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Résumé

Dans cette thèse, nous présentons le résultat de nos recherches dans le domaine du calcul
scientifique haute performance pour les moindres carrés linéaires. En particulier, nous
nous intéressons au développement de logiciels parallèles efficaces permettant de traiter
des problèmes de moindres carrés denses de très grande taille. Nous fournissons également
des outils numériques permettant d’étudier la qualité de la solution. Cette thèse est aussi
une contribution au projet GOCE1 dont l’objectif est de fournir un modèle très précis
du champ de gravité terrestre. Le lancement de ce satellite est prévu pour 2007 et à cet
égard, notre travail constitue une étape dans la définition d’algorithmes pour ce projet.

Nous présentons d’abord les stratégies numériques susceptibles d’être utilisées pour
mettre à jour la solution en prenant en compte des nouvelles observations fournies par
GOCE. Puis nous décrivons un solveur parallèle distribué que nous avons développé afin
d’être intégré dans le logiciel du CNES2 chargé de la détermination d’orbite et du calcul
de champ de gravité. Les performances de notre solveur sont compétitives par rapport
à celles des librairies parallèles standards ScaLAPACK et PLAPACK sur les machines
opérationnelles utilisées dans l’industrie spatiale, tout en nécessitant un stockage mémoire
deux fois moindre grâce à la prise en compte des symétries du problème.

Afin d’améliorer le passage à l’échelle et la portabilité de notre solveur, nous définissons
un format “packed” distribué qui repose sur des noyaux ScaLAPACK. Cette approche
constitue une amélioration significative car il n’existe pas à ce jour de format “packed”
distribué pour les matrices symétriques et triangulaires denses. Nous présentons les exem-
ples pour la factorisation de Cholesky et la mise à jour d’une factorisation QR. Ce format
peut être aisément étendu à d’autres opérations d’algèbre linéaire.

Cette thèse propose enfin des résultats nouveaux dans le domaine de l’analyse de
sensibilité des moindres carrés linéaires résultant de problèmes d’estimation de paramètres.
Nous proposons notamment une formule exacte, des bornes précises et des estimateurs
statistiques pour évaluer le conditionnement d’une fonction linéaire de la solution d’un
problème de moindres carrés. Le choix entre ces différentes formules dépendra de la taille
du problème et du niveau de précision souhaité.

Mots clés: Calcul haute performance, moindres carrés linéaires, algorithmes par-
allèles distribués, format de stockage “packed”, factorisation de Cholesky, factorisation QR
et mise à jour, conditionnement “normwise”, estimateur statistique de conditionnement,
estimation de paramètres.

1Gravity field and steady-state Ocean Circulation Explorer - Agence Spatiale Européenne
2Centre National d’Etudes Spatiales - Toulouse, France
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Abstract

In this thesis, we present our research in high performance scientific computing for linear
least squares. More precisely we are concerned with developing efficient parallel software
that can solve very large dense linear least squares problems and with providing numerical
tools that can assess the quality of the solution. This thesis is also a contribution to the
GOCE3 mission that strives for a very accurate model of the Earth’s gravity field. This
satellite is scheduled for launch in 2007 and in this respect, our work represents a step in
the definition of algorithms for the project.

We present an overview of the numerical strategies that can be used for updating the
solution with new observations coming from GOCE mesurements. Then we describe a
parallel distributed solver that we implemented in order to be used in the CNES4 soft-
ware package for orbit determination and gravity field computation. This solver compares
well in terms of performance with the standard parallel libraries ScaLAPACK and PLA-
PACK on the operational platforms used in the space industry while saving about half
the memory, thanks to taking into account the symmetry of the problem.

In order to improve the scalability and the portability of our solver, we define a packed
distributed format that is based on ScaLAPACK kernel routines. This approach is a
significant improvement since there is no packed distributed format available for symmetric
or triangular matrices in the existing dense parallel libraries. Examples are given for the
Cholesky factorization and for the updating of a QR factorization. This format can easily
be extended to other linear algebra calculations.

This thesis also contains new results in the area of sensitivity analysis for linear least
squares resulting from parameter estimation problems. Specifically we provide a closed
formula, bounds of correct order of magnitude and also statistical estimates that enable us
to evaluate the condition number of linear functionals of least squares solution. The choice
between the different expressions will depend on the problem size and on the desired level
of accuracy.

Keywords: High performance computing, linear least squares, parallel distributed
algorithms, packed storage format, Cholesky factorization, QR factorization and updating,
normwise condition number, statistical condition estimate, parameter estimation.

3Gravity field and steady-state Ocean Circulation Explorer - European Space Agency
4Centre National d’Etudes Spatiales - Toulouse, France
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Introduction

This thesis was financed by CERFACS and the Centre National d’Etudes Spatiales (French
Space Agency) in the framework of the GOCE5 mission from the European Space Agency.
After the satellite missions CHAMP 6 and GRACE7, the GOCE satellite is scheduled
for launch in 2007 and will provide a model of the Earth’s gravity field and of the geoid
with an unprecedented accuracy. It will have applications in many scientific areas such
as solid-Earth physics, geodesy, oceanography, glaciology and climate change. GOCE will
provide about 90, 000 model parameters of the Earth’s gravity field. These parameters
are estimated via an incremental linear least squares problem that involves a huge quantity
of data (several millions of observations).
Our work in this thesis consists in proposing efficient and accurate methods that can
tackle these very large least squares problems. To comply with the requirements of the
GOCE mission, we had to deal with two bottlenecks that are the memory storage and the
computational time.
For the sake of obtaining high performance and thanks to the increasing possibilities of
parallel computers, we studied in-core solvers (where data are kept in the core memory of
the computer) and we did not investigate the out-of-core approach (where data are stored
on disk) that was also used in the GRACE mission. The parallel distributed solver that we
developed provides good Gflops performance and compares competitively with standard
parallel libraries on target platform for the GOCE mission while saving about half the
memory. After a slight modification, the same code was also successfully used to solve the
linear systems arising from boundary integral equations in electromagnetism.
We also define in this thesis a storage format that enables us to store compactly sym-
metric or triangular matrices in a parallel distributed environment. This format can be
generalized to many dense linear algebra calculations.
The incremental QR factorization described in this thesis is appropriate for the gravity
field computations. The good computational time obtained combined with the well-known
better accuracy of orthogonal transformations are very encouraging.
Also because the accuracy is of major concern for the GOCE mission, we propose in this
thesis several methods to estimate the condition number of linear combinations of the
linear least squares solution components.
Even if the physical data for simulating GOCE computations were not available when this
thesis was written, all tests have been made on similarly dimensioned problems and we
assessed the accuracy of the solution with physical data coming from GRACE observations.

5Gravity field and steady-state Ocean Circulation Explorer, ESA
6CHAllenging Minisatellite Payload for Geophysical Research an Application, GFZ, launched July 2000
7Gravity Recovery and Climate Experiment, NASA, launched March 2002
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This manuscript is structured as follows.

Part I is divided into two chapters. In Chapter I we present the objectives of the GOCE
mission, the corresponding physical problem and the GINS [11] software currently used at
the French Space Agency for computing satellite orbits and gravity field parameters inter
alia. We also describe the direct methods for solving incremental least squares problems
and the existing tools that can be used for their parallel implementation.
In Chapter II we describe the parallel distributed solver that we developed to compute the
solution of a large dense linear least squares problem by the normal equations approach
including performance analysis. Finally, we give in this chapter the gravity field results
that we obtained after integrating our solver in the GINS software.

In Part II, we define a distributed storage format that exploits the symmetry or the
triangular structure of a matrix when this matrix is kept in-core. This work has been
motivated by the fact that, contrary to LAPACK [5], there is no routine that handles
packed matrices in the standard parallel library ScaLAPACK [23]. The main charac-
teristic of our approach is the use of ScaLAPACK computational kernels that enables
good load balance even for high processor counts. We also present performance results
for the Cholesky factorization and for the updating of the R factor in the QR factorization.

In Part III, we consider the linear least squares problem miny∈Rn ‖Ay − b‖2 where
b ∈ R

m and A ∈ R
m×n is a matrix of full column rank n and we denote its solution

by x . We assume that both A and b can be perturbed and that these perturbations
are measured using the Frobenius or the spectral norm for A and the Euclidean norm for
b . We are concerned with the condition number of a linear function of x (LTx where
L ∈ R

n×k , k ≤ n ) for which we provide a sharp estimate that lies within a factor
√

3
of the true condition number. If the triangular R factor of A from ATA = RTR is
available, this estimate can be computed in 2kn2 flops. We also propose a statistical
method that estimates the partial condition number by using the exact condition numbers
in random orthogonal directions. If R is available, this statistical approach enables us to
obtain a condition estimate at a lower computational cost. In the case of the Frobenius
norm, we derive a closed formula for the partial condition number that is based on the
singular values and the right singular vectors of the matrix A .

In the Appendix, we present an extension of the solver described in Chapter 2 to solve
the large linear complex symmetric non Hermitian systems encountered in electromag-
netism.

Finally, we give some conclusions and possible tracks that deserve further research.
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Chapter 1

Numerical strategies for solving

linear least squares problems

arising in gravity field

computations

1.1 Physical problem

1.1.1 Objectives of the GOCE mission

The GOCE [9, 10, 92] mission strives for a very accurate model of the Earth’s gravity
field and of the geoid, the geoid being defined as the equipotential surface of the Earth’s
gravity field which best fits, in a least squares sense, the global mean sea level averaged
over a given time period.
According to the Newton’s law of gravitation, the gravitational field due to an elementary
mass m at the point P located at distance r from m is expressed by Gm

r2 and it derives

from the potential Gm
r (Figure 1.1) where G is the universal gravitational constant. When

we sum the gravitational field over the whole planet and when we take into account the
Earth’s rotation, we obtain what is referred to as the gravity field (expressed in m/s2 ).
As shown in Figure 1.2, the gravity field has two components:

- the gravitational force whose variations are due to the distance OP and to the
planet’s structure,

- the centrifugal force due to the rotation of the Earth that varies with the latitude
(this force is very exaggerated in Figure 1.2).

The distance between the surface of the Earth and the centre is not identical everywhere,
since the geometrical shape of the Earth can be approximated by an ellipsoid. Further-
more, the composition of the layers of the Earth’s crust is not homogeneous and the depth
of the layers varies from place to place.
The result is that the gravitational acceleration g and consequently the gravity field is far
from being spatially constant and is not equal to the value 9.8 that is often considered
in academic examples. Indeed g varies from ∼ 9.78m/s2 at the equator to ∼ 9.83m/s2

5



Figure 1.1: Earth’s gravitational field.

Figure 1.2: Gravity field components.

at the poles. A precise model of the gravity field will provide an advanced knowledge of
the physics and dynamics of the Earth’s interior.

The geoid is depicted in Figure 1.3 and corresponds to a particular surface of equal
gravitational potential of a hypothetical ocean at rest. Note that the gravity field is not
constant on the geoid but only its potential is constant.
The geoid is used notably

6



Figure 1.3: Geoid representation.

- to define physical altitudes,

- to define and forecast the water circulation that enables us to study ocean circulation,
ice motion, sea-level change.

Due to the wind excitation, to the difference of density, and to the gravity waves resulting
from the ocean tides, the geoid differs from the mean surface of the sea. The distance be-
tween these two surfaces is measured in order to obtain information on oceanic circulation.

In terms of accuracy, the GOCE mission objectives are

- to determine the gravity-field anomalies with an accuracy of 1 mGal (where 1mGal =
10−5m/s2 ),

- to determine the geoid with an accuracy of 1-2 cm,

- to achieve the above at a spatial resolution better than 100 km.

The model of the gravitational potential will be represented by about 90, 000 spherical
harmonic coefficients up to a degree of 300 .

The gravity gradients are measured by satellite gravity gradiometry, combined with satellite-
to-satellite tracking using GPS (SST-hl) (Figure 1.4). The estimation of the Earth’s
gravity field using GOCE observations is a numerical and computational challenge. The
numerical difficulty comes from the observation noise inherent in instruments used for
measurement (gradiometers). Numerical instability may also result from missing observa-
tions at the poles, due to the non-polar orbit of the satellite.
The computational task is quite challenging because of the huge quantity of daily accu-
mulated data (about 90, 000 parameters and several million observations) and because of
the coupling of the parameters resulting in completely dense matrices.
Following [12], the Earth’s gravitational potential V is expressed in spherical coordinates

7



Figure 1.4: Gradiometry (measure of gravity gradients).

(r, θ, λ) by:

V (r, θ, λ) =
GM

R

lmax∑

l=0

(
R

r

)l+1 l∑

m=0

P lm(cos θ)
[
C lm cosmλ+ Slm sinmλ

]
(1.1)

where G is the gravitational constant, M is the Earth’s mass, R is the Earth’s reference
radius, the P lm represent the fully normalized Legendre functions of degree l and order
m and C lm ,Slm are the corresponding normalized harmonic coefficients. In the above
expression, we have |m| ≤ l ≤ lmax with lmax ' 300 (about 90, 000 unknowns). For the
previous missions CHAMP [86] and GRACE [71], we had respectively lmax ' 120 (about
15, 000 unknowns) and lmax ' 150 (about 23, 000 unknowns). We point out that the
number of unknown parameters is expressed by

n = (lmax + 1)2.

We have to compute the harmonic coefficients C lm and Slm as accurately as possible.

