(Projective) Subdynamics of Multidimensional Subshifts, part II.

 SubTile 2013Nathalie Aubrun
ENS de Lyon, CNRS

January 18, 2013

Summary

What happened yesterday (between 15:00 and 16:00) ?

- Difficulty to characterize soficness in higher dimension
- Projective subdynamics and subactions of sofic subshifts ?
- Hochman's result

Theorem (Hochman 2008)

- Any effective \mathbb{Z}^{d}-subshift may be obtained as the subaction of a \mathbb{Z}^{d+2} sofic subshift.
- Any effective \mathbb{Z}^{d} dynamical system may be obtained as the subaction of a \mathbb{Z}^{d+2} sofic subshift.

But before that...

Let's go back to slide 18

Conjecture (Jeandel) X is sofic $\Leftrightarrow X^{\mathbb{Z}}$ is sofic.

But before that. . .

Let's go back to slide 18

Conjecture (Jeandel) X is sofic $\nLeftarrow X^{\mathbb{Z}}$ is sofic.

There might be a conter-example based on quasi-sturmian words !
\rightsquigarrow see M. Sablik's talk.

Outline

(1) Effective subshifts as projective subdynamics of sofic subshifts

- Substitutive subshifts
- Hochman's proof
(2) From $d+2$ to $d+1$
- A four layers construction
- Computation stripes
- Communication channels
(3) Projective subdynamics of SFT
- Stability and unstability
- Pavlov ans Schraudner's classification
- Projective subdynamics of strongly irreducible SFT

Substitutive subshifts

We consider only rectangular substitutions on a finite alphabet A.

If s is such a substitution, the s-patterns are the $s^{n}(a)$ for every letter a and every integer $n \in \mathbb{N}$ (if they are well-defined).

Definition

Let s be a rectangular substitution on A. Then the substitutive subshift generated by s is

$$
X_{s}=\left\{x \in A^{\mathbb{Z}^{2}}: \text { every pattern of } x \text { is a s-pattern }\right\}
$$

Mozes' Theorem

Theorem (Mozes, 1989)

If the substitution s has good properties (for instance deterministic), then the subshift X_{s} is sofic.

Idea of the proof for 2×2 substitutions

Mozes' Theorem

Theorem (Mozes, 1989)

If the substitution s has good properties (for instance deterministic), then the subshift X_{s} is sofic.

Idea of the proof for 2×2 substitutions

Mozes' Theorem

Theorem (Mozes, 1989)

If the substitution s has good properties (for instance deterministic), then the subshift X_{s} is sofic.

Idea of the proof for 2×2 substitutions

Hochman's proof: a 3D construction

Start with two rectangular substitutions s_{3} and s_{5}

Mozes' result $\Rightarrow 2 \mathrm{D}$ sofic subshifts W_{3} and W_{5}.

Hochman's proof: a 3D construction

Identical copies of W_{3} along direction $\overrightarrow{e_{3}}$ and of W_{5} along $\overrightarrow{e_{2}}$

- Copies of W_{3} produce vertical lines
- Copies of W_{3} produce horizontal lines

Hochman's proof: a 3D construction

Thus some rectangles appear!

And all rectangles are the same on one plane.

Hochman's proof: a 3D construction

These rectangles have good properties

- there are only finitely many planes with infinite rectangles
- each set $[k, k+n] \overrightarrow{e_{2}}$ will appear in arbitrarily large rectangles

Thus if \mathcal{M} is a TM that enumerates F

- we can put calculations of \mathcal{M} (real time Turing machine) in each rectangle
- each time a forbidden pattern is produced, its presence is checked inside the rectangle
- rectangles repartition $\Rightarrow \mathbb{Z} \overrightarrow{e_{2}}$ is entirely scanned
\Rightarrow The subshift X_{F} exactly appears on $\mathbb{Z} \overrightarrow{e_{2}}$.

Outline

(1) Effective subshifts as projective subdynamics of sofic subshifts

- Substitutive subshifts
- Hochman's proof
(2) From $d+2$ to $d+1$
- A four layers construction
- Computation stripes
- Communication channels
(3) Projective subdynamics of SFT
- Stability and unstability
- Pavlov ans Schraudner's classification
- Projective subdynamics of strongly irreducible SFT

From $d+2$ to $d+1$

Hochman's result for effective subshifts can be made optimal in terms of dimension.
(since there exist non-sofic effective subshifts, dimension d is impossible)

Theorem (Durand, Romaschenko \& Shen 2011, A.\& Sablik 2013)

Any effective \mathbb{Z}^{d}-subshift may be obtained as the projective subdynamics of a \mathbb{Z}^{d+1} sofic subshift.

