \mathbb{Z}^{d}-subshift X is

$$
\mathcal{L}(X):=\bigcup_{n \geq 0} \mathcal{L}_{n}(X)
$$

The complement of the language $\mathcal{L}(X)^{c}$ is the biggest set of forbidden patterns.

Language of a subshift

Definition

The language of size n of a \mathbb{Z}^{d}-subshift X is

$$
\mathcal{L}_{n}(X):=\left\{p:[-n ; n]^{d} \rightarrow \mathcal{A}: \exists x \in X, p \text { appears in } x\right\}
$$

The language of a \mathbb{Z}^{d}-subshift X is

$$
\mathcal{L}(X):=\bigcup_{n \geq 0} \mathcal{L}_{n}(X)
$$

The complement of the language $\mathcal{L}(X)^{c}$ is the biggest set of forbidden patterns.

Proposition

The topological and combinatorial definitions coincide.

Subshifts of finite type

The subshift $\left.X_{\{ } \square, \square, \square\right\}$ contains the following configurations

Subshifts of finite type

The subshift $X_{\{ }$ \square $\square, \square\}$ contains the following configurations

Definition

A subshift is of finite type (SFT) if it can be defined by a finite set of forbidden patterns. It is of rank k if these finite patterns may be chosen of size k.

- simplest class for the combinatorial definition
- 2D-SFT \equiv tilings by Wang tiles
- closely related to cellular automata theory

Sofic subshifts

Definition

A sofic subshift is the image of a SFT under a continuous and σ-commuting map.
continuous and σ-commuting map \Leftrightarrow Sliding block map (cellular automaton)
[Hedlund, 1969]
$\Phi: \mathcal{A}^{\mathbb{Z}^{d}} \rightarrow \mathcal{B}^{\mathbb{Z}^{d}}$ given by the local function ϕ

$$
x \in \mathcal{A}^{\mathbb{Z}^{2}}
$$

$$
\Phi(x) \in \mathcal{B}^{\mathbb{Z}^{2}}
$$

Sofic subshifts

Definition

A sofic subshift is the image of a SFT under a continuous and σ-commuting map.
continuous and σ-commuting map \Leftrightarrow Sliding block map (cellular automaton) [Hedlund, 1969]
$\phi: \mathcal{A}^{\mathbb{Z}^{d}} \rightarrow \mathcal{B}^{\mathbb{Z}^{d}}$ given by the local function ϕ

$$
x \in \mathcal{A}^{\mathbb{Z}^{2}}
$$

$$
\Phi(x) \in \mathcal{B}^{\mathbb{Z}^{2}}
$$

- SFT on which information can be erased.
- On \mathbb{Z}, sofic subshifts are exactly those recognized by finite automata.
- In higher dimension, no characterization is known.

An example of purely sofic subshift

$$
\text { Let } X_{\leq 1}=\left\{x \in\{0,1\}^{\mathbb{Z}^{2}}: \text { at most one } 1 \text { appears in } x\right\} \text {. }
$$

- Suppose that $X_{\leq 1}$ is a rank k SFT.
- Then a configuration that contains two 1 's at distance $2 k+1$ cannot be rejected.

$$
\Rightarrow X_{\leq 1} \text { is not an SFT! }
$$

An example of purely sofic subshift

$$
\text { Let } X_{\leq 1}=\left\{x \in\{0,1\}^{\mathbb{Z}^{2}}: \text { at most one } 1 \text { appears in } x\right\} \text {. }
$$

An example of purely sofic subshift

$$
\text { Let } X_{\leq 1}=\left\{x \in\{0,1\}^{\mathbb{Z}^{2}} \text { : at most one } 1 \text { appears in } x\right\} \text {. }
$$

An example of purely sofic subshift
Let $X_{\leq 1}=\left\{x \in\{0,1\}^{\mathbb{Z}^{2}}:\right.$ at most one 1 appears in $\left.x\right\}$.

An example of non-sofic subshift

The mirror subshift is defined on alphabet $\{\square, \square, \square\}$ by

00000000000

An example of non-sofic subshift

The mirror subshift is defined on alphabet $\{\square, \square, \square\}$ by

$$
x_{\text {mirror }}=\{\square, \square\}^{\mathbb{Z}^{2}} \cup\{
$$

Suppose $X_{\text {mirror }}$ is sofic.
Then $\exists \Sigma \subset A^{\mathbb{Z}^{2}}$ a k-SFT and Π a block map of order r, such that

$$
\Pi: \Sigma \rightarrow X_{\text {mirror }} \text { is onto. }
$$

00000000000

An example of non-sofic subshift

The mirror subshift is defined on alphabet $\{\square, \square, \square\}$ by

$$
x_{\text {mirror }}=\{\square, \square\}^{\mathbb{Z}^{2}} \bigcup\{
$$

Suppose $X_{\text {mirror }}$ is sofic.
Then $\exists \Sigma \subset A^{\mathbb{Z}^{2}}$ a k-SFT and Π a block map of order r, such that
$\Pi: \Sigma \rightarrow X_{\text {mirror }}$ is onto.