1.1.2 Application of orbit determination to gravity field computation

The principles of orbit determination can be applied to compute gravity field parameters
as described below.
An orbit of the satellite is computed using orbit determination software (e.g GINS [11]
for CNES). Measurements which are a function of a satellite position and/or velocity are
taken into account. These observations are obtained via ground stations (Laser, Doppler)
or other satellites (GPS) [26]. Then we aim to minimize the difference between the mea-
surements and the corresponding quantities evaluated from the computed orbit by adjust-
ing given parameters (here the gravity field coefficients). Figure 1.5 shows an example

8



Figure 1.5: Example of computed and measured orbits.

of reference orbit and some positions of the satellite measured using ground stations and
GPS.
The general orbit determination problem is a nonlinear estimation problem [13] that is
expressed by two nonlinear formulations.
The first one is the differential equation related to the dynamics of the system. In the
GOCE application the dynamics can be modelled for t ≥ t0 by:

r̈ = f(r, ṙ, γ, t), r(t0) = r0, ṙ(t0) = r′0, (1.2)

where the vector γ =




γ1
...
γn


 contains the gravity field coefficients C lm and Slm men-

tioned in Equation (1.1). The vectors r(t0) and ṙ(t0) represent respectively the position
and the velocity at time t0 .
The second part in the formulation of an orbit determination problem is related to the
measurements involving the observed quantities (e.g the gravity gradients):

Qj = h(r, ṙ, γ, tj) + εj , (1.3)

where the Qj , j = 1 · · · ,m are the observations at time tj and the errors in the obser-
vations are represented by εj .

Let Q̃j be a sample of the random variable Qj and hj(γ) = h(r, ṙ, γ, tj) . Then we
estimate γ in the least squares sense by solving

min
γ

m∑

j=1

‖Q̃j − hj(γ)‖2Wj
(1.4)

in which the norm ‖x‖2Wj
is defined as being xTWjx . The matrix Wj represents the

weights of measurements and takes into account the orbit errors, the measurement errors,
the errors coming from ground stations, and the errors due to instruments at reception.
The nonlinear least squares problem (1.4) is solved via an algorithm that is referred to as
the Gauss-Newton algorithm in [64] as described below:

9



0. choose γ(0)

1. ∆γ = argmin∆γ
∑m

j=1 ‖hj(γ
(k))− Q̃j + h′j(γ

(k)).∆γ‖2Wj

2. γ(k) ← γ(k) + ∆γ ; k ← k + 1

3. goto 1

In the GINS computations, the Jacobian matrices h′j will be considered as constant over

the iterations (inexact Gauss-Newton) i.e ∀k , h′j(γ(k)) = h′j(γ
(0)) .

We now describe how these Jacobian matrices are approximated in the framework of
the GOCE calculations. The GOCE observations Qj measured by the gradiometers are
the gravity gradients i.e the second order spatial derivatives of the gravitational potential
V expressed in (1.1). If we consider a coordinate frame (X1, X2, X3) related to the
gradiometer (along track, across track, radial), then the gravity gradients are expressed
by

V ′′
kl =

∂2V

∂Xk∂Xl
.

The symmetric matrix ∇2U = (V ′′
kl) is referred to as the gravity tensor. Note that the V ′′

kl

are not measured with the same accuracy and that only the diagonal elements V ′′
11, V

′′
22, V

′′
33

are accurately measured and this influences the choice of the matrix Wj .

With our notations, the Q̃j represent the measured values of the gravity gradient V ′′
kl

and we have

h′j(γ).∆γ =

n∑

i=1

∂Qj

∂γi
∆γi.

For the m observations Q1, · · · , Qm we get

h′(γ).∆γ =




∂Q1

∂γ1
· · · ∂Q1

∂γn

...
...

∂Qm

∂γ1
· · · ∂Qm

∂γn







∆γ1
...

∆γn


 .

The coefficients
∂Qj

∂γi
can be obtained via the equation of the dynamics (1.2) since we have

∂Qj

∂γi
=
∂Qj

∂r
· ∂r
∂γi

+
∂Qj

∂ṙ
· ∂ṙ
∂γi

. (1.5)

The quantities
∂Qj

∂r and
∂Qj

∂ṙ are computed analytically and the quantities ∂r
∂γi

and ∂ṙ
∂γi

are computed numerically by deriving Equation (1.2) with respect to γi as follows:

∂r̈

∂γi
=
∂F

∂r
· ∂r
∂γi

+
∂F

∂ṙ
· ∂ṙ
∂γi

+
∂F

∂γi
,

where F is the gravity force.
We have here n differential equations where the derivatives of F are analytically com-
puted and the unknowns are ∂r

∂γi
and ∂ṙ

∂γi
. These equations are integrated for several

time steps (the lower the orbit, the shorter the integration time) at which r , ṙ , ∂r
∂γi

and
∂ṙ
∂γi

are computed. For the GOCE orbit, this step size will be between 1 and 5 seconds.

10



After interpolation at the measurement times tj (that are different from the times at

which the positions are computed), we obtain the coefficients
∂Qj

∂γi
using Equation (1.5).

This enables us to obtain the data matrix

A =




∂Q1

∂γ1
· · · ∂Q1

∂γn

...
...

∂Qm

∂γ1
· · · ∂Qm

∂γn


 .

Using linear algebra notations we set x = ∆γ and b =




Q̃1 − h1(γ)
...

Q̃m − hm(γ)


 and we have

to minimize Ax− b in the least squares sense that can be written as minx∈Rn ‖Ax− b‖W
where W is a block diagonal matrix containing the Wj . Note that, in practice, the
vector γ contains some coefficients that do not depend on the dynamics of the satellite
(e.g measurement biases).
In the rest of this thesis we assume that W is already integrated into the observations,
which is the case for the GINS software.

1.2 Numerical methods

As shown in Section 1.1.2, the computation of the Earth’s gravitational potential is a non-
linear least squares problem that can be solved by successive linear least squares problems
(LLSP) where we have to solve

min
x∈Rn

‖Ax− b‖2 (1.6)

where b ∈ R
m is the observation vector and A ∈ R

m×n is the data matrix (Jacobian of a
nonlinear least squares problem). In the GOCE application, the number of unknowns n
is about 90, 000 and the number of observations m is about 106 .
After accumulating a sufficient number of observations and/or by using regularization
techniques, A is a full column rank matrix. In that case (1.6) has a unique solution [50,
p. 237]. For GRACE, a gravity field up to degree 150 can be obtained after one month
of measurement (but 10 days can be sufficient to get a solution up to degree 100). For
GOCE, a solution can be computed after 6 months of measurement but recent simulations
have shown that with 20 days of measures we get a gravity field up to degree 120 [11].
It is possible to solve (1.6) via iterative methods based on conjugate gradient or FFT
techniques [82]. Fast multipole methods can also be used [47]. Provided that the conditions
for convergence are satisfied, these iterative methods give fast computation times but
still need improvement regarding the accuracy of the solution. Recently new promising
methods based on spherical wavelets have been brought into the Earth’s gravity field
calculations [43]. Although orthogonal transformations have been recently introduced for
GRACE computations (e.g out-of-core QR factorization [56]), the geodesists involved in
gravity field computations traditionally use, as many statisticians [62] do, the normal
equations method that solves the system

ATAx = AT b.
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Experiments performed in [82] showed that this method should provide a solution with
better accuracy than some iterative methods mentioned above though this gain in accuracy
could be far below the observation noise level. Another advantage of this method is that
it enables us to obtain the covariance matrix (ATA)−1 which is sometimes needed by the
physicists.
The downside of this method is that it demands high computing capabilities to assemble
the normal equations and also large memory capacities to store the n -by- n symmetric
matrix in the core memory of the computer. But the increasing possibilities of current
parallel computers encourage us to implement this method for GOCE.
In the sequel of this paragraph we recall some major numerical results regarding the
way of solving linear least squares problems that will be taken into account in GOCE
computations.

1.2.1 Selected methods for linear least squares

Many methods are available for solving LLSP which are detailed in [21, 61]. Giving a sur-
vey of all these methods and of their numerical stability is out of the scope of this thesis.
That is why, in the rest of this chapter, we focus on the two methods that are likely to
be used by the physicists from the geodesy community especially for the GOCE project
where the matrices are dense, large, and accurate solutions are wanted. These methods
can be based either on the normal equations approach or on the QR factorization.

In the normal equations approach, we solve the linear system of equations

ATAx = AT b.

If the rank of A is n then the n -by- n matrix ATA is symmetric positive definite and
can be decomposed using a Cholesky factorization as ATA = UTU , where U is an upper
triangular matrix.
Then the normal equations become U TUx = AT b , and the unknown vector x can be
computed by solving UT y = AT b (forward substitution phase) followed by Ux = y
(backward substitution phase).
The cost in arithmetic operations can be split as follows:

1. In the construction of the symmetric matrix ATA , we only compute and store the
upper triangular part of ATA . Hence the cost in operations will be O(mn2) .

2. The Cholesky factorization algorithm involves n3/3 operations.

3. In the final step we solve two triangular systems. Hence it involves 2n2 operations.

If we neglect the terms in O(n2) , then the cost in floating-point operations of the normal
equations method is n2(m+ n/3) [50, p. 238].

A more reliable way of solving linear least squares consists in using orthogonal trans-
formations. The commonly used QR factorization can be performed by using orthogonal
transformations called Householders reflections [50, p. 208]. The QR factorization of A
is given by

A = Q

(
R
0

)
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where Q is an m -by-m orthogonal matrix and R is an n -by- n upper triangular ma-
trix. Since A has full column rank, then R is nonsingular. If we denote Q =

(
Q1 Q2

)

where Q1 and Q2 correspond respectively to the n first columns and the m−n remain-
ing columns of Q , then we have A = Q1R .

From ‖Ax− b‖2 =
∥∥QT b−QTAx

∥∥
2

=

∥∥∥∥
Q1

T b−Rx
Q2

T b

∥∥∥∥
2

it follows that x can be com-

puted by solving the triangular system Rx = Q1
T b .

In the QR method, the matrix R may overwrite the upper triangular part of A while
the Householder vectors are stored in the lower trapezoidal part of A .
Note that Q1 is not required explicitly and we just need to apply QT

1 to a vector. The
computation of Q1

T b can be performed by applying the Householder transformation used
to compute R to the vector b . This is achieved by appending b to A and factorizing(
A b

)
.

This factorization overwrites b by b̃ and we solve Rx = b̃ using the first n elements of
b̃ .
If we neglect the cost of the triangular solve, then the computational cost of the least
squares solution using a Householder QR factorization is 2n2(m− n/3) [50, p. 225].
We have seen that the solution is computed by solving Rx = Q1

T b . It is sometimes
necessary to solve this system with several right-hand sides that are not available when
the QR factorization is performed. In that case we need to store Q1 . Even if A is large
and sparse, this may not be true for Q1 and storing Q1 can be expensive. If A can be
saved, it can be useful to use the semi-normal equations (SNE) method where we solve
the system

RTRx = AT b,

a straightforward reformulation of the normal equations. In the SNE method, x is com-
puted without using Q1 . This makes it possible to treat additional right-hand sides that
are not necessarily available when the QR factorization is performed. This corresponds to
the situation that occurs for GOCE calculations since the matrix RTR will be fixed (cf
Section 1.1.2) whereas the different right-hand sides will be available in sequence within
the Gauss-Newton algorithm.

1.2.2 Normal equations vs QR factorization

When choosing between the normal equations method and QR factorization, we have to
consider two criteria that are the computational cost and the numerical stability.

If we compare the floating-point operations involved in each method, we observe that
when m � n the normal equations approach requires about half the flop count of the
Householder QR factorization (mn2 vs 2mn2 ). This explains why the normal equations
method is often favoured by users in geodesy.

In the following, we compare the normal equations method and the QR factorization
in terms of accuracy.
The sensitivity of an LLSP to perturbations can be notably measured by bounding the
difference between the exact solution and the solution of the perturbed problem. Let
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K(A) = ‖A‖2
∥∥A†∥∥

2
= σ1(A)

σrank(A)
be the condition number of A where A† denotes the

Moore-Penrose pseudo inverse of A and σ1(A) ≥ · · · ≥ σrank(A) > 0 are the nonzero
singular values of A . The following theorem established by Wedin [101] is also given
in [61, p. 382] and [21, p. 30].

Theorem 1. Let A ∈ R
m×n (m ≥ n) and A+ ∆A both be of full rank and let

x = arg min
x∈Rn

‖Ax− b‖2 , r = b−Ax,

x̃ = arg min
x∈Rn

‖(A+ ∆A)x− (b+ ∆b)‖2 , r̃ = b+ ∆b− (A+ ∆A)x̃,

‖∆A‖2 ≤ ε ‖A‖2 , ‖∆b‖2 ≤ ε ‖b‖2 .

Then, if K(A)ε < 1 , we have

‖x− x̃‖2
‖x‖2

≤ K(A)ε

1−K(A)ε

(
2 + (K(A) + 1)

‖r‖2
‖A‖2 ‖x‖2

)
,

and
‖r − r̃‖2
‖b‖2

≤ (1 + 2K(A))ε.

Theorem 1 shows that the sensitivity of an LLSP is measured by K(A) when the
residual ‖b−Ax‖2 is small (or zero) compared with the norms of A and x ; otherwise,
it is measured by K(A)2 .

In the following, we assume that the computations are performed in floating-point
arithmetic. We consider the standard model defined by fl(x op y) = (x op y)(1 + ε)
where fl denote the computed value of an expression, op = +,−, ∗, / , ε is such that
|ε| ≤ u with u = unit roundoff defined in [50, 61, 89], and x and y are already in
finite precision. We shall quote available results explaining the behaviour of the methods
described above in floating-point arithmetic.

From [74, p. 90] or [50, p. 240], we deduce the following theorem that summarizes the
advantage of the Householder QR factorization algorithm:

Theorem 2. Let A ∈ R
m×n (m ≥ n) have full rank and suppose the least squares problem

minx∈Rn ‖Ax− b‖2 is solved using the Householder QR factorization method.
The computed solution x̃ is the exact solution to

min
x∈Rn

‖(A+ ∆A)x− (b+ ∆b)‖2 ,

with

‖∆A‖F ≤ cm,nu ‖A‖F +O(u2)

and

‖∆b‖2 ≤ cm,nu ‖b‖2 +O(u2),

where cm,n is a O(mn) constant.
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This desirable property, where the computed solution is the exact solution of a slightly
perturbed problem with a relative perturbation on data bounded by a not-too-large con-
stant multiplied by u , is called normwise backward stability. It makes the Householder
QR factorization method a reliable way for solving an LLSP. This implies in particular
that the relative forward error δ = ‖x−x̃‖

‖x‖ satisfies the inequality mentioned in Theorem 1
when x̃ is computed via a QR factorization.

