▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(Projective) Subdynamics of Multidimensional Subshifts, part I. SubTile 2013

Nathalie Aubrun

ENS de Lyon, CNRS

January 17, 2013

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Outline

Symbolic dynamics

- Shift spaces and subshifts
- Classes of subshifts
- 2D vs 1D sofic subshifts

Projective Subdynamics and Subactions

- Definitions
- Introductive examples
- Effective subshifts as projective subdynamics

Projective Subdynamics and Subactions

ション ふゆ く 山 マ チャット しょうくしゃ

Full-shift, shift action and subshift

- \mathcal{A} a finite alphabet and $d \in \mathbb{N}$
- $x \in \mathcal{A}^{\mathbb{Z}^d}$ is a configuration
- $\mathcal{A}^{\mathbb{Z}^d}$ endowed with the prodiscrete topology is a compact metric space
- shift action $\sigma : \mathbb{Z}^d \times \mathcal{A}^{\mathbb{Z}^d} \to \mathcal{A}^{\mathbb{Z}^d}$, $(\sigma_{(n_1,\ldots,n_d)}(x))_{(i_1,\ldots,i_d)} = x_{(i_1+n_1,\ldots,i_d+n_d)}$
- the dynamical system $\left(\mathcal{A}^{\mathbb{Z}^d},\sigma\right)$ is the *d-dimensional full-shift on* \mathcal{A}

Projective Subdynamics and Subactions

Full-shift, shift action and subshift

- \mathcal{A} a finite alphabet and $d \in \mathbb{N}$
- $x \in \mathcal{A}^{\mathbb{Z}^d}$ is a configuration
- $\mathcal{A}^{\mathbb{Z}^d}$ endowed with the prodiscrete topology is a compact metric space
- shift action $\sigma : \mathbb{Z}^d \times \mathcal{A}^{\mathbb{Z}^d} \to \mathcal{A}^{\mathbb{Z}^d}$, $(\sigma_{(n_1,...,n_d)}(x))_{(i_1,...,i_d)} = x_{(i_1+n_1,...,i_d+n_d)}$
- the dynamical system $\left(\mathcal{A}^{\mathbb{Z}^d},\sigma\right)$ is the *d-dimensional full-shift on* \mathcal{A}

Definition

A *subshift* is a closed and σ -invariant subset of $\mathcal{A}^{\mathbb{Z}^d}$.

$$\begin{cases} x \in \{0,1\}^{\mathbb{Z}^2} : x_{(i,j)} = 1 \Leftrightarrow i = j = 0 \end{cases} \text{ not } \sigma \text{-invariant } ! \\ \left\{ x \in \{0,1\}^{\mathbb{Z}^2} : \text{ only one 1 appears in } x \right\} \text{ not closed } ! \\ \left\{ x \in \{0,1\}^{\mathbb{Z}^2} : \text{ at most one 1 appears in } x \right\} \text{ is a subshift.} \end{cases}$$

Combinatorial point of view

• A *pattern* is a local function $p: S \to A$, where $S \subset \mathbb{Z}^d$ is finite.

• Given a pattern $u \in \mathcal{A}^S$, it generates the *cylinder*

$$[u] = \left\{ x \in \mathcal{A}^{Z^d} : x|_S = u \right\}.$$

• If F is a set of patterns, the *subshift generated by F* is

$$X_F = \left\{ x \in \mathcal{A}^{Z^d} : \text{ no pattern of } F \text{ appears in } x
ight\}.$$

• A subshift is thus the complement of a union of cylinders

$$X_{F} = \mathcal{A}^{\mathbb{Z}^{d}} \setminus \left(\bigcup_{\mathbf{i} \in \mathbb{Z}^{d}, u \in F} \sigma_{\mathbf{i}}([u]) \right).$$

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Language of a subshift

Definition

The *language of size n* of a \mathbb{Z}^d -subshift X is

$$\mathcal{L}_n(X) := \left\{ p: [-n;n]^d
ightarrow \mathcal{A}: \exists x \in X, p ext{ appears in } x
ight\}.$$

The *language* of a \mathbb{Z}^d -subshift X is

$$\mathcal{L}(X) := \bigcup_{n\geq 0} \mathcal{L}_n(X).$$

The *complement of the language* $\mathcal{L}(X)^c$ is the biggest set of forbidden patterns.

Language of a subshift

Definition

The *language of size n* of a \mathbb{Z}^d -subshift X is

$$\mathcal{L}_n(X) := \left\{ p: [-n;n]^d
ightarrow \mathcal{A}: \exists x \in X, p ext{ appears in } x
ight\}.$$

The *language* of a \mathbb{Z}^d -subshift X is

$$\mathcal{L}(X) := \bigcup_{n\geq 0} \mathcal{L}_n(X).$$

The *complement of the language* $\mathcal{L}(X)^c$ is the biggest set of forbidden patterns.