From $d+2$ to $d+1$

Hochman's result for effective subshifts can be made optimal in terms of dimension.
(since there exist non-sofic effective subshifts, dimension d is impossible)

Theorem (Durand, Romaschenko \& Shen 2011, A.\& Sablik 2013)

Any effective \mathbb{Z}^{d}-subshift may be obtained as the projective subdynamics of a \mathbb{Z}^{d+1} sofic subshift.

Two independent proofs

- the first one is based on self-similar tilings
- the second one uses Robinson like techniques

From $d+2$ to $d+1$: Sketch of the proof

What about Robinson tiling ?

From $d+2$ to $d+1$: Sketch of the proof

What about Robinson tiling ?

From $d+2$ to $d+1$: Sketch of the proof

What about Robinson tiling ?

From $d+2$ to $d+1$: Sketch of the proof

What about Robinson tiling ?

But...

- Computation zones are squares !
- How to solve the disconnected tape problem ?

000

A four layers construction

How to realize an effective 1D-subshift $\Sigma \subset \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ as PS of a 2D sofic subshift ?

- SFT made of four layers
- first layer: configuration $x \in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ that will be checked
- second layer: hierarchical structure: computation zones for TM
- third layer: TM \mathcal{M}_{F} that enumerates forbidden patterns of Σ and checks if $x \in \Sigma$
- fourth layer: TM $\mathcal{M}_{\text {Search }}$ that helps the TM \mathcal{M}_{F} to scan entirely x
- all layers but the first are finally erased with a letter-to-letter block map

$$
x \in \mathcal{A}_{\Sigma}^{Z}
$$

000

A four layers construction

How to realize an effective 1D-subshift $\Sigma \subset \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ as PS of a 2D sofic subshift ?

- SFT made of four layers
- first layer: configuration $x \in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ that will be checked
- second layer: hierarchical structure: computation zones for TM
- third layer: TM \mathcal{M}_{F} that enumerates forbidden patterns of Σ and checks if $x \in \Sigma$
- fourth layer: TM $\mathcal{M}_{\text {Search }}$ that helps the TM \mathcal{M}_{F} to scan entirely x
- all layers but the first are finally erased with a letter-to-letter block map

$x \in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$
$x \in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$

000

A four layers construction

How to realize an effective 1D-subshift $\Sigma \subset \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ as PS of a 2D sofic subshift ?

- SFT made of four layers
- first layer: configuration $x \in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ that will be checked
- second layer: hierarchical structure: computation zones for TM
- third layer: TM \mathcal{M}_{F} that enumerates forbidden patterns of Σ and checks if $x \in \Sigma$
- fourth layer: TM $\mathcal{M}_{\text {Search }}$ that helps the TM \mathcal{M}_{F} to scan entirely x
- all layers but the first are finally erased with a letter-to-letter block map

000

A four layers construction

How to realize an effective 1D-subshift $\Sigma \subset \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ as PS of a 2D sofic subshift ?

- SFT made of four layers
- first layer: configuration $x \in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ that will be checked
- second layer: hierarchical structure: computation zones for TM
- third layer: TM \mathcal{M}_{F} that enumerates forbidden patterns of Σ and checks if $x \in \Sigma$
- fourth layer: TM $\mathcal{M}_{\text {Search }}$ that helps the TM \mathcal{M}_{F} to scan entirely x
- all layers but the first are finally erased with a letter-to-letter block map

000

A four layers construction

How to realize an effective 1D-subshift $\Sigma \subset \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ as PS of a 2D sofic subshift ?

- SFT made of four layers
- first layer: configuration $x \in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ that will be checked
- second layer: hierarchical structure: computation zones for TM
- third layer: TM \mathcal{M}_{F} that enumerates forbidden patterns of Σ and checks if $x \in \Sigma$
- fourth layer: TM $\mathcal{M}_{\text {Search }}$ that helps the TM \mathcal{M}_{F} to scan entirely x
- all layers but the first are finally erased with a letter-to-letter block map

000

A four layers construction

How to realize an effective 1D-subshift $\Sigma \subset \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ as PS of a 2D sofic subshift ?