The numerical stability properties of the normal equations method are less satisfactory
for the two following reasons:

A first reason is related to the assembly of ATA and/or the formation of AT b that
may lead to a loss of accuracy and in some cases the computed matrix ATA can be sin-
gular or indefinite (see the Läuchli [73] matrix examples in [21, p. 44] or [61, p. 386]).

A second downside of the normal equations is that it produces a forward error bound
that may be larger than the one obtained for a backward stable method like QR. To show
this, we first state the following theorem related to the backward stability of the Cholesky
factorization. This result was established by Wilkinson [105] and mentioned in [21, p. 49].

Theorem 3. Let C ∈ R
n×n be a symmetric positive definite matrix. Provided that

2n
3
2uK(C) < 0.1

the Cholesky factor of C can be computed without breakdown, and the computed Ũ will
satisfy

ŨT Ũ = C +E , ‖E‖2 < 2.5n
3
2u ‖U‖22 .

Hence, Ũ is the exact Cholesky factor of a matrix close to C .

We now consider the ideal situation where there is no rounding error coming from
the formation of ATA and AT b or from the triangular solves. Then the LLSP solution
computed via the normal equations approach satisfies the equation

(ATA+E)x̃ = AT b

with ‖E‖2 < 2.5n
3
2u ‖U‖22 . Then, from [21, p. 49], the resulting relative forward error δ

is such that

δ ≤ 2.5n
3
2uK(A)2.

We have seen that, when the residual is small, the forward error resulting from a QR
factorization is bounded by an expression that is proportional to K(A) . Since the nor-
mal equations method produces a forward error that can be proportional to K(A)2 , it is
potentially less accurate than the QR factorization.

The error analysis of the SNE method has been studied in [79] for the minimum
norm problem and in [20] for the LLSP. It is shown in [20] that, similarly to the normal
equations method, the forward error bound involves a factor K(A)2 , even if we use a
R -factor that is of better quality than the Cholesky factor because it has been computed
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via a backward stable algorithm. As explained in [21, p. 126 and p. 250], the accuracy of
the SNE method can be improved by using the corrected semi-normal equations method
(CSNE) that consists in adding one step of fixed precision iterative refinement to the SNE
as follows:

1. Let x̃ solve RTRx = AT b

2. compute r̃ = b−Ax̃
3. solve RTRw = AT r̃

4. corrected solution y = x̃+ w

The forward error bound for the CSNE method is such that [61, p. 392]

‖x− x̃‖
‖x‖ ≤ cm,n

(
K(A)u ·K(A)2u

(
1 +

‖b‖2
‖A‖2 ‖x‖2

)
+
K(A)2u ‖r‖2
‖A‖2 ‖x‖2

)
, (1.7)

where cm,n is a small constant. If K(A)2u ≤ 1 , then the error bound given in (1.7) is
similar to that of Theorem 1 for a backward stable method (and even smaller when r is
small). In that case, the CSNE method is more satisfactory than the SNE method but
this is not true for all A . We also mention the approach that consists in considering the
augmented system [61, p. 383]

(
I A
AT 0

)(
r
x

)
=

(
b
0

)

and applying iterative refinement to it [17, 18]. This method can provide an accurate
solution especially for sparse LLSP [7, 19] but in our physical application where the ma-
trix is considered as dense, the resulting linear system of m+ n equations would be very
expensive to store and to solve (we recall that the order of m is 106 ).

When the previous missions CHAMP and GRACE were launched, the normal equa-
tions method was chosen because of its cheaper computational cost and because of the
capabilities of the current computers. Will it still be the case for the GOCE measure-
ments?
We have seen above that the condition number of A may influence the choice of the
method for solving our least squares problem. This is why we implemented a condition
number estimate for ATA = RTR (note that K(ATA) = K(A)2 ) in Chapter 3. Further-
more, since all solution components are not of interest for the physicists, results related
to the condition number of a linear function of the least squares solution are given in
Chapter 4. Since the QR factorization involves twice the floating-point operations needed
for the normal equations method (for m � n , as is the case for GOCE), we provide in
Chapter 3 an efficient algorithm that makes the QR factorization affordable for GOCE
computations.

1.2.3 Incremental approach for linear least squares

As shown in Figure 1.6, the GOCE observations are obtained during a six months measure-
ment phase. In this figure, the thick black line corresponds to the altitude of the satellite
on the orbit. The blue regions correspond to eclipse periods and the right axis show their
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duration in minutes per revolution. Due to the fact that electricity comes mainly from
the solar panels, measurement is not possible when the eclipse duration per revolution
is greater than 15 minutes. This explains the measurement interruption phase between
T0+9 and T0+14 . The measurements are accumulated on a daily basis and, if the matrix
ATA is nonsingular, a solution can be computed. Regularization techniques are possible
that make the solution computation more stable. The commonly used Kaula [25, 68]
regularization consists of adding to ATA a diagonal matrix D = diag(0, · · · , 0, α, · · · , α)

where α is a constant that is proportional to 10−5

l2max
and lmax is the quantity defined

in Section 1.1.1. The nonzero terms in D correspond to the variables that need to be
regularized. In that case, in the normal equations approach, we have to invert the ma-
trix ATA + D . This regularization technique is a special case of the Tikhonov [60, 95]
regularization method in the general form

min
x∈Rn

‖Ax− b‖2 + λ2 ‖Lx‖22 where L ∈ R
n×n (here λ2LTL = αD).

Figure 1.6: GOCE mission profile (early 2007 - end 2008).

We now describe an algorithm that aims to solve the nonlinear least squares problem re-
sulting from Equations (1.2) and (1.3). At each step of this algorithm, we solve a linear
least squares problem.
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Let AN and BN be respectively the cumulated parameter matrix and observation vector
up to date N .
Let AN and bN be respectively the data matrix and observation vector that has been
collected at date N .
Then we have:

AN =




A1
...
AN


 and BN =




b1
...
bN




The least squares problem to solve at date N can be stated as: minx∈Rn ‖ANx− BN‖2 .
We assume that we have solved the least squares problem at date N .
Then, at date N + 1 , we have:

AN+1 =

(
AN

AN+1

)
and BN+1 =

(
BN

bN+1

)

If we use the normal equations method, then the matrix of normal equations is expressed
by

AT
N+1AN+1 = AT

NAN +AT
N+1AN+1

and the right hand-side is given by

AT
N+1BN+1 = AT

NBN +AT
N+1bN+1

where AT
NAN and AT

NBN have been previously computed at date N . Then, in an in-
cremental process, only the normal equations matrix (and the right hand side AT

NBN )
has to be stored for further computations. The updating of the normal equations at date
N + 1 is performed by computing AT

N+1AN+1 and AT
N+1bN+1 and then adding them

respectively to the stored data AT
NAN and AT

NBN .

Let consider the case where we use a QR approach that utilizes Householder transfor-
mations. If we denote by RN the R -factor obtained at date N , then RN+1 corresponds
to the R -factor in the QR factorization of AN+1 . But we observe that the QR factor-

ization of AN+1 =

(
AN

AN+1

)
produces the same upper triangular factor as does the

factorization of

(
RN

AN+1

)
i.e RN+1 .

Furthermore, the storage of the Householder vectors can be avoided by appending the
observation vector bN to the matrix to be factorized and overwriting this vector with the
(n+ 1) -th column of the so-obtained triangular factor.
The result is that the updating of the R -factor at date N + 1 is done by performing the

QR factorization of

(
RN B̃N

AN+1 bN+1

)
where B̃N contains the updated values of BK

(K ≤ N ) resulting from the N previous QR factorizations.
This enables us to obtain the upper triangular matrix

(
RN+1 B̃N+1

)
and the solution

xN+1 is computed by solving RN+1xN+1 = ZN+1 where ZN+1 contains the first n ele-

ments of B̃N+1 . The algorithm that performs the QR factorization of

(
RN B̃N

AN+1 bN+1

)
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will be described in Chapter 3.
Similar algorithms for incremental Cholesky and QR factorizations are described in [21,
p. 224] in the framework of block angular least squares problems. Note that alternative
algorithms referred to as covariance algorithms update (ATA)−1 or a factor of it [65].

1.2.4 Parallel libraries for dense computations

This thesis strives to study and implement methods that can tackle the least squares prob-
lem arising from the GOCE observations and that also satisfy the operational constraints
of the project in terms of accuracy and computing time.
If we consider the fact that the GOCE calculations involve about 90, 000 variables, then
storing the whole matrix ATA (or R ) would require about 65 Gbytes of memory. Fur-
thermore, supposing that a matrix-matrix product can be performed at the rate of 4.2
Gflops, then the assembly time for the normal equations would be about 22 days. This
shows that, if we want to keep ATA (or R ) in memory and if computations must be
achieved within a day, then we need to exploit parallelism.
The existing libraries for dense in-core calculations are ScaLAPACK [23] and PLAPACK [98].

The widely used parallel library ScaLAPACK [23] (Scalable Linear Algebra PACKage)
is a parallel extension of the sequential library LAPACK [5]. The ScaLAPACK project
is a collaborative effort involving several institutions: Oak Ridge National Laboratory,
Rice University, University of California at Berkeley, University of California at Los An-
geles, University of Illinois at Urbana-Champaign, University of Tennessee at Knoxville.
It has been designed to perform dense linear algebra calculations on distributed-memory
message-passing computers. The first release (version 1.0) was in February 1995 and the
latest one in August 2001 (version 1.7).
ScaLAPACK includes routines for

- solving linear systems and linear least squares problems,

- solving eigenvalue and singular value problems,

- factorizing matrices and estimating condition numbers.

Similarly to LAPACK, the ScaLAPACK routines minimize data movement between the
different levels of the memory hierarchy (registers, caches, processor memory, other proces-
sors memory) by using blocked algorithms. Moreover they aim to obtain a good partition
of work (also called load balance) between processors by partitioning and distributing
matrices and vectors among the processors. This good load balance is obtained by dis-
tributing data using a two-dimensional block-cyclic distribution [23, p. 58].
The software components of ScaLAPACK are the BLAS [1, 39] and the BLACS [41] li-
braries that perform respectively the common linear algebra operations and the message-
passing communication between processors. These two libraries perform the low-level tasks
of ScaLAPACK and are not referenced explicitly when developing ScaLAPACK-based im-
plementations. ScaLAPACK is fully portable provided that the BLAS and BLACS li-
braries are supported by the parallel platform being used.
The PBLAS (Parallel BLAS) [32] library provides routines implementing in parallel the
basic linear algebra calculations performed in sequential by the BLAS library. The PBLAS
interface has been designed to look as similar as possible to the BLAS. Since the PBLAS
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routines handle distributed data, they are also commonly used in ScaLAPACK implemen-
tations.

The PLAPACK library was developed in 1997 at the University of Texas. It imple-
ments linear algebra functionalities similar to those proposed in ScaLAPACK. PLAPACK
provides an object-based approach to programming and a simplified way for distributing
matrices [98, p. 3]. It also introduces the possibility of using algorithmic blocking for
matrix-matrix multiply that corresponds to a level of blocking above the one used for
distributing data among processors.
The two parallel libraries provide different computational routines that may be compared
on some particular examples but this study is out of the scope of this thesis.
To handle larger problems, out-of-core implementations of the QR, Cholesky or LU factor-
ization routines were created. These implementations were described in [38] for ScaLA-
PACK and [57, 58] for PLAPACK.
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Chapter 2

An operational parallel solver for

GOCE gravity field calculations

2.1 Motivations

The solution of large dense linear systems appears in many engineering and scientific
applications of computational sciences. This is for instance the case in geodesy where the
calculation of the gravity field requires the solution of large linear least-squares problems
that are often solved using the normal equations approach. Such dense linear systems also
arise in electromagnetics applications when boundary elements are used. In these fields,
the recent developments of the Fast Multipole Method (FMM) enable us to perform dense
matrix-vector products efficiently. This opens the possibility of using iterative Krylov
solvers for solving these large systems. In particular, in electromagnetic computations, the
FMM are established methods providing reliable solution of linear systems up to a few tens
of million unknowns on parallel computers [93] for industrial calculations. In gravity field
computations, these techniques are studied in research codes, but further investigations,
mainly related to the accuracy of the solution, are needed to bring them into use in
operational codes. For these latter calculations, dense factorizations are still the methods
of choice and out-of-core implementations might be an alternative when the matrix does
not fit into the memory [38, 57]. With the advent of distributed memory parallel platforms,
in-core codes are affordable and the parallel libraries ScaLAPACK [23] and PLAPACK [98]
are often selected to perform this linear algebra calculation. In particular these libraries
implement the Cholesky factorization for symmetric positive definite linear systems but
they do not exploit the symmetry for the storage, and the complete matrix should be
allocated while the factorization only accesses half of it. This “waste” of memory cannot be
afforded for operational industrial calculations since the memory of moderate size parallel
computers is often the main bottleneck. This is the main reason why we develop a parallel
distributed dense Cholesky factorization based on MPI [44] that exploits the symmetry
and stores only half of the matrix.

We choose a factorization algorithm and a data distribution that are different from
the libraries ScaLAPACK and PLAPACK. The resulting implementation will compare
competitively with these libraries for up to 32 processors. For higher processor counts,
these choices should be reconsidered.
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Our algorithm implements:

- a j-variant [6, 78] block Cholesky factorization algorithm,
- a block-cyclic column data distribution [23, p. 60] where only the upper part of the

matrix is stored, this storage being implemented in a row-wise format,
- message passing performed by non-blocking asynchronous MPI routines,
- level 3 BLAS [39] routines in order to account for the memory hierarchy on each

processor.