00000000000

An example of non-sofic subshift

The mirror subshift is defined on alphabet $\{\square, \square, \square\}$ by

$$
x_{\text {mirror }}=\{\square, \square\}^{\mathbb{Z}^{2}} \cup\{
$$

Suppose $X_{\text {mirror }}$ is sofic.
Then $\exists \Sigma \subset A^{\mathbb{Z}^{2}}$ a k-SFT and Π a block map of order r, such that

$$
\Pi: \Sigma \rightarrow X_{\text {mirror }} \text { is onto. }
$$

$$
|A|^{4 n r+8 n k+4 r^{2}}<2^{n^{2}}
$$

00000000000

An example of non-sofic subshift

The mirror subshift is defined on alphabet $\{\square, \square, \square\}$ by

$$
x_{\text {mirror }}=\{\square, \square\}^{\mathbb{Z}^{2}} \cup\{
$$

Suppose $X_{\text {mirror }}$ is sofic.
Then $\exists \Sigma \subset A^{\mathbb{Z}^{2}}$ a k-SFT and Π a block map of order r, such that
$\Pi: \Sigma \rightarrow X_{\text {mirror }}$ is onto.

$$
|A|^{4 n r+8 n k+4 r^{2}}<2^{n^{2}}
$$

00000000000

An example of non-sofic subshift

The mirror subshift is defined on alphabet $\{\square, \square, \square\}$ by

$$
x_{\text {mirror }}=\{\square, \square\}^{\mathbb{Z}^{2}} \cup\{
$$

Suppose $X_{\text {mirror }}$ is sofic.
Then $\exists \Sigma \subset A^{\mathbb{Z}^{2}}$ a k-SFT and Π a block map of order r, such that
$\Pi: \Sigma \rightarrow X_{\text {mirror }}$ is onto.

$$
|A|^{4 n r+8 n k+4 r^{2}}<2^{n^{2}}
$$

Effectively closed subshifts

$$
\text { SFT } \subsetneq \text { Sofic susbhifts } \subsetneq \text { Effectively closed }
$$

Definition

A subshift is effectively closed (or effective) if its complement is a computable union of cylinders.

Property

X is effectively closed if and only one of the followings holds
(i) $X=X_{\mathcal{F}}$ for some recursively enumerable set \mathcal{F} of forbbiden patterns
(ii) $X=X_{\mathcal{F}}$ for some recursive set \mathcal{F} of forbbiden patterns

Effectively closed subshifts

$$
\text { SFT } \subsetneq \text { Sofic susbhifts } \subsetneq \text { Effectively closed }
$$

Definition

A subshift is effectively closed (or effective) if its complement is a computable union of cylinders.

Property

X is effectively closed if and only one of the followings holds
(i) $X=X_{\mathcal{F}}$ for some recursively enumerable set \mathcal{F} of forbbiden patterns
(ii) $X=X_{\mathcal{F}}$ for some recursive set \mathcal{F} of forbbiden patterns

Remark: There exist non effectively closed subshifts (countability argument).

Turing machines and SFT (I)

A Turing machine is a tuple $\mathcal{M}=\left(Q, \Gamma, \sharp, q_{0}, \delta, Q_{F}\right)$ where:

- Q is a finite set of states, $q_{0} \in Q$ is the initial state;
- 「 is a finite alphabet;
- $\# \notin \Gamma$ blank symbol
- $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{\leftarrow, \downarrow, \rightarrow\}$ transition function;
- $F \subset Q_{F}$ finite set of final states.

