▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー わえぐ

(Projective) Subdynamics of Multidimensional Subshifts, part II. SubTile 2013

Nathalie Aubrun

ENS de Lyon, CNRS

January 18, 2013

Summary

What happened yesterday (between 15:00 and 16:00) ?

- > Difficulty to characterize soficness in higher dimension
- ▶ Projective subdynamics and subactions of sofic subshifts ?
- Hochman's result

Theorem (Hochman 2008)

- Any effective \mathbb{Z}^d -subshift may be obtained as the subaction of a \mathbb{Z}^{d+2} sofic subshift.
- Any effective \mathbb{Z}^d dynamical system may be obtained as the subaction of a \mathbb{Z}^{d+2} sofic subshift.

But before that...

From d + 2 to d + 1

PS of SFT 000000

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Let's go back to slide 18

Conjecture (Jeandel)

X is sofic $\Leftrightarrow X^{\mathbb{Z}}$ is sofic.

But before that...

From d + 2 to d + 1

PS of SFT 000000

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー わえぐ

Let's go back to slide 18

Conjecture (Jeandel)

X is sofic $\not\leftarrow X^{\mathbb{Z}}$ is sofic.

There might be a conter-example based on quasi-sturmian words !

 \rightsquigarrow see M. Sablik's talk.

Effective	as	PS	of	sofic
000				

PS of SFT 000000

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Outline

Effective subshifts as projective subdynamics of sofic subshifts

- Substitutive subshifts
- Hochman's proof

2 From d + 2 to d + 1

- A four layers construction
- Computation stripes
- Communication channels

Projective subdynamics of SFT

- Stability and unstability
- Pavlov ans Schraudner's classification
- Projective subdynamics of strongly irreducible SFT

Substitutive subshifts

We consider only *rectangular substitutions* on a finite alphabet A.

If s is such a substitution, the *s*-patterns are the $s^n(a)$ for every letter a and every integer $n \in \mathbb{N}$ (if they are well-defined).

Definition

Let s be a rectangular substitution on A. Then the *substitutive subshift* generated by s is

$$X_s = \left\{ x \in A^{\mathbb{Z}^2} : \text{ every pattern of } x \text{ is a } s\text{-pattern}
ight\}.$$

Effective as	PS	of	sofic
000			

Mozes' Theorem

Theorem (Mozes, 1989)

If the substitution s has good properties (for instance deterministic), then the subshift X_s is sofic.

Idea of the proof for 2×2 substitutions

Effective	as	PS	of	sofic
000				

PS of SFT 000000

Mozes' Theorem

Theorem (Mozes, 1989)

If the substitution s has good properties (for instance deterministic), then the subshift X_s is sofic.

Idea of the proof for 2×2 substitutions

Effective as	PS	of	sofic	
000				

Mozes' Theorem

Theorem (Mozes, 1989)

If the substitution s has good properties (for instance deterministic), then the subshift X_s is sofic.

Idea of the proof for 2×2 substitutions

From d + 2 to d + 1

PS of SFT

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Hochman's proof: a 3D construction

Start with two rectangular substitutions s_3 and s_5

Mozes' result \Rightarrow 2D *sofic subshifts* W_3 and W_5 .

PS of SFT 000000

Hochman's proof: a 3D construction

Identical copies of W_3 along direction $\vec{e_3}$ and of W_5 along $\vec{e_2}$

- ► Copies of *W*₃ produce *vertical lines*
- ► Copies of *W*₃ produce *horizontal lines*

イロト 不得下 不良下 不良下

ж

From d + 2 to d + 1

PS of SFT 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Hochman's proof: a 3D construction

Thus some rectangles appear !

And all rectangles are the same on one plane.

(ロ) (型) (E) (E) (E) (O)

Hochman's proof: a 3D construction

These rectangles have good properties

- there are only finitely many planes with infinite rectangles
- each set $[k, k + n]\vec{e_2}$ will appear in arbitrarily large rectangles

Thus if \mathcal{M} is a TM that enumerates F

- \bullet we can put calculations of $\mathcal M$ (real time Turing machine) in each rectangle
- each time a forbidden pattern is produced, its presence is checked inside the rectangle
- \bullet rectangles repartition $\Rightarrow \mathbb{Z} \vec{e_2}$ is entirely scanned

 \Rightarrow The subshift X_F exactly appears on $\mathbb{Z}\vec{e_2}$.