The target application is here the gravity field computation in the framework of the
GOCE mission. As pointed out in Section 1.2, the estimation process of the gravity field
parameters is incremental and is currently performed at CNES (Centre National d’Etudes
Spatiales) by the normal equations method. Note that the physicists do not compute a
solution a each step of the incremental process. We also point out that there is no updating
of the Cholesky factor as described in [16, p. 44] and that, when a solution is computed,
the users perform a complete Cholesky factorization of the normal equations matrix. This
does not penalize the global performance since, as we will see below, the computational
cost of the Cholesky factorization is negligible compared with that of the normal equations
assembly. In this chapter, we focus on one step of the incremental process described in
Section 1.2.3 that consists of solving the least squares problem minx∈Rn ‖Ax− b‖2 where
b ∈ R

m is the observation vector and A ∈ R
m×n is a full column rank matrix. In order to

be integrated into the GINS existing software we first implemented a parallel distributed
solver based on the normal equations approach that consists in forming and then solving
the normal equations:

ATAx = AT b.

In this application, m is about 106 and n is slightly less than 105 . The three phases
are:

1. the assembly of ATA (cost O(mn2) ),
2. the Cholesky factorization of ATA (cost n3/3 ),
3. two triangular system solves (cost 2n2 ).

We point out that steps 1 and 2 are the most time-consuming tasks and need an efficient
parallel distributed implementation. The construction and storage of ATA has been
implemented using MPI and the obtained performance is close to the peak performance of
the computers on a matrix-matrix multiply [84, Section 6.3]. The triangular solve, which
is less critical in terms of arithmetic operations, has been also implemented using MPI.

The numerical simulations we are interested in are performed in a daily production
mode at CNES for the geodesy application. For this project, the target parallel platforms
are moderately parallel computers with up to 32 processors and less than 2Gbytes memory
per processor.

The parallel solver described in this chapter is now part of the GINS software at CNES.
GINS computes an accurate orbit around a body in the solar sytem and determines some
geophysical parameters such as:

- the gravity field coefficients,
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- the coefficients of the oceanical tide model,

- the mean ocean surface,

- some coefficients of the atmosphere model (temperature, several gaz densities),

- the poles coordinates and the universal time,

- the position and speed of stations,

- · · ·

In particular, GINS performs the classical orbit estimation process described in Sec-
tion 1.1.2. GINS is also interfaced with software used in other geodesy institutes in Europe.

This chapter is organized as follows. In Section 2.2, we compare the features of the
Cholesky factorization algorithm as it is implemented respectively in our solver and in
ScaLAPACK or PLAPACK. For both implementations we successively describe the block
algorithms in Section 2.2.1, the data distributions in Section 2.2.2, while the expected
performance based on theoretical models is discussed in Section 2.2.3. The parallel imple-
mentation of our solver is detailed in Section 2.2.4. Then in Section 2.3.2, we give some
numerical results obtained on the target operational parallel distributed platforms in order
to evaluate the performance of our parallel implementation. These results are compared
with those obtained with ScaLAPACK and PLAPACK. Finally, some concluding remarks
are given in Section 2.4.

2.2 Parallel implementation

2.2.1 Block Cholesky factorization

There are two main variants used for the block Cholesky factorization. The variant referred
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Figure 2.1: Memory access patterns for two variants of the Cholesky factorization.

to as j-variant in [6, 78] or left-looking algorithm in [57] computes one block row of U at
a time, using previously computed lines that are located at the top of the block row being
updated. The second variant is referred to as k-variant in [6] or right-looking algorithm
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in [57]. This variant performs the Cholesky decomposition B = U TU by computing
a block row at each step and using it to update the trailing sub-matrix. The k-variant
algorithm is implemented in the ScaLAPACK routine PDPOTRF [33] and the PLAPACK
routine PLA Chol [3]. The j-variant and the k-variant are described in Figure 2.1, where
the shaded part refers to matrix elements being accessed, the dark shaded part represents
the block row being computed (current row), and the hatched part corresponds to the
data being updated.

In order to describe the difference between these two variants, let us consider the fol-
lowing symmetric block matrix:




B11 B12 B13

B12
T B22 B23

B13
T B23

T B33


 ,

where B22 is the diagonal block to be factorized, assuming that the first block row has
been computed and that we want to obtain the second block row.
The j-variant algorithm allows us to advance the factorization as described below:




U11 U12 U13

B22 B23

B33


 →




U11 U12 U13

0 U22 U23

0 0 B33


 ,

where the second block row is computed with the following steps:

1. U22 ← Chol(B22 − UT
12U12) ,

2. U23 ← U−T
22 (B23 − UT

12U13) .

The block B22 is first updated by using a matrix-matrix product and then factorized.
Each block belonging to the rest of the block row is updated by a matrix-matrix multiply
followed by a triangular solve with multiple right-hand sides.

According to the k-variant algorithm, we advance the factorization as follows:




U11 U12 U13

B̃22 B̃23

B̃33


 →




U11 U12 U13

0 U22 U23

0 0 B̃33


 ,

where the second block row is computed with the following steps:

1. U22 ← Chol(B̃22) ,

2. U23 ← U−T
22 B̃23 ,

3. B̃33 ← B̃33 − UT
23U23 .

The block B̃22 is first factorized then U23 is computed by using a triangular solve with
multiple right-hand sides. Finally, the trailing sub-matrix B̃33 is updated.

We notice that in both algorithms, the computational work is contained in three rou-
tines: the matrix-matrix multiply, the triangular solve with multiple right-hand sides and
the Cholesky factorization. These numerical kernels can be respectively implemented us-
ing the Level 3 BLAS and LAPACK [5] routines: DGEMM, DTRSM and DPOTRF. As
explained in [6], similar performance can be expected from both algorithms when the
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three dominant routines are implemented equally well. Table 2.1 shows for two sample
matrices that the operations involved in the DGEMM routine represent the major part of
the operations for matrices involved in our applications and that this percentage increases
with the size of the matrix ( b corresponds to the block size chosen in our algorithm).

Table 2.1: Breakdown of floating-point operations for block Cholesky algorithm.

routine n = 500 and b = 64 n = 40, 000 and b = 128

DGEMM 84.6 99.5
DTRSM 14.1 0.5
DPOTRF 1.3 0.001

We point out that our j-variant Cholesky algorithm that is sometimes called left-looking
has to be distinguished from the algorithm referred to as left-looking LU in [40, p. 83]
which performs more DTRSM triangular solves than the two other LU variants considered
in that book.

2.2.2 Data distribution

The data layout used in our solver is the one-dimensional block-cyclic column distribution.
According to this layout, we choose a block size s and we divide the columns into groups
of size s . Then we distribute these groups among processors in a cyclic manner column by
column. Figure 2.2 shows an example of such a distribution for a 8-by-8 block matrix when
we have 4 processors numbered 0,1,2 and 3. In this figure, each block is labeled with the
number of the processor that stores it. The k-variant Cholesky algorithm implemented in
ScaLAPACK or PLAPACK is based on a 2-D block-cyclic data distribution. In this type
of distribution, the processors are arranged in a p -by- q rectangular array of processors.
According to this choice of grid, the matrix blocks are assigned in a cyclic manner to
different processors. Figure 2.2 shows an example of such a distribution for a 8-by-8 block
matrix if we have 4 processors with p = 2 and q = 2 . Note that a 1-D column distribution
is a particular choice of 2-D distribution if q = 1 . We refer to [23] for a more detailed
description of these two types of data distribution. An important issue when choosing a
data distribution is the load-balancing [40, p. 43] that involves to split the work among
the processors throughout the algorithm to ensure the most efficient use of resources. This
issue motivated the choice of the 2-D distribution in ScaLAPACK and PLAPACK. We
refer to [23] for a more detailed description of the data distribution properties.

2.2.3 Performance prediction

As we have chosen an algorithm and a data distribution that are different from the standard
libraries, we may see the consequence of this choice on the expected factorization times.
We model the theoretical performance by evaluating the elapsed computational time and
assuming that the communication is perfectly overlapped by the computation. The model
parameters are the problem size n , the block size s , the number of processors p × q ,
and the peak performance γ of a matrix-matrix product DGEMM of size s on the target
machine. The parameter s is usually tuned in order to obtain the best value for γ . We
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Figure 2.2: Block-cyclic data distributions.

consider a peak performance γ ∼ 3.3 Gflops obtained with a block size s = 128 , this
choice being consistent with the performance of current parallel platforms. We denote nb

the number of columns of the block matrix.

As shown in Table 2.1, the major part of computation for both algorithms consists
in performing the matrix-matrix multiply DGEMM. Let f denote the total number of
arithmetic operations involved in the Cholesky factorization, then the elapsed factorization
time can be accurately approximated by f

γ .

For the j-variant algorithm using a 1-D block column distribution, we have:

f = nb
s3

3
+

nb∑

i=1

nc((i− 1)2s3 + s3),

where nc is the maximum number of block columns treated per processor at step i .

For the k-variant algorithm and a 2-D block cyclic distribution for a p× q processors
grid, we have:

f = nb
s3

3
+

nb∑

i=1

(nss
3 + nu2s3),

where ns and nu are the maximum number of blocks treated per processor involved
respectively in the triangular solve and in the update of the trailing sub-matrix. We
noticed experimentally that the choice of grid corresponding to 1

2 ≤
p
q ≤ 1 ensures the

best time (or close to).

The efficiency of the algorithm can be evaluated by measuring how the performance
degrades as the number of processors p increases while each processor uses the same
amount of memory. This measures what we define as isomemory scalability. This type of
performance measurement is suitable for our target applications since we aim to use most of
the memory available for each processor of the parallel machine. Using the above formula
of s , we get a theoretical factorization time and the resulting plots evaluate what we define
as theoretical isomemory scalability of the algorithm. The problem size np is such that
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each processor uses about the same amount of memory σ . In particular σ is the memory
size required to solve a problem of order n1 on one processor. We first choose a value
of n1 that is compatible with the minimal memory capacity of current parallel machines.
We take n1 = 10, 000 which corresponds to a σ = 800 Mbytes for solvers storing the
whole matrix and 400 Mbytes memory storage for our symmetric solver. Then we estimate
the factorization time for a problem of size np that has to be solved on p processors.

The invariance of storage per processor can be written n1(n1+1)
2 =

np(np+1)
2p , and then

approximated by np ' n1
√
p . In Figure 2.3 (a), we obtain the theoretical factorization

times when the number of processors increases from 1 to 256 and the corresponding matrix
size increases from 10,000 to 160,000. We see in Figure 2.3 (a) that a discrepancy between
the two curves occurs for 32 processors (corresponding to a problem size of 56,569), due
to difference of load-balance resulting from the choice of data distribution. When more
than 64 processors are used, figures given by the model confirm the well-known result
that a 2-D block cyclic distribution is better than a 1-D block cyclic column distribution.
However, as we can see in Figure 2.3 (b), the scalability properties of both layouts are
very similar for processor counts lower than 32.
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Figure 2.3: Theoretical isomemory scalability (peak = 3.3 Gflops).

2.2.4 Parallel implementation of the j-variant Cholesky algorithm

2.2.4.1 Choice of a data structure

As explained in Section 2.1, one of the main objectives of our implementation is to exploit
the symmetry of the matrix by storing only about half of it. This implies that the memory
of each processor will only contain the blocks assigned to this processor that belong to the
upper triangular part of the symmetric matrix B . An appropriate choice for the structure
containing these data must comply with the memory hierarchy constraints (level 1, 2 or 3
cache or TLB). More precisely, the fact that blocks are stored row-wise or column-wise in
a local array might have a significant influence on performance in terms of Mflops. This
will be illustrated in this paragraph by some experiments performed on IBM pSeries 690
(using the essl scientific library).
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We saw in Section 2.2.1 that the calls to the BLAS 3 routine DGEMM and among
them, the outer product between two different block columns represent the major part
of the operations performed in a Cholesky factorization. If we denote (Bij) the block
triangular array corresponding to B , then this outer product consists in computing the
operation on blocks Bij ← Bij −

∑i−1
k=1B

T
kiBkj where i is the current row and Bij(j > i)

is the element of column j to update. If nmax is the maximum number of blocks owned
by a given processor and s is the block size defined in Section 2.2.3 then data blocks can
be arranged in a Fortran array according to either a block-row storage or a block-column
storage by using respectively an array of leading dimension s and nmax×s columns or an
array of leading dimension nmax × s and s columns. As an example, the matrix sample
given in Figure 2.2 leads for processor 0 to a local array that can be represented using a
block-row storage by:

B11 B15 B25 B35 B45 B55

whereas it will be represented using a block-column storage by:

B11

B15

B25

B35

B45

B55

.

In order to evaluate the memory effect generated by each data structure, we plot in
Figure 2.4 the performance obtained on the IBM pSeries 690 for the instruction Bij ←
Bij−

∑nmax

k=1 BT
kiBkj where the block columns (Bki)k=1,nmax

and (Bkj)k=1,nmax
are stored

either row-wise or column-wise in a Fortran array. In our experiments we set s = 128 and
nmax = 50 but we obtained similar curves for nmax > 50 . Figure 2.4 (a) is related to a
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(b) block-column data storage

Figure 2.4: Cache misses on IBM pSeries 690 for variable size arrays.

block-row data storage and the number of columns varies from nmax× s to 3×nmax× s .
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Figure 2.4 (b) is related to a block-column data storage and the leading dimension varies
from nmax×s to 3×nmax×s . Since the IBM pSeries 690 has a L1 cache 2-way associative
of 32 KB, we obtain the worst performance when we successively access to data that are
distant from a multiple of 16 KB (because they are stored in the same set of the cache
memory). In a Fortran array, the distance between two consecutive data of the same line is
the leading dimension of the array. Hence cache misses are expected when we access to two
consecutive double-precision real in a line of an array whose leading dimension is a multiple
of 2048 ( 2048 = 16K

8 ). We notice in Figure 2.4 (b) that these spikes appear exactly with
the same period when performing the outer product instruction and varying the leading
dimension. We also observe the secondary spikes appearing at fraction of 2048 [48]. On
the contrary, in a block-row structure, the distance between two consecutive entries in a
line is s and performance obtained by computing the outer product is more stable with
much less cache misses. Furthermore, if we use a block-row storage, the blocks belonging
to the same block column will be contiguous in memory and then will map better to the
highest levels of cache. This data contiguity is also an advantage when performing MPI
operations. Taking these results into consideration, we chose the row-wise way of storing
data blocks in the local memory of each processor.