- SFT made of four layers
- first layer: configuration $x \in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ that will be checked
- second layer: hierarchical structure: computation zones for TM
- third layer: TM \mathcal{M}_{F} that enumerates forbidden patterns of Σ and checks if $x \in \Sigma$
- fourth layer: TM $\mathcal{M}_{\text {Search }}$ that helps the TM \mathcal{M}_{F} to scan entirely x
- all layers but the first are finally erased with a letter-to-letter block map

$x \in \Sigma$

Layer 2: Computation zones

Alphabet \mathcal{G}_{1}

Substitution rules of $\mathrm{s}_{\text {Grid }}$:

Layer 2: Computation zones

After some iterations. . .

\square : communication tile
$\Theta, \boxminus, \square$: computation tiles

Layer 2: Computation zones

After some iterations. . .

\square : communication tile
$\Theta, \boxminus, \square$: computation tiles

Layer 2: Computation zones

Stripes of different levels (level 1, level 2, level 3):

A stripe of level n has the following properties

- width 2^{n},
- one line of computation every 2^{n} lines.

Layer 2: Computation zones

Stripes of different levels (level 1, level 2, level 3):

A stripe of level n has the following properties

- width 2^{n},
- one line of computation every 2^{n} lines.

Layer 2: Computation zones

Stripes of different levels (level 1, level 2, level 3):

A stripe of level n has the following properties

- width 2^{n},
- one line of computation every 2^{n} lines.

Layer 2: the clock

To initialize calculations we code a clock by local rules

$$
\begin{aligned}
& \left\{\begin{array}{ll}
\theta_{1} \\
1 & ?
\end{array}\right\} \times\left\{\begin{array}{lllll}
& 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right\}
\end{aligned}
$$

In a level n stripe, calculations are initialized every $2^{2^{n}}$ steps of calculation.

Layer 3: How to detect forbidden patterns ?

- $\mathcal{M}_{\text {Forbid }}$ generates forbidden patterns of Σ

Layer 3: How to detect forbidden patterns ?

- $\mathcal{M}_{\text {Forbid }}$ generates forbidden patterns of Σ
- each stripe has a responsibility zone and $\mathcal{M}_{\text {Forbid }}$ verifies that no forbidden pattern appears inside this zone;

Layer 3: How to detect forbidden patterns ?

- $\mathcal{M}_{\text {Forbid }}$ generates forbidden patterns of Σ
- each stripe has a responsibility zone and $\mathcal{M}_{\text {Forbid }}$ verifies that no forbidden pattern appears inside this zone;

Responsibility zone of $\mathcal{M}_{\text {Forbid }}$

a_{0}	a_{1}	a_{2}	\ldots	\ldots	\ldots	\ldots	a_{N}

f_{0}	f_{1}	f_{2}	\ldots

f_{0}	f_{1}	f_{2}	\ldots

f_{0}	f_{1}	f_{2}	\ldots

- to get symbol a_{k} from level $1, \mathcal{M}_{\text {Forbid }}$ is helped by $\mathcal{M}_{\text {Search }}$: $\mathcal{M}_{\text {Forbid }}$ gives the address k and gets a_{k}.

Responsibility zone of $\mathcal{M}_{\text {Forbid }}$

Responsibility zones must overlap

A Turing machine $\mathcal{M}_{\text {Forbid }}$ of level n may ask help from a $\mathcal{M}_{\text {search }}$ of same level or an adjacent $\mathcal{M}_{\text {search }}$ of same level.

Responsibility zone of $\mathcal{M}_{\text {Forbid }}$

Responsibility zones must overlap

A Turing machine $\mathcal{M}_{\text {Forbid }}$ of level n may ask help from a $\mathcal{M}_{\text {search }}$ of same level or an adjacent $\mathcal{M}_{\text {search }}$ of same level.

Layer 4 : Turing machine $\mathcal{M}_{\text {Search }}$

A $\mathcal{M}_{\text {Search }}$ machine of level n can communicate with $\mathcal{M}_{\text {search }}$ machines of levels $n-1$ and $n+1$.
Given a computation stripe of level n, each symbol is given an address, and this address is compatible with addresses of levels $n-1$ and $n+1$.