Proposition

The topological and combinatorial definitions coincide.

Projective Subdynamics and Subactions

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Subshifts of finite type

The subshift $X_{\{ \blacksquare, \ end \$

Projective Subdynamics and Subactions

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Subshifts of finite type

Definition

A subshift is of finite type (SFT) if it can be defined by a finite set of forbidden patterns. It is of rank k if these finite patterns may be chosen of size k.

- simplest class for the combinatorial definition
- 2D-SFT \equiv tilings by Wang tiles
- closely related to cellular automata theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sofic subshifts

Definition

A *sofic subshift* is the image of a SFT under a continuous and σ -commuting map.

continuous and σ -commuting map \Leftrightarrow Sliding block map (cellular automaton) $\begin{matrix} [\mathsf{Hedlund, 1969}] \\ \Phi: \mathcal{A}^{\mathbb{Z}^d} \to \mathcal{B}^{\mathbb{Z}^d} \text{ given by the local function } \phi \end{matrix}$ $x \in \mathcal{A}^{\mathbb{Z}^2}$ $\Phi(x) \in \mathcal{B}^{\mathbb{Z}^2}$

Sofic subshifts

Definition

A *sofic subshift* is the image of a SFT under a continuous and σ -commuting map.

continuous and σ -commuting map \Leftrightarrow Sliding block map (cellular automaton) [Hedlund, 1969] $\Phi : \mathcal{A}^{\mathbb{Z}^d} \to \mathcal{B}^{\mathbb{Z}^d}$ given by the local function ϕ $x \in \mathcal{A}^{\mathbb{Z}^2}$ $\Phi(x) \in \mathcal{B}^{\mathbb{Z}^2}$

- SFT on which information can be erased.
- $\bullet\,$ On $\mathbb Z,$ sofic subshifts are exactly those recognized by finite automata.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

An example of purely sofic subshift

Let
$$X_{\leq 1} = \left\{ x \in \{0,1\}^{\mathbb{Z}^2} : \text{ at most one } 1 \text{ appears in } x \right\}.$$

- Suppose that $X_{\leq 1}$ is a rank k SFT.
- Then a configuration that contains two 1's at distance 2k + 1 cannot be rejected.

 $\Rightarrow X_{\leq 1}$ is not an SFT!

Projective Subdynamics and Subactions

An example of purely sofic subshift

Let
$$X_{\leq 1} = \left\{ x \in \{0,1\}^{\mathbb{Z}^2} : \text{ at most one } 1 \text{ appears in } x \right\}.$$

★ 目 → 目 → 9 < 0</p>

Projective Subdynamics and Subactions

∋ \$\\$<</p>\$\\$

∢ ≣ ≯

An example of purely sofic subshift

Let
$$X_{\leq 1} = \left\{ x \in \{0,1\}^{\mathbb{Z}^2} : \text{ at most one } 1 \text{ appears in } x \right\}.$$

Projective Subdynamics and Subactions

An example of purely sofic subshift

Let
$$X_{\leq 1} = \left\{ x \in \{0,1\}^{\mathbb{Z}^2} : \text{ at most one 1 appears in } x \right\}.$$

● 王 ● 王 ● ○ ● ○

Projective Subdynamics and Subactions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

An example of non-sofic subshift

The *mirror subshift* is defined on alphabet $\{ \Box, \blacksquare, \blacksquare \}$ by

Projective Subdynamics and Subactions

An example of non-sofic subshift

The *mirror subshift* is defined on alphabet $\{ \Box, \blacksquare, \blacksquare \}$ by

Suppose X_{mirror} is sofic. Then $\exists \Sigma \subset A^{\mathbb{Z}^2}$ a *k*-SFT and Π a block map of order *r*, such that

$$\Pi: \Sigma \to X_{\text{mirror}}$$
 is onto.

Projective Subdynamics and Subactions

An example of non-sofic subshift

The *mirror subshift* is defined on alphabet $\{ \Box, \blacksquare, \blacksquare \}$ by

Suppose X_{mirror} is sofic. Then $\exists \Sigma \subset A^{\mathbb{Z}^2}$ a *k*-SFT and Π a block map of order *r*, such that

$$\Pi: \Sigma \to X_{\text{mirror}}$$
 is onto.