2.2.4.2 Parallel algorithms

The performance of the normal equations assembly is not an issue in this chapter since we
obtained a Gflops rate that is close to the sustained peak performance of a matrix-matrix
product.
However we give here the parallel algorithm that was implemented in order to construct
B = ATA . This algorithm is such that:

1. All processors read the matrix A but a given processor computes only the contri-
bution to blocks that are stored in its local memory.
Rows of A are read and stored in a temporary array BUFF containing r lines
and n+ 1 columns (including thus the right-hand side vector b).

2. Blocks are then transmitted to a master processor to be written on disk.

3. The program uses both MPI and Open MP [28].
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Algorithm 1. : ATA assembling

while not end-of-file do

for Read A and b from file and store in BUFF

for each local block Aij OpenMP parallel do

Update Aij using BUFF (BLAS 3 DGEMM)

end parallel do

for each local block bi OpenMP parallel do

Update bi using BUFF (BLAS 2 DGEMV)

end parallel do

end (while-loop)

The parallel algorithm for the Cholesky factorization is described as follows. Half of the
symmetric matrix B is loaded into memory distributed in a block upper triangular array
(Bij)j>i according to the layout described in Section 2.2.2 and stored into memory ac-
cording to the data storage described in Section 2.2.4.1. We recall that nb is the number
of columns of the block matrix (Bij) and we denote by p the id of the current processor,
(proc(i))i=1,nb

the array containing the processor id for each block column i , and nprocs
the total number of processors involved in the parallel calculation. Then the following
parallel block algorithm is executed simultaneously by all processors:
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Algorithm 2. : Parallel block Cholesky

for i = 1 : nb

if p = proc(i) then

1. proc(i) sends (Bki, k ≤ i − 1) to other processors
(Isend1)

2.Bii ← Bii −
∑i−1

k=1B
T
kiBki

3.Bii ← Chol(Bii)

4. proc(i) sends Bii to other processors (Isend2)

5.Completion of Isend1 (Wait1)

6.for each block column j > i assigned to proc p :

Bij ← Bij −
∑i−1

k=1B
T
kiBkj

7.Completion of Isend2 (Wait2)

8.for each block column j assigned to proc p

Bij ← B−T
ii Bij

else

9.receive (Bki, k ≤ i− 1) from proc(i) (Irecv1)

10.completion of Irecv1 (Wait1)

11.receive Bii from proc(i) (Irecv2)

12.for each block column j > i , Bij ← Bij −
∑i−1

k=1B
T
kiBkj

13.completion of Irecv2 (Wait2)

14.Bij ← B−T
ii Bij

endif

end (i-loop)

As it can be seen in instructions 1 and 4 of Algorithm 2, data are sent as soon as they
are available by a non blocking instruction MPI Isend. This allows the overlapping of
the communications by the computations. The update of the rest of the block row can
be performed by all the processors while the communications are still ongoing. When
these data are necessary for further use by the sending processor at step 6 and 8, the
communication must be completed by using MPI Wait instruction (respectively in 5 and
7). In the same manner, messages are received as soon as possible using the non blocking
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instruction MPI Irecv in 9 and 11 and then completed by MPI Wait just before the received
data are used in the computations involved in instructions 12 and 14. These non-blocking
message exchanges save about 10% of the factorization times on a matrix of dimension
24,000 on 16 processors of the IBM platform, compared with an implementation using
blocking instructions MPI Send and MPI Recv.

2.3 Experiments

Experiments were conducted on the following platforms:

1. one node of an IBM pSeries 690 (32 processors Power-4/1.3 GHz and 64 Gbytes
memory per node),

2. a HP-COMPAQ Alpha Server (10 SMP nodes with 4 processors EV68 1 GHz and 4
Gbytes memory per node) installed at CERFACS.

Computations with ScaLAPACK were performed using the pessl library on the IBM
pSeries 690 and the COMPAQ ScaLAPACK V1.0.0 library on the HP-COMPAQ Alpha
Server. On both machines, we used PLAPACK release 3.0.

2.3.1 Tuning the normal equations formation

First, we obtained the peak performance of the matrix-matrix product by running DGEMM
on the machine for increasing size of matrix. The maximum value was 3.4 Gflops. Then
the program parameters r (read block size) and s (block size) have to be tuned in order
to find the optimal values. As expected, we observed here a BLAS 3 effect: the peak
performance is achieved for block size larger than a minimum value related to memory
characteristics such as sizes of the various cache levels.
As shown in Figure 2.5, we have good results for a buffer read block size greater than 256.
In Figure 2.6 we notice that the optimal block size for size matrix 20,000 is greater than
128.

2.3.2 Performance analysis of the Cholesky factorization

We compare performance obtained by our j-variant Cholesky algorithm and that of the
Cholesky factorization routines PDPOTRF and PLA Chol on the parallel machines de-
scribed above. In Figure 2.7, we plot the run times obtained for several problem sizes
such that the memory allocation per processor is constant (i.e in the condition of isomem-
ory scalability as defined in Section 2.2.3). On this curve, the problem size varies from
10,000 (for 1 processor and corresponding to a memory storage per processor of about 800
Mbytes compatible with our target platforms) to 56,569 (for 32 processors). Figure 2.7
shows that, for up to 16 processors, our solver provides factorization times that are close
to those obtained by ScaLAPACK and PLAPACK. For 32 processors, performance of the
libraries using a 2-D block cyclic distribution are, as expected, better and this is consistent
with the theoretical model described in Section 2.2.3.

Table 2.2 measures the scalability in floating-point operations of both algorithms, that
we name isoflop scalability. It shows how the performance per processor (in Gflops) of
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Figure 2.6: variation of block size for matrix size 20,000, read block size 256, 2 processors,
4 threads

the algorithms behaves when the number of processors increases and while each processor
performs the same number of floating-point operations. Measuring a performance per
processor enables us to compare easily with the peak performance of the machine. In the
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Figure 2.7: Isomemory scalability of the Cholesky factorization.

ideal case, i.e when the communication is perfectly overlapped by the computation, we
expect this performance being constant. This implies that, with the same notations as in
Section 2.2.3, n3

p = pn3
1 i.e np = n1

3
√
p . In our experiments, we chose n1 = 9, 449 and

this corresponds to a memory storage per processor of about 700 Mbytes for ScaLAPACK
and PLAPACK (350 Mbytes for our solver) and a fixed number of about 2.8 1011 floating-
point operations per processor. It can be seen in Table 2.2 that the performance of the
three routines is similar up to 16 processors and that, for 32 processors, our solver is
slightly less efficient than ScaLAPACK and PLAPACK. For all routines, we notice that
performance decreases significantly with the number of processors, due to the cost of the
communications.

Table 2.2: Isoflop scalability for the Cholesky factorization (Gflops).

IBM pSeries 690 HP-COMPAQ Alpha Server

nb procs size our solver PDPOTRF PLA Chol our solver PDPOTRF PLA Chol

1 9449 3.3 2.9 2.9 1.5 1.5 1.5

2 11906 3.2 2.9 2.9 1.5 1.4 1.5

4 15000 2.9 2.9 2.9 1.4 1.3 1.4

8 18899 2.7 2.7 2.7 1.3 1.2 1.3

16 23811 2.5 2.5 2.5 1.1 1.1 1.2

32 30000 2 2.2 2.2 0.7 0.8 1

Now if we compare factorization times obtained on each machine for a given problem
size, we notice that the IBM pSeries 690 is about twice faster than the HP-COMPAQ
Alpha, as it was expected since the Power 4 and the EV68 processors have a peak com-
putation rate of respectively 5.2 Gflops and 2 Gflops.
Our solver gives performance results that are similar to ScaLAPACK and PLAPACK on
moderately parallel platforms (up to 32 processors). Nevertheless, it is less scalable than
these libraries on higher processor counts because it uses a one-dimensional block cyclic
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distribution. However our solver uses about half the memory required by ScaLAPACK
and PLAPACK. Thus choosing between our solver and the standard parallel libraries will
involve a trade-off between storage and computation time.
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2.3.3 Gravity field computation

The spherical harmonic coefficients C lm and Slm that represent the gravity field are
computed by GINS via the method described in Section 1.1.2.
In the following example we consider 10 days of observations using GRACE measurements.
The total number of observations is 165, 960 . The number of gravity field parameters
(problem size n ) was initially 22, 801 but the problem was not solved for degrees larger
that 99 ( lmax = 99 ). Then the number of parameters effectively computed is (lmax+1)2 =
10, 000 .
The solution computed by GINS is validated by the physicists using the spectrum depicted
in Figure 2.8. This figure represents the geoid height error between the computed model
and a reference model. The geoid height error is expressed as a function of the degree l
and using a logarithmic scale for the y-axis.
The computed solution and the reference solution are represented respectively by the
red and the black curves. We notice that both curves coincide because the order of the
difference is of several centimeters. However, a slight discrepancy between the two curves
occurs for the largest values of l .
For a more accurate analysis, the physicists plot the difference between the computed
and the reference solution for each degree (blue curve). We notice that the slope of this
curve increases with the degree. As mentioned in [11], the low degrees coefficients are not
accurately computed. This can be verified here because there is a spike at the beginning
of the blue curve ( l ≤ 4 ).
The yellow curve represents for each degree l the same difference as the blue curve but
cumulated (in quadratic sum) for the degrees lower than l . This curve indicates to the
physicists the global quality of the solution. The computed solution is very satisfactory
for l ≤ 100 . For values of l larger than 100, we notice that this curve goes up, showing
then that the difference between the reference and the computed gravity field increases.

Figure 2.9 represents a geoid map (which is partial because of the truncation) resulting
from the gravity field computed above. Note that the main mountains (red) and the
submarine pits (blue) appear clearly on this map.
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Figure 2.9: Geoid map ( 4 ≤ l ≤ 99 ).
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2.4 Conclusion of Chapter 2

In this chapter, we described an implementation of a parallel symmetric solver involving
algorithmic and distribution choices that are different from that of ScaLAPACK and PLA-
PACK. The behaviour that one can expect from the theoretical model has been confirmed
by experiments up to 32 processors.

The solution obtained complies with the operational constraints and we can solve prob-
lems of size corresponding to the target application. For instance, problems of size 100,000
were solved on an IBM pSeries 690 in 1 hr 20 mins using 32 processors. We also solved
problems of size 100,000 on HP-COMPAQ Alpha in 2 hr 40 mins using 32 processors on
nodes that have 2 Gbytes memory per processor.

After integrating this solver into the GINS software that computes the gravity field coef-
ficients, we obtained a solution that satisfies the requirements of the physicist in terms of
performance and accuracy.
Other approaches to design parallel linear solvers might consist in using high-level parallel
routines in PLAPACK or PBLAS/ScaLAPACK. They deserve to be investigated and are
the topic of Chapter 3 where their benefit in terms of load-balance will be studied.
From a numerical point of view, some additional work can be developed. In this respect,
a condition number estimate is studied in Chapter 4 that will be added to our implemen-
tation to make the normal equations approach more robust.
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Chapter 3

A distributed packed storage for

scalable large parallel calculations

3.1 Introduction to distributed packed storage

Even though the current parallel platforms provide increasing memory capacity, they are
also used to solve ever larger linear systems. This is the case for instance in geosciences or
electromagnetic computations where the usual problem size is several tens of thousands.
It is now possible to perform these calculations since the distributed memory parallel ma-
chines available today offer several Gbytes memory per processor. But when the dense
matrices involved in these computations are symmetric, Hermitian or triangular, it could
be worth exploiting the structure by storing only half the matrix.
The ScaLAPACK [23] library has been designed to perform linear algebra parallel cal-
culations on dense matrices. Contrary to the serial library LAPACK [5], ScaLAPACK
does not currently support packed format for symmetric, Hermitian or triangular matri-
ces [37]. A parallel solver has been studied in Chapter 2 (and in [8]) that solves linear
least squares problems encountered in gravity field calculations using the normal equations
method. This solver also handles large symmetric linear systems in complex arithmetic
resulting from BEM (Boundary Element Method) modelling of electromagnetic scattering.
This solver uses about half the memory required by ScaLAPACK and gives performance
results similar to ScaLAPACK on moderately parallel platforms (up to 32 processors).
Nevertheless, it is less scalable than ScaLAPACK on higher processor counts because it
uses a one-dimensional block cyclic distribution [23, p. 58]. The distributed packed storage
format proposed in this chapter exploits the good load balancing of the two-dimensional
block cyclic distribution [23, p. 58] as it is implemented in ScaLAPACK. The calls to
PBLAS [32] or ScaLAPACK routines in the applications that exploit this format will also
ensure the portability of software built upon them since these libraries are supported by
all current parallel platforms. We shall see that, thanks to the set of routines we provide,
building applications using matrices in distributed packed form is very easy and gives good
performance while saving a significant amount of memory compared with the full storage
of the matrix.

This chapter is organized as follows. In Section 3.2, we give an overview of the existing
packed formats. The purpose of Section 3.3 is to describe the implementation of the
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distributed packed storage that we intend to use in parallel algorithms based on PBLAS
or ScaLAPACK kernel routines. In Section 3.4, we explain how the Cholesky factorization
can be implemented using the distributed packed format, this includes the descriptions
of algorithms and a performance analysis on the IBM pSeries 690 and the CRAY XD1
cluster. Then in Section 3.5, we present an implementation of the updating of the QR
factorization that keeps the R factor in memory using the distributed packed format and
we give performance results on the IBM pSeries 690. Finally, some concluding comments
are given in Section 3.6.