The rule $\delta\left(q_{1}, x\right)=\left(q_{2}, y, \leftarrow\right)$ will be encoded by the pattern

$z \leftarrow q_{2}$	y	z^{\prime}
z	$x \leftarrow q_{1}$	z^{\prime}

Turing machines and SFT (II)

\mathcal{M} Turing machine \rightsquigarrow finite set of patterns $F_{\mathcal{M}} \rightsquigarrow \mathrm{SFT} X_{F_{\mathcal{M}}}$

Turing machines and SFT (II)

\mathcal{M} Turing machine \rightsquigarrow finite set of patterns $F_{\mathcal{M}} \rightsquigarrow \mathrm{SFT} X_{F_{\mathcal{M}}}$

-																	
-																	

Turing machines and SFT (II)

\mathcal{M} Turing machine \rightsquigarrow finite set of patterns $F_{\mathcal{M}} \rightsquigarrow \operatorname{SFT} X_{F_{\mathcal{M}}}$

Turing machines and SFT (II)

\mathcal{M} Turing machine \rightsquigarrow finite set of patterns $F_{\mathcal{M}} \rightsquigarrow \operatorname{SFT} X_{F_{\mathcal{M}}}$

										-										
									-					-						
								-					-							
							-					-								
					-						-									-
							-			-									-	
								-										-		
									-								-			
										-						-				
											-				\bigcirc					
												-		-						
											-				-					
-									-	-			-	-						
								-				-								
							-				-									
					-					-										
				-				-												
																				-

2D vs 1D sofic subshifts

1D sofic subshifts

- $X_{F}=\emptyset$? is decidable
- entropy is computable (nonnegative rational multiples of log of Perron numbers)
- representation by finite automata/matrix
- every SFT has a periodic configuration
- soficness \Leftrightarrow finite number of followers set

2D sofic subshifts

- $X_{F}=\emptyset$? is undecidable
- entropy is not computable (right recursively enumerable numbers)
- representation by Wang tiles, textile systems
- \exists aperiodic SFT

Necessary conditions for soficness in 2D

- If X is a minimal subshift with positive entropy, then X is not sofic. [Desai, 2006]

Necessary conditions for soficness in 2D

- If X is a minimal subshift with positive entropy, then X is not sofic. [Desai, 2006]
- If X is effective and if the Kolmogorov complexity of every $p \in \mathcal{L}_{n}(X)$ is greater than $\mathcal{O}(n)$, then X is not sofic. [Durand, Romaschenko \& Shen, 2008]

Necessary conditions for soficness in 2D

- If X is a minimal subshift with positive entropy, then X is not sofic. [Desai, 2006]
- If X is effective and if the Kolmogorov complexity of every $p \in \mathcal{L}_{n}(X)$ is greater than $\mathcal{O}(n)$, then X is not sofic. [Durand, Romaschenko \& Shen, 2008]
- Too many extender sets implies non-soficness. [Kass \& Madden 2013] and [Pavlov, 2013]

Outline

(1) Symbolic dynamics

- Shift spaces and subshifts
- Classes of subshifts
- 2D vs 1D sofic subshifts
(2) Projective Subdynamics and Subactions
- Definitions
- Introductive examples
- Effective subshifts as projective subdynamics

Projective Subdynamics

Initially introduced by Johnson, Kass and Madden in 2007.

Definition

Let $X \subseteq \mathcal{A}^{\mathbb{Z}^{d}}$ be a \mathbb{Z}^{d} subshift and $L \lesseqgtr \mathbb{Z}^{d}$ a k-dimensional sublattice $(1 \leq k<d)$. The L-projective subdynamics of X is

$$
P_{L}(X):=\left\{\left.x\right|_{L}: x \in L\right\} \subseteq \mathcal{A}^{L} .
$$

- $\left(P_{L}(X), \sigma_{L \times P_{L}(X)}\right)$ is a \mathbb{Z}^{k}-subshift.
- $P_{L}(X)$: globally admissible configurations of shape L in X.
- Loss of information about the original subshift.

Projective Subdynamics

Initially introduced by Johnson, Kass and Madden in 2007.

Definition

Let $X \subseteq \mathcal{A}^{\mathbb{Z}^{d}}$ be a \mathbb{Z}^{d} subshift and $L \lesseqgtr \mathbb{Z}^{d}$ a k-dimensional sublattice $(1 \leq k<d)$. The L-projective subdynamics of X is

$$
P_{L}(X):=\left\{\left.x\right|_{L}: x \in L\right\} \subseteq \mathcal{A}^{L} .
$$

- $\left(P_{L}(X), \sigma_{L \times P_{L}(X)}\right)$ is a \mathbb{Z}^{k}-subshift.
- $P_{L}(X)$: globally admissible configurations of shape L in X.
- Loss of information about the original subshift.

In the sequel, we will concentrate on $P_{\vec{e}_{1} \mathbb{Z}}(X)$ (PS along the horizontal direction).