From d + 2 to d + 1

PS of SFT 000000

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Outline

Effective subshifts as projective subdynamics of sofic subshifts

- Substitutive subshifts
- Hochman's proof

2 From d + 2 to d + 1

- A four layers construction
- Computation stripes
- Communication channels

Projective subdynamics of SFT

- Stability and unstability
- Pavlov ans Schraudner's classification
- Projective subdynamics of strongly irreducible SFT

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

From d + 2 to d + 1

Hochman's result for effective subshifts can be made *optimal* in terms of dimension.

(since there exist non-sofic effective subshifts, dimension d is impossible)

Theorem (Durand, Romaschenko & Shen 2011, A.& Sablik 2013)

Any effective \mathbb{Z}^d -subshift may be obtained as the projective subdynamics of a \mathbb{Z}^{d+1} sofic subshift.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

From d + 2 to d + 1

Hochman's result for effective subshifts can be made *optimal* in terms of dimension.

(since there exist non-sofic effective subshifts, dimension d is impossible)

Theorem (Durand, Romaschenko & Shen 2011, A.& Sablik 2013)

Any effective \mathbb{Z}^d -subshift may be obtained as the projective subdynamics of a \mathbb{Z}^{d+1} sofic subshift.

Two independent proofs

- the first one is based on *self-similar tilings*
- the second one uses Robinson like techniques

From d + 2 to d + 1

PS of SFT 000000

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

From d + 2 to d + 1: Sketch of the proof

What about Robinson tiling ?

From d + 2 to d + 1

PS of SFT 000000

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

From d + 2 to d + 1: Sketch of the proof

What about Robinson tiling ?

From d + 2 to d + 1

PS of SFT 000000

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

From d + 2 to d + 1: Sketch of the proof

What about Robinson tiling ?

From d + 2 to d + 1

PS of SFT 000000

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

From d + 2 to d + 1: Sketch of the proof

What about Robinson tiling ?

But ...

- Computation zones are squares !
- How to solve the disconnected tape problem ?

From d + 2 to d + 1

PS of SFT

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

A four layers construction

How to realize an effective 1D-subshift $\Sigma\subset \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ as PS of a 2D sofic subshift ?

- SFT made of four layers
 - first layer: configuration $x \in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ that will be checked
 - second layer: hierarchical structure: computation zones for TM
 - third layer: TM \mathcal{M}_F that enumerates forbidden patterns of Σ and checks if $x \in \Sigma$
 - $\bullet\,$ fourth layer: TM $\mathcal{M}_{\texttt{Search}}$ that helps the TM \mathcal{M}_F to scan entirely x
- all layers but the first are finally erased with a letter-to-letter block map

 $x \in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$

From d + 2 to d + 1

PS of SFT

A four layers construction

How to realize an effective 1D-subshift $\Sigma\subset \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ as PS of a 2D sofic subshift ?

- SFT made of four layers
 - first layer: configuration $x \in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ that will be checked
 - second layer: hierarchical structure: computation zones for TM
 - third layer: TM \mathcal{M}_F that enumerates forbidden patterns of Σ and checks if $x \in \Sigma$
 - $\bullet\,$ fourth layer: TM $\mathcal{M}_{\tt Search}$ that helps the TM \mathcal{M}_{F} to scan entirely x
- all layers but the first are finally erased with a letter-to-letter block map

$x\in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$
$x\in \mathcal{A}_{\boldsymbol{\Sigma}}^{\mathbb{Z}}$
$x\in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$
$x\in \mathcal{A}_{\boldsymbol{\Sigma}}^{\mathbb{Z}}$
$x\in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$
$x\in\mathcal{A}_{\Sigma}^{\mathbb{Z}}$
$x\in\mathcal{A}_{\Sigma}^{\mathbb{Z}}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

A four layers construction

How to realize an effective 1D-subshift $\Sigma\subset \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ as PS of a 2D sofic subshift ?

- SFT made of four layers
 - first layer: configuration $x \in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ that will be checked
 - second layer: hierarchical structure: computation zones for TM
 - third layer: TM \mathcal{M}_F that enumerates forbidden patterns of Σ and checks if $x\in\Sigma$
 - $\bullet\,$ fourth layer: TM $\mathcal{M}_{\tt Search}$ that helps the TM \mathcal{M}_{F} to scan entirely x
- all layers but the first are finally erased with a letter-to-letter block map

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

A four layers construction

How to realize an effective 1D-subshift $\Sigma\subset \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ as PS of a 2D sofic subshift ?

- SFT made of four layers
 - first layer: configuration $x \in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ that will be checked
 - second layer: hierarchical structure: computation zones for TM
 - third layer: TM \mathcal{M}_F that enumerates forbidden patterns of Σ and checks if $x\in\Sigma$
 - $\bullet\,$ fourth layer: TM $\mathcal{M}_{\tt Search}$ that helps the TM \mathcal{M}_{F} to scan entirely x
- all layers but the first are finally erased with a letter-to-letter block map

A four layers construction

How to realize an effective 1D-subshift $\Sigma\subset \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ as PS of a 2D sofic subshift ?