3.2 Generalities on packed storage formats

The sequential libraries LAPACK [5] or BLAS [39] provide a packed storage for symmet-
ric, hermitian or triangular matrices. This format allows us to store half the matrix by
addressing only the lower-triangular or upper-triangular part of the matrix, this part being
held by columns.

For instance, the upper triangle of A =




a11 a12 a13

∗ a22 a23

∗ ∗ a33


 will be stored compactly in

the matrix AP (A Packed) such that AP =
[
a11, a12, a22, a13, a23, a33

]
.

For symmetric matrices, either the lower triangle or the upper triangle can be stored. In
both cases, the triangle is packed by columns but one may notice that this is the same as
storing the opposite triangle by rows. This packed storage format has been implemented
in several routines of the Level-2 BLAS and LAPACK for:

- solving symmetric indefinite or symmetric/Hermitian positive definite linear systems,

- computing eigenvalues and eigenvectors for symmetric or symmetric-definite gener-
alized eigenproblems (with condition number estimation and error bounds on the
solution),

- multiplying symmetric/Hermitian matrices and solving triangular systems.

Unfortunately, this format gives poor performance results when used in dense linear alge-
bra computations since the algorithms are not able to make optimal use of the memory
hierarchy. Blocked operations cannot be performed which prevents the use of Level-3
BLAS and causes a dramatic loss of efficiency compared to the full storage (see e.g [4]).
An answer to this problem consists of using blocking techniques and storing the lower-
triangular or upper-triangular part of the blocked matrix. For instance, the blocked matrix

A =




A11 A12 A13

∗ A22 A23

∗ ∗ A33


 can be stored in the blocked packed matrix

[
A11, A12, A22, A13, A23, A33

]

or [
A11, A12, A13, A22, A23, A33

]
.

For serial implementations, the authors of [4] define a so-called Upper (resp. Lower)
Blocked Hybrid Format. In both formats, the blocks are ordered by columns to permit
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efficient operations on blocks using Level-3 BLAS (e.g blocked Cholesky algorithm in [4])
and the diagonal blocks are stored in packed format so that exactly half of the matrix is
stored.
Regarding parallel implementations, there is presently no satisfying packed storage avail-
able for dense matrices. A packed storage for symmetric matrices distributed in a 1-D
block cyclic column distribution is used in [8] for a least squares solver based on the nor-
mal equations approach. In this implementation the blocks are ordered by columns and
stored in a block-row array, resulting in extra-storage due to the diagonal blocks that are
fully stored. All blocks are manipulated using Level-3 BLAS or LAPACK blocked rou-
tines but communication is performed by MPI primitives whereas the distributed packed
format that we propose in this paper relies on the ScaLAPACK communication layer
BLACS [41].
A preliminary study on a packed storage extension for ScaLAPACK has been carried
in [36]. In this format only the lower (or upper) part of each block column of the matrix
is stored into a panel considered as a separate ScaLAPACK matrix. This packed storage
stores also the entire diagonal blocks. We can find in [36] experiments on the Cholesky
factorization and symmetric eigensolvers. Our approach is an extension of this format and
we will see its limitation.

3.3 Distributed packed format

3.3.1 Definitions

ScaLAPACK proposes a data layout based on a two-dimensional block cyclic distribution.
In this type of distribution, a matrix of size n is divided into blocks of size s that are
assigned to processors in cyclic manner according to a p× q process grid. We refer to [23]
for more details about this data layout. The blocks of size s that are spread among
processors are called elementary blocks and the blocks of size p.s× q.s corresponding to
the p× q process grid are called grid blocks.

In order to be stored in a distributed packed format, a matrix is first partitioned into
larger square blocks of size b such that b is proportional to l.s where l is the least
common multiple of p and q ( b ≥ l.s ). We define these blocks as “distributed blocks”.
In the rest of this chapter, the algorithms will be expressed in terms of distributed blocks
that will be simply called “blocks”. Note that the distributed block performs naturally
what is defined in [98] as algorithmic blocking.
The following figure summarizes the hierarchy between the elementary block (hosted by
one processor), the grid block (corresponding to the process grid), and the distributed
block (square block consisting of grid blocks). It shows the three kinds of blocks that we
get when we consider a 2× 3 process grid, s = 1 , b = 6 and each block is labeled with
the number of processor that stores it.
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0 : elementary block,
0 1 2

3 4 5
: grid block,

0 1 2 0 1 2

3 4 5 3 4 5

0 1 2 0 1 2

3 4 5 3 4 5

0 1 2 0 1 2

3 4 5 3 4 5

: distributed block.

We consider here a matrix A partitioned into distributed blocks Aij and A can
be either symmetric or upper triangular or lower triangular. We propose to store A
compactly in a distributed packed format that consists in storing the blocks belonging
to the upper or the lower triangle of A in a ScaLAPACK matrix ADP (A Distributed
Packed).
The blocks of A will be stored horizontally in ADP so that the entries in the elementary,
grid and distributed blocks are contiguous in memory and then will map better to the
highest levels of cache.

Let us consider the following symmetric matrix A described using distributed blocks,
that is

A =




A11 AT
21 AT

31

A21 A22 AT
32

A31 A32 A33


 .

We provide two ways of storing A using our distributed packed format. In the Lower
distributed packed format, the lower triangle of A is packed by columns in ADP i.e:

ADP =
[
A11 A21 A31 A22 A32 A33

]
.

In the Upper distributed packed format, the upper triangle of A is packed by rows in
ADP i.e:

ADP =
[
A11 AT

21 AT
31 A22 AT

32 A33

]
.

The distributed packed storage for upper and lower triangular matrices follows from that of

a symmetric matrix since the upper triangular blocked matrix A =




A11 A12 A13

0 A22 A23

0 0 A33




is stored in a packed distributed format as

ADP =
[
A11 A12 A13 A22 A23 A33

]

and the lower triangular blocked matrix A =




A11 0 0
A21 A22 0
A31 A32 A33


 will be stored as

ADP =
[
A11 A21 A31 A22 A32 A33

]
.

Notice that contrary to LAPACK where upper and lower triangular matrices are both
packed by columns, our distributed packed format is different for upper and lower trian-
gular matrices since they are respectively packed by rows and columns. Note also that
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the diagonal blocks are full blocks and then do not exploit the triangular or symmetric
structure.
Throughout this chapter we will use the following designations and notations. The dis-
tributed packed format will be simply referred to as the packed format and an implemen-
tation using this format as a packed implementation. We denote by N = n

b the number
of block rows in A . The packed structure ADP will be described using the Aij as previ-
ously or will be denoted as the blocked matrix

[
B1 B2 B3 B4 B5 B6

]
. A block

Bk = Aij in ADP will be addressed through the indirect addressing INDGET that maps
(i, j) to k .

3.3.2 Tuning parameters

In order to obtain the best Gflops performance as possible, one usually determines the
dominant operation(s) involved in the computation in terms of floating-point operation
count (e.g the matrix-matrix multiplication performed by the Level-3 routine DGEMM
in the sequential Cholesky factorization). Then we try to optimize the efficiency of this
dominant operation by tuning the program parameters. In parallel implementations, these
parameters are often the size s of an elementary block size and the values of p and q in
the process grid.

If the DGEMM routine is the dominant operation, then s is generally determined as
being the value that enables us to obtain the best sustained performance for a matrix-
matrix product of size s on the target machine. This parameter is closely related to
the machine characteristics and to the memory hierarchy constraints (level 1,2,3 cache or
TLB).

The optimal values for the physical parameters p and q generally depend on the type
of algorithm that is implemented. In [33] optimal values for the ratio p

q are proposed for
the LU, Cholesky and QR factorizations performed by ScaLAPACK.

Performance tuning can sometimes become more complicated when the dominant oper-
ation (i.e the operation that must be optimized) changes with the distribution parameters
or when the dominant operation in terms of flops is not the dominant operation in terms
of time. In that case, a heuristic needs to be found that will often lead to a compromise
(not degrading the most efficient routine while improving the less efficient one).

Finally, a parameter that influences the performance of a packed implementation is the
size of b . As seen in Section 3.3.1, we have b ≥ l.s . b may be chosen significantly larger
than l.s but in that case it would demand more memory storage because the diagonal
blocks would be bigger. The ratio between the memory storage required by a block size b
and that required by a block size l.s is given by

α =
(n
b
(
n

b
+ 1)b2

)
/
( n
l.s

(
n

l.s
+ 1)(l.s)2

)
=

n+ b

n+ l.s
.

Then the increase (in percentage) of the memory storage when using a blocking of size b
instead of using a blocking of size l.s is expressed by α− 1 i.e b−l.s

n+l.s . In the rest of this
chapter, this quantity is referred to as extra-storage.

Remark 1. We did not compare the required storage using a blocking size b with the
“ideal” storage corresponding to the LAPACK packed storage described in Section 3.2
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since we store here the entire diagonal blocks and our parallel implementation is based on
distributed blocks whose minimum size is l.s× l.s for easy use of ScaLAPACK routines.
Indeed, in our packed distributed storage, the choice b = l.s is optimal from a memory
point of view but in general, an optimal packed storage would store n(n+ 1)/2 entries of
the matrix.

Let ρ be the maximum extra-storage that we are ready to accept. Then the maximum
value of b will be such that b ≤ ρ(n + l.s) + l.s . We shall see that the choice of b will
represent a trade-off between the performance (if large b improve the dominant operations)
and the memory storage ( b must be consistent with the maximum extra-storage that we
accept).

3.4 Application to the Cholesky factorization

Based on the distributed packed storage defined in Section 3.3.1, we describe in this section
how a packed distributed Cholesky factorization can be designed on top of PBLAS and
ScaLAPACK kernels.

3.4.1 Description of the algorithms

The packed implementation of the Cholesky factorization is based on the Level-3 PBLAS
routines PDGEMM (matrix-matrix product), PDSYRK (rank-k update), PDTRSM (solv-
ing triangular systems with multiple right-hand-sides) and on the ScaLAPACK routine
PDPOTRF(Cholesky factorization). We present in this section the packed implementa-
tions of the right-looking and left-looking variants of the Cholesky factorization that are
given respectively in Algorithms 3 and 4. The symmetric positive definite matrix parti-

tioned into distributed blocks




B1 BT
2 BT

3

B2 B4 BT
5

B3 B5 B6


 is stored in a lower distributed packed

format as
[
B1 B2 B3 B4 B5 B6

]
that we also denote by B1:6 .

We notice in both algorithms that the PDGEMM and the PDTRSM instructions involve
rectangular arrays. In the implementations, these instructions are performed using a loop
that performs the multiplication of the b× b blocks one by one in order to reduce cache
misses.
We also point out that when b is minimum ( b = l.s ) then N is maximum and thus
the number of synchronizations involved in Algorithm 3 is maximum, if we assume that
any call to a ScaLAPACK routine results in a synchronization. This explains why, even if
taking b = l.s requires less memory storage, this value of b will be rarely chosen.
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Algorithm 3. : Packed right-looking Cholesky

for i = 1 : N

j = INDGET (i, i)

Bj ← chol(Bj) (PDPOTRF)

Bj+1:j+N−i ← Bj+1:j+N−iB
−T
j (PDTRSM)

for ii = i+ 1 : N

k = INDGET (ii, ii)

Bk ← Bk −Bj+ii−iB
T
j+ii−i (PDSYRK rank- b update)

Bk+1:k+N−ii ← Bk+1:k+N−ii −
Bj+1+ii−i:j+N−iB

T
j+ii−i (PDGEMM)

end (ii-loop)

end (i-loop)

Algorithm 4. : Packed left-looking Cholesky

for i = 1 : N

j = INDGET (i, i)

for ii = 1 : i− 1

k = INDGET (ii, i)

Bj ← Bj −BkB
T
k (PDSYRK rank- b update)

BT
j+1:j+N−ii ← BT

j+1:j+N−ii −BT
k+1:k+N−iB

T
k (PDGEMM)

end (ii-loop)

Bj ← chol(Bj) (PDPOTRF)

BT
j+1:j+N−i ← BT

j+1:j+N−iB
−T
j (PDTRSM)

end (i-loop)

3.4.2 Tuning

Both algorithms were implemented on an IBM pSeries 690 (2 nodes of 32 processors Power-
4/1.7 GHz and 64 Gbytes memory per node) installed at CINES1. There were linked with

1Centre Informatique National de l’Enseignement Supérieur, Montpellier, France
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the PBLAS and ScaLAPACK libraries provided by the vendor (in particular the Pessl
library).

As in a sequential blocked Cholesky algorithm, the matrix-matrix multiply performed
by the routines PDGEMM or PDSYRK represents the major part of the computation.
Both routines call essentially the Level-3 BLAS routine DGEMM that gives good perfor-
mance for s ≥ 128 for our platform. The value of s = 128 will be taken in all following
experiments.

3.4.2.1 Influence of the distributed block

We now examine the influence of b on the performance on the kernel routines used in our
packed implementation.
Figure 3.1 represents the unitary performance of each routine on a matrix of size b using
16 processors. The curves show that the performance increases with b . However we
notice that a spike occurs for b = 8192 and a smaller one for b = 4096 . Since b = 8192
corresponds to local array per processor that has a leading dimension of 2048 , the main
spike is explained by cache misses occurring when we access to two consecutive double-
precision real distant of 2048 due the size of the IBM pSeries 690 L1 cache. The spike
observed for b = 4096 corresponds to secondary cache misses. Details on this phenomenon
have been given in Section 2.2.4.1.
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Figure 3.1: Performance of PBLAS routines involved in the Cholesky factorization (16
processors).