Entropy and PS

Proposition (Johnson, Kass \& Madden, 2007)

$$
h_{\text {top }}\left(P_{\vec{e}_{\mathbb{1}}^{Z}}(X)\right) \geq h_{\text {top }}(X)
$$

Proof:

$$
\begin{aligned}
h_{\text {top }}(X) & =\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \log \left(\left|\mathcal{L}_{n}(X)\right|\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \log \left(\left|\mathcal{L}_{n}\left(P_{\vec{e}_{1} \mathbb{Z}}(X)\right)\right|^{n}\right) \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{n} \log \left(\left|\mathcal{L}_{n}\left(P_{\vec{e}_{1} \mathbb{Z}}(X)\right)\right|\right) \\
& =h_{\text {top }}\left(P_{\vec{e}_{1} \mathbb{Z}}(X)\right)
\end{aligned}
$$

Subdynamics

Definition

Let $X \subseteq \mathcal{A}^{\mathbb{Z}^{d}}$ be a \mathbb{Z}^{d} subshift and $Y \subseteq B^{\mathbb{Z}^{k}}$ a \mathbb{Z}^{k}-subshift $(1 \leq k<d)$. Then Y is a subaction of X if the dynamical systems $\left(X,\left.\sigma\right|_{\mathbb{Z}^{k}}\right)$ and $\left(Y,\left.\sigma\right|_{\mathbb{Z}^{k}}\right)$ are isomorphic.

- Much stronger than projective subdynamics
- The subshift Y is defined on a possibly non-finite alphabet
- No loss of information

Questions

- What are projective subdynamics of 2D sofic subshifts
- What are projective subdynamics of 2D SFT ?
- What are subactions of sofic subshifts ?
- What are subactions of 2D SFT ?

Questions

- What are projective subdynamics of 2D sofic subshifts = effective subshifts
- What are projective subdynamics of 2D SFT ?
???
- What are 1D subactions of 3D sofic subshifts ?
= effective dynamical systems
- What are subactions of 2D SFT ?
???

What can be PS of sofic subshifts ? (0)

- Trivially, every 1D sofic subshift. . .

SFT $\Sigma^{\mathbb{Z}}$

$$
\begin{aligned}
& X \subset A^{\mathbb{Z}} \text { sofic } \\
& \Sigma \subset B^{\mathbb{Z}} \text { SFT, } \Pi: \Sigma \rightarrow X \text { block map }
\end{aligned}
$$

What can be PS of sofic subshifts ? (0)

- Trivially, every 1D sofic subshift. . .

What can be PS of sofic subshifts ? (0)

- Trivially, every 1D sofic subshift. . .

SFT $\Sigma^{\mathbb{Z}}$

$$
\begin{aligned}
& X \subset A^{\mathbb{Z}} \text { sofic } \\
& \Sigma \subset B^{\mathbb{Z}} \text { SFT, } \Pi: \Sigma \rightarrow X \text { block map }
\end{aligned}
$$

Conjecture (Jeandel)
X is sofic $\Leftrightarrow X^{\mathbb{Z}}$ is sofic.

What can be PS of sofic subshifts? (I)

- The 1D subshift $X_{a^{n} b^{n}}$.

What can be PS of sofic subshifts ? (I)

- The 1D subshift $X_{a^{n} b^{n}}$.

What can be PS of sofic subshifts? (I)

- The 1D subshift $X_{a^{n} b^{n}}$.

What can be PS of sofic subshifts ? (I)

- The 1D subshift $X_{a^{n} b^{n}}$.

What can be PS of sofic subshifts ? (I)

- The 1D subshift $X_{a^{n} b^{n}}$.

What can be PS of sofic subshifts ? (I)

- The 1D subshift $X_{a^{n} b^{n}}$.

What can be PS of sofic subshifts? (I)

- The 1D subshift $X_{a^{n} b^{n}}$.

What can be PS of sofic subshifts? (I)

- The 1D subshift $X_{a^{n} b^{n}}$.

What can be PS of sofic subshifts ? (I)

- The 1D subshift $X_{a^{n} b^{n}}$. And even a subaction!