- SFT made of four layers
 - first layer: configuration $x \in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ that will be checked
 - second layer: hierarchical structure: computation zones for TM
 - third layer: TM \mathcal{M}_F that enumerates forbidden patterns of Σ and checks if $x\in\Sigma$
 - $\bullet\,$ fourth layer: TM $\mathcal{M}_{\tt Search}$ that helps the TM \mathcal{M}_{F} to scan entirely x
- all layers but the first are finally erased with a letter-to-letter block map

From d + 2 to d + 1

PS of SFT

A four layers construction

How to realize an effective 1D-subshift $\Sigma\subset \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ as PS of a 2D sofic subshift ?

- SFT made of four layers
 - first layer: configuration $x \in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ that will be checked
 - second layer: hierarchical structure: computation zones for TM
 - third layer: TM \mathcal{M}_F that enumerates forbidden patterns of Σ and checks if $x \in \Sigma$
 - $\bullet\,$ fourth layer: TM $\mathcal{M}_{\tt Search}$ that helps the TM \mathcal{M}_{F} to scan entirely x
- all layers but the first are finally erased with a letter-to-letter block map

$x \in \Sigma$
$x\in\Sigma$
$x \in \Sigma$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

From d + 2 to d + 1

PS of SFT 000000

Layer 2: Computation zones

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

From d + 2 to d + 1

PS of SFT

Layer 2: Computation zones

After some iterations. . .

 \Box : communication tile \exists, e, \blacksquare : computation tiles

From d + 2 to d + 1

PS of SFT

Layer 2: Computation zones

After some iterations. . .

 \Box : communication tile $\exists, \in, \blacksquare$: computation tiles

From d + 2 to d + 1

PS of SFT

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Layer 2: Computation zones

Stripes of different levels (level 1, level 2, level 3):

A stripe of level n has the following properties

- width 2ⁿ,
- one line of computation every 2^n lines.

From d + 2 to d + 1

PS of SFT 000000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Layer 2: Computation zones

Stripes of different levels (level 1, level 2, level 3):

A stripe of level n has the following properties

- width 2ⁿ,
- one line of computation every 2^n lines.

From d + 2 to d + 1

PS of SFT

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Layer 2: Computation zones

Stripes of different levels (level 1, level 2, level 3):

A stripe of level n has the following properties

- width 2ⁿ,
- one line of computation every 2^n lines.

From d + 2 to d + 1

PS of SFT 000000

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Layer 2: the clock

To initialize calculations we code a clock by local rules

In a level *n* stripe, calculations are initialized every 2^{2^n} steps of calculation.

From d + 2 to d + 1

PS of SFT

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Layer 3: How to detect forbidden patterns ?

 $\bullet~\mathcal{M}_{\texttt{Forbid}}$ generates forbidden patterns of Σ

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー わえぐ

Layer 3: How to detect forbidden patterns ?

- $\bullet~\mathcal{M}_{\texttt{Forbid}}$ generates forbidden patterns of Σ
- each stripe has a *responsibility zone* and $\mathcal{M}_{\texttt{Forbid}}$ verifies that no forbidden pattern appears inside this zone;

Effective	as	PS	of	sofic	
000					

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Layer 3: How to detect forbidden patterns ?

- $\bullet~\mathcal{M}_{\texttt{Forbid}}$ generates forbidden patterns of Σ
- each stripe has a *responsibility zone* and $\mathcal{M}_{\texttt{Forbid}}$ verifies that no forbidden pattern appears inside this zone;

• to get symbol a_k from level 1, $\mathcal{M}_{\text{Forbid}}$ is helped by $\mathcal{M}_{\text{Search}}$: $\mathcal{M}_{\text{Forbid}}$ gives the address k and gets a_k .

From d + 2 to d + 1

PS of SFT 000000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Responsibility zone of \mathcal{M}_{Forbid}

Responsibility zones must overlap

A Turing machine $\mathcal{M}_{\text{Forbid}}$ of level *n* may ask help from a $\mathcal{M}_{\text{Search}}$ of same level or an adjacent $\mathcal{M}_{\text{Search}}$ of same level.