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Projective Subdynamics and Subactions

An example of non-sofic subshift

The *mirror subshift* is defined on alphabet $\{ \Box, \blacksquare, \blacksquare \}$ by

Suppose X_{mirror} is sofic. Then $\exists \Sigma \subset A^{\mathbb{Z}^2}$ a *k*-SFT and Π a block map of order *r*, such that

$$\Pi: \Sigma \to X_{\text{mirror}}$$
 is onto.

 $|A|^{4nr+8nk+4r^2} < 2^{n^2}$

(□) (圖) (E) (E) [E]

Projective Subdynamics and Subactions

An example of non-sofic subshift

The *mirror subshift* is defined on alphabet $\{ \Box, \blacksquare, \blacksquare \}$ by

Suppose X_{mirror} is sofic. Then $\exists \Sigma \subset A^{\mathbb{Z}^2}$ a *k*-SFT and Π a block map of order *r*, such that

$$\Pi: \Sigma \to X_{mirror}$$
 is onto.

 $|A|^{4nr+8nk+4r^2} < 2^{n^2}$

(□) (圖) (E) (E) [E]

Projective Subdynamics and Subactions

An example of non-sofic subshift

The *mirror subshift* is defined on alphabet $\{ \Box, \blacksquare, \blacksquare \}$ by

Suppose X_{mirror} is sofic. Then $\exists \Sigma \subset A^{\mathbb{Z}^2}$ a *k*-SFT and Π a block map of order *r*, such that

$$\Pi: \Sigma \to X_{mirror}$$
 is onto.

 $|A|^{4nr+8nk+4r^2} < 2^{n^2}$

(□) (圖) (E) (E) [E]

Projective Subdynamics and Subactions

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Effectively closed subshifts

 $\mathsf{SFT} \subsetneq \mathsf{Sofic \ susbhifts} \subsetneq \textit{Effectively \ closed}$

Definition

A subshift is *effectively closed* (or *effective*) if its complement is a computable union of cylinders.

Property

X is effectively closed if and only one of the followings holds (i) $X = X_F$ for some recursively enumerable set F of forbbiden patterns (ii) $X = X_F$ for some recursive set F of forbbiden patterns

Projective Subdynamics and Subactions

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Effectively closed subshifts

 $\mathsf{SFT} \subsetneq \mathsf{Sofic \ susbhifts} \subsetneq \textit{Effectively \ closed}$

Definition

A subshift is *effectively closed* (or *effective*) if its complement is a computable union of cylinders.

Property

X is effectively closed if and only one of the followings holds (i) $X = X_{\mathcal{F}}$ for some recursively enumerable set \mathcal{F} of forbbiden patterns (ii) $X = X_{\mathcal{F}}$ for some recursive set \mathcal{F} of forbbiden patterns

Remark: There exist non effectively closed subshifts (countability argument).

Projective Subdynamics and Subactions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Turing machines and SFT (I)

- A *Turing machine* is a tuple $\mathcal{M} = (Q, \Gamma, \sharp, q_0, \delta, Q_F)$ where:
 - Q is a finite set of states, $q_0 \in Q$ is the initial state;
 - Γ is a finite alphabet;
 - # ∉ Γ blank symbol
 - $\delta: Q \times \Gamma \to Q \times \Gamma \times \{\leftarrow, \downarrow, \rightarrow\}$ transition function;
 - $F \subset Q_F$ finite set of final states.

The rule $\delta(q_1, x) = (q_2, y, \leftarrow)$ will be encoded by the pattern

$z \leftarrow q_2$	у	z′
Z	$x \leftarrow q_1$	z′

Projective Subdynamics and Subactions

Turing machines and SFT (II)

 \mathcal{M} Turing machine \rightsquigarrow finite set of patterns $F_{\mathcal{M}} \rightsquigarrow$ SFT $X_{F_{\mathcal{M}}}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Projective Subdynamics and Subactions

Turing machines and SFT (II)

 \mathcal{M} Turing machine \rightsquigarrow finite set of patterns $F_{\mathcal{M}} \rightsquigarrow$ SFT $X_{F_{\mathcal{M}}}$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

Projective Subdynamics and Subactions

Turing machines and SFT (II)

 \mathcal{M} Turing machine \rightsquigarrow finite set of patterns $F_{\mathcal{M}} \rightsquigarrow$ SFT $X_{F_{\mathcal{M}}}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Projective Subdynamics and Subactions

Turing machines and SFT (II)

 \mathcal{M} Turing machine \rightsquigarrow finite set of patterns $F_{\mathcal{M}} \rightsquigarrow$ SFT $X_{F_{\mathcal{M}}}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへで

Projective Subdynamics and Subactions

2D vs 1D sofic subshifts

1D sofic subshifts

- ► $X_F = \emptyset$? is decidable
- entropy is computable (nonnegative rational multiples of log of Perron numbers)
- representation by finite automata/matrix
- every SFT has a periodic configuration
- ► soficness ⇔ finite number of followers set

2D sofic subshifts

- ► $X_F = \emptyset$? is undecidable
- entropy is not computable (right recursively enumerable numbers)
- representation by Wang tiles, textile systems

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

► ∃ aperiodic SFT

Projective Subdynamics and Subactions

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Necessary conditions for soficness in 2D

• If X is a minimal subshift with positive entropy, then X is not sofic. [Desai, 2006]

Projective Subdynamics and Subactions

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Necessary conditions for soficness in 2D

• If X is a minimal subshift with positive entropy, then X is not sofic. [Desai, 2006]

• If X is effective and if the Kolmogorov complexity of every $p \in \mathcal{L}_n(X)$ is greater than $\mathcal{O}(n)$, then X is not sofic. [Durand, Romaschenko & Shen, 2008]

Projective Subdynamics and Subactions

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Necessary conditions for soficness in 2D

• If X is a minimal subshift with positive entropy, then X is not sofic. [Desai, 2006]

• If X is effective and if the Kolmogorov complexity of every $p \in \mathcal{L}_n(X)$ is greater than $\mathcal{O}(n)$, then X is not sofic. [Durand, Romaschenko & Shen, 2008]

• Too many extender sets implies non-soficness. [Kass & Madden 2013] and [Pavlov, 2013]

Projective Subdynamics and Subactions

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Outline

Symbolic dynamics

- Shift spaces and subshifts
- Classes of subshifts
- 2D vs 1D sofic subshifts

Projective Subdynamics and Subactions

- Definitions
- Introductive examples
- Effective subshifts as projective subdynamics

うして ふゆう ふほう ふほう うらう

Projective Subdynamics

Initially introduced by Johnson, Kass and Madden in 2007.

Definition

Let $X \subseteq \mathcal{A}^{\mathbb{Z}^d}$ be a \mathbb{Z}^d subshift and $L \lneq \mathbb{Z}^d$ a k-dimensional sublattice $(1 \leq k < d)$. The *L-projective subdynamics of* X is

$$P_L(X) := \{x|_L : x \in L\} \subseteq \mathcal{A}^L.$$

- $(P_L(X), \sigma_{L \times P_L(X)})$ is a \mathbb{Z}^k -subshift.
- $P_L(X)$: globally admissible configurations of shape L in X.
- Loss of information about the original subshift.

Projective Subdynamics

Initially introduced by Johnson, Kass and Madden in 2007.

Definition

Let $X \subseteq \mathcal{A}^{\mathbb{Z}^d}$ be a \mathbb{Z}^d subshift and $L \lneq \mathbb{Z}^d$ a k-dimensional sublattice $(1 \leq k < d)$. The *L-projective subdynamics of* X is

$$P_L(X) := \{x|_L : x \in L\} \subseteq \mathcal{A}^L.$$

- $(P_L(X), \sigma_{L \times P_L(X)})$ is a \mathbb{Z}^k -subshift.
- $P_L(X)$: globally admissible configurations of shape L in X.
- Loss of information about the original subshift.

In the sequel, we will concentrate on $P_{\vec{e}_1\mathbb{Z}}(X)$ (PS along the horizontal direction).

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Entropy and PS

Proposition (Johnson, Kass & Madden, 2007)

$$h_{top}(P_{\vec{e}_1\mathbb{Z}}(X)) \geq h_{top}(X).$$

Proof:

$$h_{top}(X) = \lim_{n \to \infty} \frac{1}{n^2} \log \left(|\mathcal{L}_n(X)| \right)$$
$$= \lim_{n \to \infty} \frac{1}{n^2} \log \left(|\mathcal{L}_n(P_{\vec{e}_1 \mathbb{Z}}(X))|^n \right)$$
$$\leq \lim_{n \to \infty} \frac{1}{n} \log \left(|\mathcal{L}_n(P_{\vec{e}_1 \mathbb{Z}}(X))| \right)$$
$$= h_{top}(P_{\vec{e}_1 \mathbb{Z}}(X))$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Subdynamics

Definition

Let $X \subseteq \mathcal{A}^{\mathbb{Z}^d}$ be a \mathbb{Z}^d subshift and $Y \subseteq B^{\mathbb{Z}^k}$ a \mathbb{Z}^k -subshift $(1 \le k < d)$. Then Y is a *subaction of* X if the dynamical systems $(X, \sigma|_{\mathbb{Z}^k})$ and $(Y, \sigma|_{\mathbb{Z}^k})$ are isomorphic.