Regarding Algorithm 3, the repartition of floating-point operations among the different
routines depends on the problem size n and on the block size b . But the performance
of each routine can also depend on b and on the number of processors involved in the
computation.
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Table 3.1 gives for a particular example the number of floating-point operations and the
time spent in each routine for our packed implementation and for the full storage ScaLA-
PACK factorization. We notice that the PDTRSM routine performs 8.1% of the opera-
tions and takes 41% of the time. This shows that, as observed in Figure 3.1, PDTRSM is
far less efficient than PDGEMM and PDSYRK. We note that the number of floating-point
operations corresponding to the Cholesky factorization of the diagonal blocks is negligi-
ble, as mentioned in Section 2.2.1. These operations are performed by PDPOTRF in the
packed implementation and by PDPOTF2 in ScaLAPACK. They are not mentioned in
Table 3.1 because they do not represent a significant time in the global factorization. Then

Table 3.1: Breakdown of operations and time for right-looking Cholesky ( n = 81920 , 64
processors).

packed solver (b = 5120) ScaLAPACK (s = 128)

PBLAS routine % operations % time % operations % time

PDGEMM and PDSYRK 91.9 58 99.8 92

PDTRSM 8.1 41 0.2 0.7

a heuristic for tuning the parameter b may consist in choosing an “acceptable” ratio r of
operations performed by the PDTRSM routine. The floating-point operations performed
by PDTRSM are:

N−1∑

i=1

ib3 = b3
N(N − 1)

2

Hence, since the Cholesky factorization involves n3

3 = (Nb)3

3 operations, we have

3(N − 1)

2N2
≤ r.

Thus we get N = n
b ≥

3+
√

9−24r
4r and the maximum value for b is:

bmax =
4rn

3 +
√

9− 24r
.

As seen in Section 3.3.2, we have b ≤ ρ(n+ l.s)+ l.s and then the chosen value for b will
be min(bmax, ρ(n+ l.s) + l.s) .

3.4.2.2 Influence of the process grid

The p× q process grid can also have an influence on the performance of the code. In a
packed implementation, the classical choice of a roughly squared grid ( 1

2 ≤
p
q ≤ 1 ) given

by [33] for the ScaLAPACK Cholesky factorization is not necessarily the best one because
the operation that slows down the global performance of the program is the PDTRSM
routine. Figure 3.2 shows for a 16 processor grid that the PDTRSM routine applied to one
block of size b is more efficient when using a rectangular grid such that p

q > 1 whatever
the value of b is. Table 3.2 summarizes the tuning parameters and the heuristics for the
packed Cholesky implementation on the IBM pSeries 690.
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Figure 3.2: Performance of PDTRSM for different process grids (16 processors).

Table 3.2: Tuning parameters/heuristics for packed Cholesky implementation (IBM
pSeries 690).

parameter heuristic suggested value (IBM pSeries 690)

s sustained performance of DGEMM 128

p, q p
q > 1 depends on processor count

b accepted extra-storage ρ b ≤ min( 4rn
3+

√
9−24r

, ρ(n+ l.s) + l.s)

accepted PDTRSM operations r

3.4.3 Performance results

In the following results, the processor count varies from 1 to 64 and the corresponding
problem size n has been determined so that each processor uses about the same amount
of memory (with n = 10240 for 1 processor, which corresponds to a storage of about
840 Mbytes per processor for ScaLAPACK). For each problem size, the size b of the
distributed block has been determined using the heuristic given in Section 3.4.2. We first
compute for each problem size the maximum value of b that can be obtained by accepting
a maximum of 10% of memory extra-storage ρ and 15% of operations performed by the
routine PDTRSM. Then b is adjusted to the nearest number that is lower to the maximum
value, proportional to l.s and a submultiple of n . The resulting values of b are given in
Table 3.3. The actual extra-storage corresponding to the chosen value of b is the quantity
α− 1 = b−l.s

n+l.s that has been defined in Section 3.3.2.

We present below performance results obtained by the right-looking implementation
(Algorithm 3 described in Section 3.4.1) rather than the left-looking one (Algorithm 4)
since it gives in our experiments factorization times that are slightly better for high pro-
cessor count. The selected values of b are those displayed in Table 3.3. In accordance
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Table 3.3: Tuned block size for ρ = 0.1 and r = 0.15 .

problem size n 10240 14336 20480 28672 40960 61440 81920

p× q grid 1× 1 2× 1 4× 1 4× 2 8× 2 8× 4 16× 4

block size b 1024 1024 2048 2048 4096 6144 10240

extra-storage 8.6% 7% 7.3% 5.3% 7.3% 8.2% 9.7%

with Section 3.4.2, the grid parameters are such that p
q > 1 and more precisely 2 ≤ p

q ≤ 4
since it provides experimentally better results. In that table, tpacked is the resulting fac-
torization time.
In Table 3.4 the performance of the packed solver is compared with that of a ScaLAPACK
Cholesky factorization storing the whole matrix but performing the same number of oper-
ations (routine PDPOTRF). The corresponding factorization time tscal is obtained using
a p × q process grid in accordance with [33] i.e such that 1

2 ≤
p
q ≤ 1 . The difference in

performance is then measured by computing the overhead
tpacked−tscal

tscal
.

Table 3.4: Cholesky factorization time (sec) for packed solver and ScaLAPACK.

n 10240 14336 20480 28672 40960 61440 81920
# procs 1 2 4 8 16 32 64

tpacked 102 127 194 290 474 912 1298
p× q 1 2× 1 4× 1 4× 2 8× 2 8× 4 16× 4

tscal 106 153 219 321 471 890 1178
p× q 1 1× 2 2× 2 2× 4 4× 4 4× 8 8× 8

overhead −3.8% −17% −11.4% −9.7% 0.6% 2.5% 10%

We notice in Table 3.4 that the factorization times are better than ScaLAPACK for
less than 32 processors and similar to ScaLAPACK for 32 processors. For 64 processors,
there is an overhead of 10% . This overhead can be diminished by considering larger
blocks. Table 3.5 shows that the performance increases with b but that it also requires
more memory.

Table 3.5: Performance vs extra-storage ( n = 81920, 16 × 4 procs).

block size b 10240 20480

factorization time (sec) 1298 1234

overhead with ScalaPACK 10% 5%

extra-storage 9.7% 22%

In order to evaluate the scalability of the packed solver and of the ScaLAPACK
Cholesky, we plot in Figure 3.3 the Gflops performance of both algorithms. Since each
algorithm maintains a constant memory use per processor, these curves measure what is
referred to as isoefficiency or isogranularity in [23, p. 96]. We notice that the packed solver
is more efficient for small processor count. Performance degrades for both algorithms when
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the number of processors increases but the ScaLAPACK routine is slightly faster for 32
and 64 processors.
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Figure 3.3: Isogranularity of packed Cholesky solver and ScaLAPACK on IBM pSeries
690.

Remark 2. Since the memory required by the packed implementation depends on the
chosen value for b , it is interesting to compare in detail in Table 3.6 the memory per pro-
cessor in Mbytes required by the packed solver and by the ScaLAPACK routine PDPOTRF
for the experiments summarized previously in Table 3.4 and Figure 3.3. The quantities
mentioned here do not include the work arrays used by ScaLAPACK computations. Note
that an optimal storage that stores exactly n(n + 1)/2 entries would require about 419
Mbytes.
The experiments described in this paragraph have been performed on nodes of IBM pSeries
690 with 2 Gbytes memory per processor. Due to the memory required by PDPOTRF
(more than 850 Mbytes), we could not achieve these comparisons on nodes having 1
Gbytes memory per processor (because part of the memory is also used by the system).
This confirms again the limitation due to the full storage for symmetric matrices.

Table 3.6: Memory required per processor by the packed solver and ScaLAPACK (Mbytes).

n 10240 14336 20480 28672 40960 61440 81920
# procs 1 2 4 8 16 32 64

block size b 1024 1024 2048 2048 4096 6144 10240
Mbytes for packed solver 461 440 461 440 461 519 472

Mbytes for PDPOTRF 839 822 839 822 839 943 839

saved memory 45% 46% 45% 46% 45% 45% 44%
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Remark 3. By using 4 nodes of the IBM pSeries 690 (32-way SMP each) available at
the CINES, we could evaluate how the performance of the packed solver degrades when
running on 128 processors and with the same memory per processor as previously. We
present in Table 3.7 the performance obtained for n = 114688 and 16×8 processors. The
best factorization time corresponds to about twice the time obtained using 64 processors.
We notice that there is here no interest in choosing a block size larger than 16384 since
the performance degrades and it requires more storage.

Table 3.7: Performance of packed implementation using 128 ( 16 × 8 ) processors ( n =
114688 ).

block size b 16384 28672

factorization time (sec) 2741 3043

Gflops per proc. 1.43 1.29

extra-storage 12.3% 22.8%

Regarding the Cholesky factorization, some other experiments were performed. They
deserve to be mentioned here because they have influenced some choices made for the
implementation described previously.

The first experiment investigated the influence of the structure of the ScaLAPACK
array for the packed structure. As mentioned in Section 3.3 the distributed blocks are
stored row-wise in the ScaLAPACK array ADP . This choice is justified by the fact that
the operations in Algorithm 3 are performed by column and thus the blocks are contiguous
in memory. In Figure 3.4, we use 16 processors on a same node of the IBM machine and
plot the performance in Gflops of a packed implementation of the Cholesky using either
a row-wise or column-wise storage scheme for the distributed blocks. It confirms that a
block-row storage provides better performance, thanks to a better data locality.

Some experiments were also performed in order to compare the right-looking and
the left-looking variants of the packed implementation (using an horizontal structure for
ADP ).
In the left-looking variant, the matrix A is stored compactly using the Upper distributed
packed format. This enables us to have memory contiguity of the blocks belonging to a
same block-row in Algorithm 4. Table 3.8 contains the factorization times obtained for
both algorithms and shows that the left-looking implementation is slightly better when
using less than 16 processors and that the right-looking implementation provides better
results when using more than 32 processors.

3.4.4 Experiments on clusters

Several experiments were performed on the CRAY XD1 cluster at CERFACS (120 AMD
Opteron 2.4 GHz, 240 Gbytes memory).
We consider problem sizes similar to those defined in Section 3.4.3 for the IBM pSeries
690 i.e by considering a constant memory per processor.
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Figure 3.4: row-wise storage vs column-wise storage in the distributed packed format.

Table 3.8: Factorization time (sec) for left-looking and right-looking variants of the packed
distributed Cholesky.

n 10240 14336 20480 28672 40960 61440 81920
# procs 1 2 4 8 16 32 64

block size b 256 256 512 1024 1024 5120 5120

left-looking 87 123 194 283 465 966 1578

right-looking 90 146 222 306 548 1092 1442

As shown in Figure 3.5, the sustained peak rate of a serial matrix-matrix product DGEMM
on this machine is about 4 Gflops. Taking s = 128 is here again satisfactory because it
provides a DGEMM rate of 3.8 Gflops.

Since the PBLAS routine PDGEMM represents the major part of the computation in
a parallel Cholesky factorization, we also tune the parameters of this routine for several
problem sizes. Figure 3.6 shows that, in contrast to the IBM pSeries 690, the performance
of PDGEMM degrades significantly when the problem size increases for a given number
of processors (here 4). This can be explained by the slower communication system in a
cluster architecture. This encourages us to choose smaller block sizes than in Section 3.4.3
for the packed implementation.
We also notice that a p× q rectangular grid such that p > q gives better results than a
square grid. This has a consequence on the choice of grid for the Cholesky factorization.
Table 3.9 contains the factorization times obtained for PDPOTRF using p × q process
grids with p = q and p > q . We observe that a rectangular grid provides a performance
that is twice that of a square grid when we consider 4 or 16 processors. That leads us to
consider the same grids for ScaLAPACK and the packed solver.
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Figure 3.5: Performance of serial matrix-matrix multiply DGEMM on one processor of
the CRAY Cluster XD1.
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Figure 3.6: Performance of PDGEMM routine for 2 grid shapes on the CRAY Cluster
XD1.

After tuning the grid shapes for ScaLAPACK, we now compare the performance of the
packed implementation and the ScaLAPACK routine PDPOTRF. Table 3.10 shows that
ScaLAPACK performance is slightly better than that of the packed solver for more than
8 processors. The overhead

tpacked−tscal

tscal
is always lower than 14 % and can be considered

as acceptable.

The isogranularity of each algorithm measured in Gflops per second is depicted in
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Table 3.9: Influence of the process grid on ScaLAPACK PDPOTRF performance (CRAY
XD1).

n 20480 40960 81920

p× q 2× 2 4× 4 8× 8
Factorization time (sec) 574 1073 2292

p× q 4× 1 8× 2 16× 4
Factorization time (sec) 255 561 1622

Table 3.10: Cholesky factorization time (sec) for packed solver and ScaLAPACK (CRAY
XD1).

n 10240 14336 20480 28672 40960 61440 81920 107520
procs 1 2 4 8 16 32 64 112
p× q 1 2x1 4x1 4x2 8x2 8x4 16x4 28x4

b 128 256 512 512 1024 1024 2048 3584
tpacked 113 168 270 419 616 1127 1473 2022

tscal 153 184 278 370 561 1005 1399 1776

overhead −26% −9% −3% 13% 10% 12% 5% 14%

Figure 3.7. Similarly to the IBM pSeries 690, the packed solver is more efficient for small
processor count and the ScaLAPACK Cholesky provides better Gflops rates when using
more than 8 processors while having similar behaviour when the number of processors
increases.
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Figure 3.7: Isogranularity of packed Cholesky solver and ScaLAPACK on CRAY XD1
Cluster.
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To summarize these experiments on the cluster, we note that the tuning of the dis-
tributed block is simplified because of the monotonic decrease in performance of the
PDGEMM routine (see Figure 3.6). This implies that we should use small blocks for
the packed implementation. This has the advantage of requiring minimal memory.
On the other hand, the performance of the ScaLAPACK routine PDPOTRF is improved
by considering rectangular grids that are not common for the Cholesky factorization.
Then PDPOTRF gives slightly better performance than the packed solver when using
more than 8 processors (up to 14% for 112 processors).