From d + 2 to d + 1

PS of SFT 000000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Responsibility zone of \mathcal{M}_{Forbid}

Responsibility zones must overlap

A Turing machine $\mathcal{M}_{\text{Forbid}}$ of level *n* may ask help from a $\mathcal{M}_{\text{Search}}$ of same level or an adjacent $\mathcal{M}_{\text{Search}}$ of same level.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Layer 4 : Turing machine $\mathcal{M}_{\text{Search}}$

A $\mathcal{M}_{\text{Search}}$ machine of level *n* can communicate with $\mathcal{M}_{\text{Search}}$ machines of levels n - 1 and n + 1.

Given a computation stripe of level n, each symbol is given an address, and this address is compatible with addresses of levels n - 1 and n + 1.

The address of \blacksquare is 231 and the address of \blacksquare is 020.

From d + 2 to d + 1

PS of SFT

Communication between \mathcal{M}_{Search} of different levels

With a new alphabet \mathcal{G}_2 , we construct *communication channels*

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Communication between $\mathcal{M}_{\texttt{Search}}$ of different levels

Communication channels are such that

- every tile \square or \square is in the center of a rectangle of level *n*;
- every rectangle of level n is connected to the \boxdot and \bowtie of two stripes of level n-1

From d + 2 to d + 1

PS of SFT 000000

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

$\mathcal{M}_{\texttt{Search}}$ works !

The machines $\mathcal{M}_{\text{Search}}$ work as we expect:

- \bullet every $\mathcal{M}_{\tt Search}$ has enough space to code addresses
- \bullet every $\mathcal{M}_{\texttt{Search}}$ has enough time to perform calculations (exponential clock)

From d + 2 to d + 1: Sketch of the proof

A four layers construction How to realize an effective 1D-subshift $\Sigma\subset 1^{\mathbb{Z}}$ as PS of a 2D sofic subshift ?

- SFT made of four layers
 - first layer: configuration $x \in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ that will be checked
 - second layer: hierarchical structure: computation zones for TM
 - third layer: TM \mathcal{M}_F that enumerates forbidden patterns of Σ and checks if $x\in\Sigma$
 - $\bullet\,$ fourth layer: TM $\mathcal{M}_{\texttt{Search}}$ that helps the TM \mathcal{M}_F to scan entirely x
- all layers but the first are finally erased with a letter-to-letter block map

From d + 2 to d + 1: Sketch of the proof

A four layers construction How to realize an effective 1D-subshift $\Sigma\subset 1^{\mathbb{Z}}$ as PS of a 2D sofic subshift ?

- SFT made of four layers
 - first layer: configuration $x \in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ that will be checked
 - second layer: hierarchical structure: computation zones for TM
 - third layer: TM \mathcal{M}_F that enumerates forbidden patterns of Σ and checks if $x \in \Sigma$
 - $\bullet\,$ fourth layer: TM \mathcal{M}_{Search} that helps the TM \mathcal{M}_F to scan entirely x
- all layers but the first are finally erased with a letter-to-letter block map

$x \in \Sigma$
$x\in\Sigma$
$x \in \Sigma$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Some applications

- Characterization of possible entropies of 2D SFT [Hochman & Meyerovitch, 2010]
- Multidimensional effective S-adic subshifts are sofic [A. & Sablik, submitted]
- There exists a sofic subshift whose quasi-periodic configurations have a non-recursively bounded periodicity function [Ballier & Jeandel, 2010]
- A computable planar tiling admits local rules [Fernique & Sablik, 2012]

Effective	as	PS	of	sofic
000				

Improvement, Limitation and Question

Is it possible to determinize the construction (deterministic SFT) ?
 →→ It should be...[Guillon & Zinoviadis, in progress]

 The construction is highly constrained, in the sense that the sofic subshift is constant along the vertical direction (⇒ zero entropy).
 → What are PS of mixing sofic subshifts/SFT ?

 Is it possible to obtain any 1D effective dynamical system as a subaction of a 2D sofic subshift ?
 → No, a conter-example is the mirror dynamical system

PS of SFT

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Outline

Effective subshifts as projective subdynamics of sofic subshifts

- Substitutive subshifts
- Hochman's proof

2 From d + 2 to d + 1

- A four layers construction
- Computation stripes
- Communication channels

Projective subdynamics of SFT

- Stability and unstability
- Pavlov ans Schraudner's classification
- Projective subdynamics of strongly irreducible SFT

PS of SFT ●○○○○○

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

1D Sofic subshifts as projective subdynamics of 2D SFT

The *limit set* of a cellular automaton f is

$$\Lambda(f)=\bigcap_{n\in\mathbb{N}}f^n(A^{\mathbb{Z}^d}).$$

This is always a subshift, which can be seen as

- the set of configurations that can be reached after arbitrarily many iterations,
- ▶ the biggest set on which *f* is surjective.

 $\Lambda(f)$ is *stable* if the intersection is finite, *unstable* otherwise.