- Much stronger than projective subdynamics
- The subshift Y is defined on a possibly non-finite alphabet
- No loss of information

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- What are projective subdynamics of 2D sofic subshifts
- What are projective subdynamics of 2D SFT ?
- What are subactions of sofic subshifts ?
- What are subactions of 2D SFT ?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Questions

- What are projective subdynamics of 2D sofic subshifts = effective subshifts
- What are projective subdynamics of 2D SFT ? ???
- What are 1D subactions of 3D sofic subshifts ? = effective dynamical systems
- What are subactions of 2D SFT ? ???

Projective Subdynamics and Subactions

What can be PS of sofic subshifts ? (0)

Trivially, every 1D sofic subshift...

$_{rg} \in \overline{\Sigma}$
x ₁₈ ∈ Σ
$x_{17} \in \Sigma$
x ₁₆ ∈ Σ
$x_{15} \in \Sigma$
$x_{14} \in \Sigma$
$x_{13} \in \Sigma$
$x_{12} \in \Sigma$
$x_{11} \in \Sigma$
x ₁₀ ∈ Σ
$x_{\mathbf{g}} \in \Sigma$
$x_8 \in \Sigma$
$x_7 \in \Sigma$
$x_6 \in \Sigma$
$X_{F} \leq \Sigma$

SFT $\Sigma^{\mathbb{Z}}$

 $X\subset A^{\mathbb{Z}}$ sofic $\Sigma\subset B^{\mathbb{Z}}$ SFT, $\Pi:\Sigma o X$ block map

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

SFT $\Sigma^{\mathbb{Z}}$

Projective Subdynamics and Subactions

What can be PS of sofic subshifts ? (0)

Trivially, every 1D sofic subshift...

DUYDULE X
III(XIA) C X
$\sqcap(x_{\texttt{18}}) \in X$
$\sqcap(x_{17}) \in X$
$\Pi(x_{16}) \in X$
$\Pi(x_{15}) \in X$
$\sqcap(\mathbf{x_{14}}) \in \mathbf{X}$
$\sqcap(x_{13}) \in X$
$\Pi(\mathbf{x_{12}}) \in \mathbf{X}$
$\Pi(\mathbf{x_{11}}) \in \mathbf{X}$
$\Pi(x_{10}) \in X$
$\sqcap(x_{9}) \in X$
$\sqcap(x_8) \in X$
$\sqcap(x_7) \in X$
$\sqcap(x_6) \in X$
$\Pi(x_5) \in Y$

$$X \subset A^{\mathbb{Z}}$$
 sofic
 $\Sigma \subset B^{\mathbb{Z}}$ SFT, $\Pi : \Sigma \to X$ block map

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Projective Subdynamics and Subactions

What can be PS of sofic subshifts ? (0)

Trivially, every 1D sofic subshift...

	$\Pi(x_{19}) \in X$
	$\Pi(x_{18}) \in X$
	$\Pi(x_{17}) \in X$
	$\Pi(\mathbf{x_{16}}) \in \mathbf{X}$
	$\Pi(x_{15}) \in X$
	$\Pi(x_{14}) \in X$
	$\Pi(\mathbf{x_{13}}) \in \mathbf{X}$
SFT $\Sigma^{\mathbb{Z}}$	$\Pi(\mathbf{x_{12}}) \in \mathbf{X}$
	$\Pi(x_{\texttt{11}}) \in X$
	$\Pi(\mathbf{x_{10}}) \in \mathbf{X}$
	$\sqcap(x_{\mathbf{g}}) \in X$
	$\sqcap(x_{8}) \in X$
	$\sqcap(x_{7}) \in X$
	$\sqcap(x_{6}) \in X$
	$\Pi(\neg\neg) \in X$

 $X \subset A^{\mathbb{Z}}$ sofic $\Sigma \subset B^{\mathbb{Z}} \text{ SFT, } \Pi: \Sigma \to X \text{ block map}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Conjecture (Jeandel)

X is sofic $\Leftrightarrow X^{\mathbb{Z}}$ is sofic.