The address of \square is 231 and the address of \square is 020 .

Communication between $\mathcal{M}_{\text {Search }}$ of different levels

With a new alphabet \mathcal{G}_{2}, we construct communication channels

Communication between $\mathcal{M}_{\text {Search }}$ of different levels

Communication channels are such that

- every tile Θ or \boxminus is in the center of a rectangle of level n;
- every rectangle of level n is connected to the \boxminus and \boxminus of two stripes of level $n-1$

The machines $\mathcal{M}_{\text {search }}$ work as we expect:

- every $\mathcal{M}_{\text {Search }}$ has enough space to code addresses
- every $\mathcal{M}_{\text {search }}$ has enough time to perform calculations (exponential clock)

From $d+2$ to $d+1$: Sketch of the proof

A four layers construction How to realize an effective 1D-subshift $\Sigma \subset 1^{\mathbb{Z}}$ as PS of a 2 D sofic subshift ?

- SFT made of four layers
- first layer: configuration $x \in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ that will be checked
- second layer: hierarchical structure: computation zones for TM
- third layer: TM \mathcal{M}_{F} that enumerates forbidden patterns of Σ and checks if $x \in \Sigma$
- fourth layer: TM $\mathcal{M}_{\text {Search }}$ that helps the TM \mathcal{M}_{F} to scan entirely x
- all layers but the first are finally erased with a letter-to-letter block map

From $d+2$ to $d+1$: Sketch of the proof

A four layers construction How to realize an effective 1D-subshift $\Sigma \subset 1^{\mathbb{Z}}$ as PS of a 2 D sofic subshift ?

- SFT made of four layers
- first layer: configuration $x \in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ that will be checked
- second layer: hierarchical structure: computation zones for TM
- third layer: TM \mathcal{M}_{F} that enumerates forbidden patterns of Σ and checks if $x \in \Sigma$
- fourth layer: TM $\mathcal{M}_{\text {Search }}$ that helps the TM \mathcal{M}_{F} to scan entirely x
- all layers but the first are finally erased with a letter-to-letter block map

$x \in \Sigma$
$x \in \Sigma$

Some applications

- Characterization of possible entropies of 2D SFT [Hochman \& Meyerovitch, 2010]
- Multidimensional effective S-adic subshifts are sofic [A. \& Sablik, submitted]
- There exists a sofic subshift whose quasi-periodic configurations have a non-recursively bounded periodicity function [Ballier \& Jeandel, 2010]
- A computable planar tiling admits local rules [Fernique \& Sablik, 2012]

Improvement, Limitation and Question

- Is it possible to determinize the construction (deterministic SFT) ? $\rightsquigarrow \mathrm{It}$ should be... [Guillon \& Zinoviadis, in progress]
- The construction is highly constrained, in the sense that the sofic subshift is constant along the vertical direction (\Rightarrow zero entropy). \rightsquigarrow What are PS of mixing sofic subshifts/SFT ?
- Is it possible to obtain any 1D effective dynamical system as a subaction of a 2D sofic subshift ?
\rightsquigarrow No, a conter-example is the mirror dynamical system

Outline

(1) Effective subshifts as projective subdynamics of sofic subshifts

- Substitutive subshifts
- Hochman's proof
(2) From $d+2$ to $d+1$
- A four layers construction
- Computation stripes
- Communication channels
(3) Projective subdynamics of SFT
- Stability and unstability
- Pavlov ans Schraudner's classification
- Projective subdynamics of strongly irreducible SFT

1D Sofic subshifts as projective subdynamics of 2D SFT

The limit set of a cellular automaton f is

$$
\Lambda(f)=\bigcap_{n \in \mathbb{N}} f^{n}\left(A^{\mathbb{Z}^{d}}\right)
$$

This is always a subshift, which can be seen as

- the set of configurations that can be reached after arbitrarily many iterations,
- the biggest set on which f is surjective.
$\Lambda(f)$ is stable if the intersection is finite, unstable otherwise.

Natural question: which subshifts can arise as stable/unstable limit sets of CA ?