Natural question: which subshifts can arise as stable/unstable limit sets of CA ?

From d + 2 to d + 1

PS of SFT ○●○○○○

Stability and unstability

We can approximate globally admissible configurations by locally admissible ones.

$$L^{\delta,n} := L + \left[-n\vec{1}; +n\vec{1} \right]$$

$$X_{L,n} := \left\{ x|_L : x \in \mathcal{A}^{L^{\delta,n}} \land \forall F \subsetneq L^{\delta,n} \text{ finite: } x|_F \notin \mathcal{F} \right\}$$

Then one has
$$P_L(X) = \bigcap_{n \ge 0} X_{L,n}$$

Definition

Given X a \mathbb{Z}^d -subshift and $L \lneq \mathbb{Z}^d$ a k-dimensional sublattice

- ▶ $P_L(X)$ is *stable* if $\exists N \in \mathbb{N}$, $\forall n \ge N$: $X_{L,n} = X_{L,N} = P_L(L)$.
- ▶ $P_L(X)$ is *unstable* if $\forall n \in \mathbb{N}$, $\exists n \geq N$: $X_{L,n} \subsetneq X_{L,N}$.

1D Sofic subshifts as projective subdynamics of 2D SFT

Classification in [Pavlov & Schraudner, preprint] based on the notions of

- ► Universal Periods (UP) ≈ all configurations are periodic (if you forget a bounded finite numbers of points).
- ► Good sets of periods (GSP) ≈ you have enough periodic configurations to know where you are in a graph presentation.

	Stable	Unstable			
SFT				\checkmark	×
<i>h</i> > 0				\checkmark	\checkmark
Stricly sofic $h = 0$ r		UP		×	×
	<i>h</i> = 0	no LID	GSP	\checkmark	\checkmark
		no GSP	×	\checkmark	

PS of SFT

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

What about non sofic subshifts ?

Theorem (Guillon, 2011)

Every $\mathbb{Z}\text{-effective subshift that contains a sofic subshift of positive entropy is the projective subdynamics of some <math display="inline">\mathbb{Z}^2\text{-}\mathsf{SFT}.$

Theorem (Sablik & Schraudner, *in progress*)

A certain class of \mathbb{Z} -effective subshift that contains a subshift of positive entropy is the subdynamics of some \mathbb{Z}^2 -SFT.

From d + 2 to d + 1

PS of SFT

Mixing subshift and strong irreducibility

Definition

A subshift $X \subset A^{\mathbb{Z}^d}$ is *mixing* if

 $\forall U, W \subsetneq \mathbb{Z}^d$ finite, disjoint, non-empty, $\exists M_{U,V} \in \mathbb{N}^*$ s.t.

 $\forall \vec{v} \in \mathbb{Z}^d \text{ s.t. } d(U, \vec{v} + W) > M$

$$\forall y,z\in X \Rightarrow \exists x\in X \text{ s.t. } x|_U=y|_U \text{ and } x|_{\vec{v}+W}=z|_{\vec{v}+W}.$$

Definition

A subshift $X \subset A^{\mathbb{Z}^d}$ is *strongly irreducible* if there exists *a gap* $g \in \mathbb{N}^*$ s.t.

 $\forall U, V \subsetneq \mathbb{Z}^d$ finite, disjoint, non-empty and d(U, V) > g,

$$\forall y, z \in X \Rightarrow \exists x \in X \text{ s.t. } x|_U = y|_U \text{ and } x|_V = z|_V.$$

From d + 2 to d + 1

PS of SFT 00000●

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Mixing sofic subshift as PS of strongly irreducible SFT

In 2D it is possible to define other mixing properties

- block gluing (sets are rectangles)
- corner gluing
- uniform filling property

From d + 2 to d + 1

PS of SFT 00000●

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Mixing sofic subshift as PS of strongly irreducible SFT

In 2D it is possible to define other mixing properties

- block gluing (sets are rectangles)
- corner gluing
- uniform filling property

Schraudner, preprint

Any 1D mixing sofic subshift is the stable PS of a strongly irreducible 2D SFT.

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー わえぐ

Conclusion

- 1D effective subshifts as PS of 2D sofic subshifts
- Classification of 1D sofic subshift that are PS of 2D SFT
- Another approach: impose that lines are in some subshift X_H , what subshift X_V can you get on the columns ?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Conclusion

- 1D effective subshifts as PS of 2D sofic subshifts
- Classification of 1D sofic subshift that are PS of 2D SFT
- Another approach: impose that lines are in some subshift X_H , what subshift X_V can you get on the columns ?

Thank you for your attention !