Projective Subdynamics and Subactions

What can be PS of sofic subshifts ? (I)

▶ The 1D subshift $X_{a^n b^n}$.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣��

Projective Subdynamics and Subactions

What can be PS of sofic subshifts ? (I)

Projective Subdynamics and Subactions

What can be PS of sofic subshifts ? (I)

Projective Subdynamics and Subactions

What can be PS of sofic subshifts ? (I)

▶ The 1D subshift $X_{a^nb^n}$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Projective Subdynamics and Subactions

What can be PS of sofic subshifts ? (I)

Projective Subdynamics and Subactions

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

What can be PS of sofic subshifts ? (I)

Projective Subdynamics and Subactions

What can be PS of sofic subshifts ? (I)

Projective Subdynamics and Subactions

What can be PS of sofic subshifts ? (I)

)	0	0	0	0	0	0	0	0	0	0	U			0	0	U	0	0	υ	0	0	υ	0	0	0	0	0	0	υ	ν.
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
٥	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
С	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
С	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
С	0	0	0	0	0	0	\nearrow	K	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	\nearrow	↑	↑	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
٥	0	0	0	0	\nearrow	0	↑	↑	0	~	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\nearrow	~	0	0	0	С
0	0	0	0	\nearrow	0	0	↑	↑	0	0		0	0	0	0	0	0	0	0	0	0	0	0	\nearrow	1	1	ĸ	0	0	(
0	0	0	\nearrow	0	0	0	↑	↑	0	0	0		0	0	0	0	0	0	0	0	0	0	\nearrow	0	↑	↑	0	~	0	0
С	С	С	а	а	а	а	а	b	b	b	b	b	С	С	С	С	С	С	С	С	С	С	а	а	а	b	b	b	С	C
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Э	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
`	0	0	0	0	r	0	\sim		0	0	0	0	0	0	0	0	0	0	r	\sim	0	Λ	^	0	\sim	n	\sim	n	0	0

Projective Subdynamics and Subactions

What can be PS of sofic subshifts ? (I)

▶ The 1D subshift $X_{a^n b^n}$. And even a subaction !

Projective Subdynamics and Subactions

What can be PS of sofic subshifts ? (II)

▶ The 1D subshift $X_{a^n b^n c^n}$ (neither sofic nor algebraic).

										-	_	_			_	_	-		_	_			_							
υ	0	~	J	0	0	Ь	U	υ	J	0	0	0	J	0	0	0	0	υ	0	0	υ	0	0	ν	J	0	5	0	5	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
С	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
0	0	0	0	0	0	0	0	\nearrow	~	0	0	0	0	$^{\times}$	K	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	$^{\times}$	↑	↑		0	0	$^{\times}$	↑	↑	K	0	0	0	0	0	0	0	0	0	0	0	0	0	0
)	0	0	0	0	0	\nearrow	0	↑	↑	0		$^{\times}$	0	↑	↑	0		0	0	0	0	0	0	0	0	0	0	0	0	0
)	0	0	0	0	$^{\times}$	0	0	↑	↑	0	\nearrow		0	↑	↑	0	0		0	0	0	0	0	0	0	0	0	0	0	0
)	0	0	0	$^{\times}$	0	0	0	↑	↑	\nearrow	0	0		↑	↑	0	0	0		0	0	0	0	0	0	0	0	0	0	0
)	0	0	$^{\times}$	0	0	0	0	↑	17	0	0	0	0	*	↑	0	0	0	0		0	0	0	0	0	0	0	0	0	0
d	d	d	а	а	а	а	а	а	Ь	b	b	b	b	b	С	С	С	С	С	С	d	d	d	d	d	d	d	d	d	d
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٢
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Э	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	L
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
)	0	0	0	0	0	0	^	7	0	0	^	0	0	0	0	0	0	0	0	0	^	^	^	n	٦	0	^	0	0	ŕ

Projective Subdynamics and Subactions

What can be PS of sofic subshifts ? (II)

▶ The 1D subshift $X_{a^n b^n c^n}$. And even a subaction !