Stability and unstability

We can approximate globally admissible configurations by locally admissible ones.

$$
\begin{gathered}
L^{\delta, n}:=L+[-n \overrightarrow{1} ;+n \overrightarrow{1}] \\
X_{L, n}:=\left\{\left.x\right|_{L}: x \in \mathcal{A}^{L^{\delta, n}} \wedge \forall F \subsetneq L^{\delta, n} \text { finite: }\left.x\right|_{F} \notin \mathcal{F}\right\}
\end{gathered}
$$

Then one has $P_{L}(X)=\bigcap_{n \geq 0} X_{L, n}$

Definition

Given X a \mathbb{Z}^{d}-subshift and $L \lesseqgtr \mathbb{Z}^{d}$ a k-dimensional sublattice

- $P_{L}(X)$ is stable if $\exists N \in \mathbb{N}, \forall n \geq N: X_{L, n}=X_{L, N}=P_{L}(L)$.
- $P_{L}(X)$ is unstable if $\forall n \in \mathbb{N}, \exists n \geq N: X_{L, n} \subsetneq X_{L, N}$.

1D Sofic subshifts as projective subdynamics of 2D SFT

Classification in [Pavlov \& Schraudner, preprint] based on the notions of

- Universal Periods (UP) \approx all configurations are periodic (if you forget a bounded finite numbers of points).
- Good sets of periods (GSP) \approx you have enough periodic configurations to know where you are in a graph presentation.

				Stable	Unstable
SFT				\checkmark	\times
Stricly sofic	$h>0$			\checkmark	\checkmark
	$h=0$	UP		\times	\times
		no UP	GSP	\checkmark	\checkmark
			no GSP	\times	\checkmark

What about non sofic subshifts ?

Theorem (Guillon, 2011)

Every \mathbb{Z}-effective subshift that contains a sofic subshift of positive entropy is the projective subdynamics of some \mathbb{Z}^{2}-SFT.

Theorem (Sablik \& Schraudner, in progress)

A certain class of \mathbb{Z}-effective subshift that contains a subshift of positive entropy is the subdynamics of some \mathbb{Z}^{2}-SFT.

Mixing subshift and strong irreducibility

Definition

A subshift $X \subset A^{\mathbb{Z}^{d}}$ is mixing if
$\forall U, W \subsetneq \mathbb{Z}^{d}$ finite, disjoint, non-empty, $\exists M_{U, V} \in \mathbb{N}^{*}$ s.t.

$$
\begin{gathered}
\forall \vec{v} \in \mathbb{Z}^{d} \text { s.t. } d(U, \vec{v}+W)>M \\
\forall y, z \in X \Rightarrow \exists x \in X \text { s.t. }\left.x\right|_{U}=\left.y\right|_{U} \text { and }\left.x\right|_{\vec{v}+W}=\left.z\right|_{\vec{v}+W} .
\end{gathered}
$$

Definition

A subshift $X \subset A^{\mathbb{Z}^{d}}$ is strongly irreducible if there exists a gap $g \in \mathbb{N}^{*}$ s.t.

$$
\begin{gathered}
\forall U, V \subsetneq \mathbb{Z}^{d} \text { finite, disjoint, non-empty and } d(U, V)>g, \\
\forall y, z \in X \Rightarrow \exists x \in X \text { s.t. }\left.x\right|_{U}=\left.y\right|_{U} \text { and }\left.x\right|_{V}=z \mid v .
\end{gathered}
$$

Mixing sofic subshift as PS of strongly irreducible SFT

In 2D it is possible to define other mixing properties

- block gluing (sets are rectangles)
- corner gluing
- uniform filling property

Mixing sofic subshift as PS of strongly irreducible SFT

In 2D it is possible to define other mixing properties

- block gluing (sets are rectangles)
- corner gluing
- uniform filling property

Schraudner, preprint

Any 1D mixing sofic subshift is the stable PS of a strongly irreducible 2D SFT.

000

Conclusion

- 1D effective subshifts as PS of 2D sofic subshifts
- Classification of 1D sofic subshift that are PS of 2D SFT
- Another approach: impose that lines are in some subshift X_{H}, what subshift X_{V} can you get on the columns ?

000

Conclusion

- 1D effective subshifts as PS of 2D sofic subshifts
- Classification of 1D sofic subshift that are PS of 2D SFT
- Another approach: impose that lines are in some subshift X_{H}, what subshift X_{V} can you get on the columns ?

Thank you for your attention!