c	C	C		a		a			$b \quad b$	b	c	C	C	C	C	C	C	c	C			a			b		c	\bar{C}
c	C	C				a			$b b$	b	c	C	C	C	C	C	C	C	C	C		a			b			C
	C	C		a		a			$b b b$		c	C	C	C	C	C	c	c	C									
	C	C		a	a	a			$b b b$		C	C	C	C	C	c	c	c	c	C							c	
	C	C	a		a	a			$b b$	b	c	C	C	C	C	C	C	c	C	C					b		c	
	C	C	a			a			$b \times b$	b	C	C	C	C	C	C	c	C	c	C							c	
c	C	C	a	a	a				$\square b$	b	c	C	C	C	c	C	c	C	C	c		a			b			C
\bar{c}	C	C		a		a			$b b b$	b		C	C	C	c	C	c	C	c	C		a			b			C
	C	C		a	a	a			$b b b$	b		C	C	C	C	C	c	c	C	C								
c	C	C		a					$b b$	b		C	C	C	C	C	C	C	C						b			
c	C	C		a		a			$b^{\times} b$	b	c	C	C	C	C	C	c	C	C	c					b		c	C
	C	C			a	a			$b b^{\text {r }}$	$b c$	c	C	C	C	C	C	C	c	c	C								
	C	C		a		a			$b b b^{\text {r }}$			C	C	C	C	C	c	c	C						b			C
	C	C		a		a			$b b b$	-		C	C	C	C	C	C	C	C	C		a			b			
c	C	C				a			$b b \times b$	b		C	C	C	C	C	C	C	C									
	C	C		a		a			$b \nearrow b$	b	c	c	C	C	C	C	c	C	C									C
	C	C		a	a				$\bigcirc b b$	b	c	C	C	C	C	C	C	C	c						b			C
	C	C		a		a			$b b b$	b		C	C	C	C	C	c	C	C									
	C								$b b b$	b		c	C	C	c	c	c	c	C									
									$\rightarrow b$																			

What can be PS of sofic subshifts ? (II)

- The 1D subshift $X_{a^{n} b^{n} c^{n}}$ (neither sofic nor algebraic).
$\left.\begin{array}{l|l}0 & 0\end{array}\right)$

What can be PS of sofic subshifts ?

- The 1D subshift $X_{a^{n} b^{n} c^{n}}$. And even a subaction!

What can be PS of sofic subshifts ? (III)

- Any effective subshift X that contains a uniform configuration.

What can be PS of sofic subshifts ? (III)

- Any effective subshift X that contains a uniform configuration.

What can be PS of sofic subshifts? (III)

- Any effective subshift X that contains a uniform configuration.

What can be PS of sofic subshifts ? (III)

- Any effective subshift X that contains a uniform configuration.

What can be PS of sofic subshifts ? (III)

- Any effective subshift X that contains a uniform configuration.

What can be PS of sofic subshifts ? (III)

- Any effective subshift X that contains a uniform configuration.

On the third layer:

- The Turing Machine \mathcal{M} works on the first tape and enumerates forbidden patterns for X (initialization thanks to the second layer).
- Each time a forbidden patterns is produced, it is copied out on the two other tapes.
- Patterns written on the second (resp. third) tape are shifted to the left (resp. right) at each step of computation.

What can be PS of sofic subshifts ? (III)

- Any effective subshift X that contains a uniform configuration.

On the third layer:

- The Turing Machine \mathcal{M} works on the first tape and enumerates forbidden patterns for X (initialization thanks to the second layer).
- Each time a forbidden patterns is produced, it is copied out on the two other tapes.
- Patterns written on the second (resp. third) tape are shifted to the left (resp. right) at each step of computation.
- If a pattern written on the two last tapes matches with the corresponding pattern in x, then the configuration is forbidden (intercation by local rules with the first layer).
- If a forbidden pattern for X appears in x, it will eventually be detected and the configuration is rejected.
- If $x \in X$, the configuration is accepted.

What can be PS of sofic subshifts ? (III)

- Any effective subshift X that contains a uniform configuration.

What can be PS of sofic subshifts? (III)

- Any effective subshift X that contains a uniform configuration.

What can be PS of sofic subshifts ? (III)

- Any effective subshift X that contains a uniform configuration.

$\Rightarrow X$ is a PS of a sofic subshift

Hochman's result

Theorem (Hochman 2008)

- Any effective \mathbb{Z}^{d}-subshift may be obtained as the subaction of a \mathbb{Z}^{d+2} sofic subshift.
- Any effective \mathbb{Z}^{d} dynamical system may be obtained as the subaction of a \mathbb{Z}^{d+2} sofic subshift.

The proof is based on

- the use of Turing machines as SFT,
- substitutive tilings to construct computation zones in 3D.

Conclusion of Part I

- Challenging question: characterize soficness in higher dimension.
- Projective subdynamics and subaction: decrease dimension to better understand 2D subshifts.
- Complete characterization of PS/subactions of sofic subshifts (Hochman)
- Coming soon:
- Sketch of Hochman's proof. .
- that can be improved to dimension $d+1$!
- Some other results about PS/subactions of SFT
- Challenging question: characterize soficness in higher dimension.
- Projective subdynamics and subaction: decrease dimension to better understand 2D subshifts.
- Complete characterization of PS/subactions of sofic subshifts (Hochman)
- Coming soon:
- Sketch of Hochman's proof. . .
- that can be improved to dimension $d+1$!
- Some other results about PS/subactions of SFT

Thank you for your attention!