4	1	A	12		â					2	6	h	K	-	1	C		ī	h			6	~		1	4			d	
<u>u</u> ,	<u>u</u>	u	a	<u> </u>	u	u	a	-		<u>/</u>	Ļ	Ļ			1	C	C	C		4	$\frac{u}{v}$	u,	ų	4	u	<u>u</u>	u,	u,	u,	<u>L</u>
<u>d</u>	d	d	\nearrow	а	а	а	а	1	7	b	b	b	b	*	1	С	С	С	С		d	d	d	d	d	d	d	d	d	ι
d	d	d	~	а	а	а	a	↑	*	b	Ь	Ь	b	1	1	С	С	С	С	$\overline{}$	d	d	d	d	d	d	d	d	d	C
7	d	d	а	K	а	а	a	↑	↑	K	b	b	\nearrow	↑	1	С	С	С	$^{\scriptscriptstyle >}$	d	d	d	d	d	d	d	d	d	d	6
Ī	d	d	а	а	~	а	a	↑	↑	b	~	$^{\times}$	b	↑	1	С	С	\nearrow	С	d	d	d	d	d	d	d	d	d	d	d
Ŧ	d	d	а	а	а	K	а	↑	↑	b	$^{\times}$	$^{\!$	Ь	↑	↑	С	$\overline{}$	С	С	d	d	d	d	d	d	d	d	d	d	c
Â	d	d	а	а	а	а	K	↑	↑	$\overline{}$	b	b	K	↑	↑	\nearrow	С	С	С	d	d	d	d	d	d	d	d	d	d	Ĉ
Ā	d	d	а	а	а	а	а	K	7	h	ĥ	ĥ	h	K	7	С	С	С	С	d	d	d	d	d	d	d	d	d	d	c
ā	d	d	а	а	а	а	a	7	K	ĥ	ĥ	ĥ	ĥ	7		С	С	c	С	d	d	d	d	d	d	d	d	d	d	6
ਜੋ	d	d	а	a	а	а	7	1	<u>↑</u>	Ň	ħ	ħ	Ž	↑	1	K	С	C	C	d	d	d	d	d	d	d	d	d	d	C.
â	đ	d	а	a	а	7	а	↑	↑	h	$\tilde{\mathbf{x}}$	~	h	1	↑	С	K	C	С	d	đ	đ	đ	d	d	d	d	d	d	đ
Ĩ	đ	d	а	а	$^{\times}$	а	а	1	↑	ĥ	$\overline{}$		ĥ	1	↑	С	С	K	С	d	d	d	đ	d	d	d	d	d	d	6
Ĩ	d	d	а	$^{\times}$	а	а	a	1	↑	7	h	h	Ñ	1	↑	С	С	С	K	d	d	d	d	d	d	d	d	d	d	d
â	d	d	7	а	а	а	a	↑	17	h	ĥ	ĥ	h	×	↑	C	С	C	С	K	d	d	d	d	d	d	d	d	d	ĩ
4	d	d	ĸ	a	а	а	a	↑	5	ĥ	ĥ	ĥ	ĥ	1	↑	C	С	C	C	×	d	d	d	d	d	d	d	d	d	7
1	d	d	a	K	а	а	a	↑	1	Ň	ĥ	ĥ	Ž	↑	↑	C	C	C	×	А	d	d	đ	d	d	d	d	d	d	1
1	d	d	а	a	K	а	a	↑	↑	h	Ň	$\overline{}$	h	Ť	↑	C	C	7	C	d	d	d	d	d	d	d	d	d	d	à
4	d	d	a	a	a	K	a	<u>,</u>	† ↑	ĥ	Ń	K	ĥ	† ↑	<u>,</u>	C	~	С	C	d	d	d	d	d	d	d	d	d	d	7
ĥ	d	d	a	a	a	а	K	↑	↑	7	Ь	h	K	↑	↑	7	С	c	C	d	d	d	d	d	d	d	d	d	d	ĥ
7	4	4	2	2	2	2	2	ĸ	, א	6	5	5	4	ĸ	×	C	6		C	4	4	4	4	4	1	4	4	4	4	4
<u>a</u>	<u>a</u>	a	a	a	a	a	a		6	ņ	ņ	D	p			Ľ	L	Ľ	L	<u>a</u>	a,	a	<u>a</u>	<u>a</u>	<u>a</u>	a	a	a	a	a
d	1	A	a	a	а	2	. J	\sim	~	r	b	h	ŀ			C	С	1	C	4	١d	4	d	d	d	d	d	d	d	d

 $\mathcal{A}^{\mathbb{Z}^2}$

Projective Subdynamics and Subactions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

What can be PS of sofic subshifts ? (III)

$x_{19} \in \mathcal{A}^{*}$	
$x_{18} \in \mathcal{A}^{\mathbb{Z}}$	
$x_{17} \in \mathcal{A}^{\mathbb{Z}}$	
$\mathbf{x_{16}} \in \mathcal{A}^{\mathbb{Z}}$	
$x_{15} \in \mathcal{A}^{\mathbb{Z}}$	
$x_{14} \in A^{\mathbb{Z}}$	
$x_{13} \in A^{\mathbb{Z}}$	
$x_{12} \in A^{\mathbb{Z}}$	
$x_{11} \in A^{\mathbb{Z}}$	
$x_{10} \in A^{\mathbb{Z}}$	
$x_{9} \in \mathcal{A}^{\mathbb{Z}}$	
$x_{8} \in \mathcal{A}^{\mathbb{Z}}$	
$x_7 \in \mathcal{A}^{\mathbb{Z}}$	
$x_6 \in \mathcal{A}^{\mathbb{Z}}$	
$\mathbf{x}_{\mathbf{E}} \in \mathcal{A}^{\mathbb{Z}}$	

Projective Subdynamics and Subactions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

What can be PS of sofic subshifts ? (III)

 $\mathbf{x} \in \mathcal{A}^{\mathbb{Z}}$ $x \in A^{\mathbb{Z}}$ $x \in \mathcal{A}^{\mathbb{Z}}$ $x \in A^{\mathbb{Z}}$ $x \in \mathcal{A}^{\mathbb{Z}}$ $x \in \mathcal{A}^{\mathbb{Z}}$ $x \in A^{\mathbb{Z}}$ $x \in \mathcal{A}^{\mathbb{Z}}$ $x \in \mathcal{A}^{\mathbb{Z}}$ $x \in \mathcal{A}^{\mathbb{Z}}$ $x \in \mathcal{A}^{\mathbb{Z}}$

Projective Subdynamics and Subactions

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

What can be PS of sofic subshifts ? (III)

Projective Subdynamics and Subactions

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

What can be PS of sofic subshifts ? (III)

Projective Subdynamics and Subactions

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

What can be PS of sofic subshifts ? (III)

Projective Subdynamics and Subactions

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

What can be PS of sofic subshifts ? (III)

▶ Any effective subshift *X* that contains a uniform configuration.

On the third layer:

- The Turing Machine \mathcal{M} works on the first tape and enumerates forbidden patterns for X (initialization thanks to the second layer).
- Each time a forbidden patterns is produced, it is copied out on the two other tapes.
- Patterns written on the second (resp. third) tape are shifted to the left (resp. right) at each step of computation.

Projective Subdynamics and Subactions

What can be PS of sofic subshifts ? (III)

► Any effective subshift X that contains a uniform configuration.

On the third layer:

- The Turing Machine \mathcal{M} works on the first tape and enumerates forbidden patterns for X (initialization thanks to the second layer).
- Each time a forbidden patterns is produced, it is copied out on the two other tapes.
- Patterns written on the second (resp. third) tape are shifted to the left (resp. right) at each step of computation.
- If a pattern written on the two last tapes matches with the corresponding pattern in x, then the configuration is forbidden (intercation by local rules with the first layer).
- If a forbidden pattern for X appears in x, it will eventually be detected and the configuration is rejected.
- If $x \in X$, the configuration is accepted.

Projective Subdynamics and Subactions

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

What can be PS of sofic subshifts ? (III)

Projective Subdynamics and Subactions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

What can be PS of sofic subshifts ? (III)

le solo solo solo solo solo solo solo so
$\infty_a \infty$

Projective Subdynamics and Subactions

What can be PS of sofic subshifts ? (III)

▶ Any effective subshift *X* that contains a uniform configuration.

-a
$\infty_a \infty$
$\infty_a \infty$
$\infty_a \infty$
$\mathbf{x} \in \mathbf{X}$
$\infty_a \infty$
$\infty_a \infty$
$\infty_a \infty$
∞ _a ∞
∞ _a ∞
$\infty_a \infty$
$\infty_a \infty$
$\infty_a \infty$
$\infty_a \infty$
∞ a∞

 $\Rightarrow X$ is a PS of a sofic subshift

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ - 厘 - 釣�?

Projective Subdynamics and Subactions

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Hochman's result

Theorem (Hochman 2008)

- Any effective \mathbb{Z}^d -subshift may be obtained as the subaction of a \mathbb{Z}^{d+2} sofic subshift.
- Any effective Z^d dynamical system may be obtained as the subaction of a Z^{d+2} sofic subshift.

The proof is based on

- the use of Turing machines as SFT,
- substitutive tilings to construct computation zones in 3D.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Conclusion of Part I

- Challenging question: characterize soficness in higher dimension.
- Projective subdynamics and subaction: decrease dimension to better understand 2D subshifts.
- Complete characterization of PS/subactions of sofic subshifts (Hochman)
- Coming soon:
 - Sketch of Hochman's proof...
 - that can be improved to dimension d + 1 !
 - Some other results about PS/subactions of SFT

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Conclusion of Part I

- Challenging question: characterize soficness in higher dimension.
- Projective subdynamics and subaction: decrease dimension to better understand 2D subshifts.
- Complete characterization of PS/subactions of sofic subshifts (Hochman)
- Coming soon:
 - Sketch of Hochman's proof...
 - that can be improved to dimension d+1 !
 - Some other results about PS/subactions of SFT

Thank you for your attention !