3.5 Application to the updating of a QR factorization

3.5.1 Description of the algorithm

Many parameter estimation problems lead to linear least squares problems of the type

min
x∈Rn

‖Ax− b‖2 (3.1)

where each row of A and b corresponds to one observation, these observations being
collected periodically. If (3.1) is solved via a QR approach, then it is appropriate to up-
date the previous QR factorization or at least the R factor with the newly collected data
rather than computing a whole QR factorization involving original data combined with
new data. Such an incremental algorithm is more efficient in terms of computational cost
than performing the QR factorization on the whole matrix.
A possible out-of-core algorithm that updates a QR factorization is described in [58]. In
that case, the R factor and the right-hand side are both updated and a new solution
is computed that takes into account the new observations. For faster computation of a
partial solution or of the covariance, we may want to keep the R factor in-core.

A packed implementation of the QR factorization updating can be based on the ScaLA-
PACK routines PDGEQRF (QR factorization) and PDORMQR (multiplication by QT ).

We suppose that the R factor is partitioned into distributed blocks




B1 B2 B3

0 B4 B5

0 0 B6




and stored in a distributed packed format as
[
B1 B2 B3 B4 B5 B6

]
that we also

denote by B1:6 .
The new observations are stored in a block matrix L1:N that contains N.b columns and
we first assume that L contains b rows. The updating of R is obtained by successively
performing the QR factorization of each block row of R with L , as described below. At
the first step, we factor:

B1:3

L1:3

−→ B̃1:3

L̃1:3

and we advance the updating of the R factor as follows:
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B4:5

L̃2:3

−→ B̃4:5

L2:3

and so on until completion.

We now consider the work array C =

[
Bj:j+N−i

L̃i:N

]
where j = INDGET (i, i) , i.e C

contains 2b rows and (N − i+ 1)b columns.
The different ways for implementing the i -th stage in the R updating are described in
Figure 3.8, where the shaded part refers to the part of C that is factored by the routine
PDGEQRF and the dark shaded part represents the part of C to which we apply the
Householder transformations using the routine PDORMQR.
In Figure 3.8 (a), we perform the QR factorization of the whole matrix C . In that case,

(b) PDGEQRF + PDORMQR 

i-th stage in R updating 

(c) PDGEQRF partial 

(a) PDGEQRF on C 

0

New observations

0 Block row of R 

C   =

Figure 3.8: Different possibilities for the QR factorization of C .

using the flop counts given in [50, p. 213 and 225], the R updating algorithm involves
about 4bn2 operations (if n� b ).
This flop count can be reduced by performing a QR factorization of the first b columns of
C subsequently followed by the updating of the remaining columns by the Householder
transformations (Figure 3.8 (b)). From [50], the computational cost becomes about 3bn2

(still if n� b ).
Figure 3.9 compares the Gflops rate of a QR factorization of a b× 2b matrix performed
either using PDGEQRF on the whole matrix or using PDGEQRF on the first b columns
then PDORMQR on the remaining b columns. One may notice that the combination of
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PDGEQRF and PDORMQR is much less efficient due to the extra-cost in communication
(using two routines involves one more synchronization and also PDORMQR exchanges
data that was already available while executing PDGEQRF). Thus step i in the R up-

1024 2048 3072 4096 5120 6144 7168 8192 9216 10240
1

1.5

2

2.5

3

3.5

Distributed block size b

P
er

fo
rm

an
ce

 p
er

 p
ro

ce
ss

or
 [G

flo
ps

]

PDGEQRF
PDGEQRF+PDORMQR

Figure 3.9: QR factorization of a b× 2b matrix (4 processors of IBM pSeries 690).

dating was implemented as a call to the PDGEQRF routine applied to the whole matrix
C that stops the factorization after the first b columns. The global updating involves
3bn2 operations that are performed efficiently. For that reason, we modified the ScaLA-
PACK routine PDGEQRF by stopping the QR factorization of an m -by- n matrix after
the m

2 first columns. The so-modified routine is named PDGEQRF partial. Algorithm 5
represents the updating of the R factor using PDGEQRF partial.

Algorithm 5. : Updating the R factor in a QR factorization

read new data in L1:N ; L̃1:N ← L1:N

for i = 1 : N

j = INDGET (i, i)

C ←
[
Bj:j+N−i

L̃i:N

]

C̃ = qr(C) stopped after the b first columns have been factored

→ C̃ =

[
B̃j:j+N−i

∗ Li+2:N

]
(PDGEQRF partial)

Bj:j+N−i ← B̃j:j+N−i

end (i-loop)
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One may notice that this algorithm does not take into account the upper triangular struc-
ture of Bj:j . As it will be confirmed on experiments, this can be compensated by storing
more data into L and thus applying PDGEQRF partial to a block matrix C containing
more than 2b rows. As a result, the number of floating-point operations will also decrease.
The initialization of the R factor can be implemented by starting with R = 0 and then
by successively updating the previous rows by a new one until we have processed the N
block rows of R . This allows us to compare the Gflops performance of Algorithm 5 with
that of PDGEQRF applied to an n -by- n matrix (notice that the factorization time can-
not be compared since the initialization of R by successive updates involves 1.5 more
operations).
We point out that the ScaLAPACK or PBLAS routines do not have to be modified to
support the new packed storage format. The PDGEQRF routine has been modified only
for sake of performance.
The algorithm described above is appropriate for GOCE calculations where we consider
A as dense. Note that in the case where A has a given block structure, it is possible to
reduce the computational effort by exploiting the structure of A and R [49].

Remark 4. A condition number estimate for GOCE:

We consider a right-hand side X =




X1
...

XN


 that is partitioned into distributed row-

blocks of size b and mapped onto the same process grid as the R factor. Then a simple
implementation of the triangular solve in packed format can be described in Algorithm 6.

Algorithm 6. : Packed triangular solve

for i = 1 : N

j = INDGET (i, i)

for k = i+ 1 : N

Xi ← Xi −Bj+k−iXk (PDGEMV)

end (k-loop)

Xi ← B−1
j Xi (PDTRSV)

end (i-loop)

This routine performs the product of R−1 by a vector X . Using the same kind of
implementation, we obtain routines that perform the products RX , RTX and R−TX
using the packed format. Then it becomes easy to get a packed implementation of the
condition number of ATA = RTR based for instance on the Power method or on the
Lanczos method [50].

Remark 5. Kaula regularization for GOCE:
We observe that the Kaula regularization mentioned in Section 1.2.3 can be performed by
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computing the upper triangular factor in the QR factorization of

(
R
D

)
,

with D = diag(0, · · · , 0, α, · · · , α) . This regularization is performed via the updating
algorithm described above.

3.5.2 Performance results

All the following experiments have been performed on the IBM pSeries 690 described in
Section 3.3.2. In contrast to the Cholesky factorization, there is here only one ScaLAPACK
routine that must be considered when tuning our program parameters s , b and the p× q
process grid. Here again s will be chosen equal to 128 since it provides good performance
of the PDGEQRF routine on the chosen platform. The p×q process grid is determined in
accordance with [33] i.e such that 1

4 ≤
p
q ≤ 1

2 . The value of b cannot be too large since it
also influences the size of the matrix C and then the required storage for the calculation.
We take b = l.s in our experiments.

Table 3.11 compares the performance of the initialization of R by successive updates
with the performance of a QR factorization of an n -by- n matrix using PDGEQRF. To
see the effect of the communication on the performance, we choose values of n such that
each processor uses roughly the same amount of memory. We notice that the obtained
Gflops rates are similar to ScaLAPACK for all processor counts considered in this study.

Table 3.11: Initialization of R by updates vs ScaLAPACK QR (Gflops).

problem size n 10240 14336 20480 28672 40960 61440 81920
p× q process grid 1 1× 2 1× 4 2× 4 2× 8 4× 8 4× 16

Initialization of R 2.47 3.02 3.30 2.87 2.89 2.80 2.37

ScaLAPACK PDGEQRF 3.50 3.36 3.20 3.25 2.93 2.83 2.63

Let nL be the number of rows in the matrix L that contains the new observations for
updating the QR factorization. In Table 3.12, we update a 25600 × 25600 matrix R by
51200 new observations and nL varies from 512 to 25600 . As expected at the end of
Section 3.5.1, the number of operations decreases as nL increases. This gain in operations
is evaluated by computing the ratio between the operations involved in the updating of R
and the operations required in a QR factorization of the 76800×25600 matrix containing
the original data and the new observations. Then if nL increases, the factorization time
decreases but the performance is stable (close to the peak performance of the ScaLAPACK
routine PDGEQRF). Here again, choosing the best size for L corresponds to finding a
compromise between performance (in time) and storage since large L demands more
storage.
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Table 3.12: Updating of a 25600 × 25600 R factor by 51200 new observations ( 1 × 4
procs).

Number of rows in L 512 1024 2048 5120 10240 12800 25600

Storage (Gbytes) 0.72 0.75 0.80 0.96 1.22 1.35 2.00

Flops overhead (vs ScaLAPACK) 1.50 1.31 1.22 1.16 1.14 1.14 1.13

Factorization time (sec) 7577 5824 5255 5077 5001 4894 4981

Performance (Gflops) 3.33 3.61 3.59 3.47 3.44 3.50 3.40

3.6 Conclusion of Chapter 3

The distributed packed storage defined in this chapter allows us to handle symmetric and
triangular matrices in parallel distributed environments using ScaLAPACK and Level-3
PBLAS routines. This format was implemented for the Cholesky factorization and for the
updating of the R factor in a QR factorization. The example of the Cholesky factoriza-
tion shows that choosing the optimal distributed block size leads to a trade off between
performance and memory. Some heuristics have been proposed that provide performance
similar to ScaLAPACK while requiring much less memory. The QR updating is another
framework that can benefit from the packed distributed storage. The associated algorithm
gives very good performance due to the efficient implementation of the ScaLAPACK kernel
routine PDGEQRF. In general, the performance of our packed implementations relies on
the performance of the underlying ScaLAPACK kernel routines. The good results that we
obtained encourage us to extend this packed storage to other linear algebra calculations in-
volving symmetric and triangular matrices. An improvement might result from extending
to blocked parallel implementations the Rectangular Full Packed storage that was recently
defined in [59] for serial implementations. Such a format could enable us to minimize the
storage required by the diagonal blocks but it will be necessary to evaluate the performance
of the ScaLAPACK kernel routines on this format. This will be the topic of further studies.

The codes using the distributed packed storage are research codes that have not been
tried yet in the GOCE application. The Cholesky code provides better performance than
the operational solver described in Chapter 2 when using more than 32 processors. This
can be explained by the better load-balancing of the two-dimensional block cyclic distri-
bution supported in ScaLAPACK. The QR code that we presented in this chapter should,
as discussed in Section 1.2.2, improve the accuracy of GOCE computations when it will
be integrated in the GINS software. Another advantage of solvers proposed in Chap-
ter 3 is that all communications are performed by standard routines from the PBLAS or
ScaLAPACK libraries. This will ensure a better portability of the codes implementing the
distributed packed storage.

62



III





Chapter 4

Partial condition number for

linear least squares problems

4.1 Sensitivity of least squares problems

4.1.1 Introduction

Alan Turing [96] introduced the sensitivity of a numerical problem solution to changes in
its data as a way to measure the difficulty of solving the problem accurately. Condition
numbers are now considered as fundamental to sensitivity analysis. They have been ap-
plied to many problems of linear algebra such as linear systems, linear least squares, or
eigenvalue problems [21, 34, 42, 61, 90]. They are interesting quantities in themselves,
as they can be interpreted as a measure of the mathematical difficulty of the problem.
Indeed, by definition, unless exact arithmetic is used, it is expected to be difficult to find
accurately the solution of an ill-conditioned problem.

Traditional error analysis, which aims at taking into account various error sources such
as discretization, truncature and round-off error is also expressed in terms of backward
errors [104]. Associated with an approximated solution, they measure the distance be-
tween the data of the original problem and the nearby problem for which the approximate
solution is an exact one. Since backward errors measure perturbation on the data, they
can be compared with errors such as discretization errors or instrumental errors. Then
they can be used to assess the quality of a solution obtained by a direct method or stop
the iteration of an iterative solver.

A particularly interesting situation occurs when both the condition numbers of a prob-
lem and the corresponding backward error associated with an approximate solution are
available, thanks to closed formulae or estimates. In this case, a common “rule of thumb”
is that the product of those two quantities provides an estimation of the true forward error
associated with the computed solution [61]. More precisely, since the condition number is
a measure of the sensitivity at first order of the solution, the estimate of the forward error
will be accurate if the first order assumption is reasonable. The joint use of condition
number and backward error to analyze the mathematical difficulty, the stability and the
accuracy of a computed solution is often termed “backward error analysis”.

In this paragraph, we give some basic material for the estimation of condition numbers
in linear algebra and we present some recent results.
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4.1.2 Condition numbers

The condition number is a measure of the sensitivity of a mapping to perturbations.
Among the most general definitions of condition numbers, the seminal paper [87] considers
mapping defined on normed manifolds, where it is assumed that the metrics used to
measure the perturbations are differentiable. We introduce here a summarized view on
condition numbers which enables us to handle most of the functions involved in linear
algebra.

We assume that the data space R
m and the solution space R

n are equipped respec-
tively with the norms ‖.‖D and ‖.‖S . We suppose that the solution x corresponding to
the data y is defined explicitly by x = g(y) , where g maps a neighbourhood of y0 ∈ R

m

to R
n .

Definition 1. The absolute condition number of g at y0 ∈ R
m is the quantity K(y0)

defined by

K(y0) = lim
δ→0

sup
0<‖y0−y‖D≤δ

‖g(y0)− g(y)‖S
‖y0 − y‖D

, (4.1)

if ‖g(y0)‖S is nonzero, the relative condition number of g at y0 ∈ R
m is

K(rel)(y0) = K(y0)‖y0‖D/‖g(y0)‖S .

This definition shows that K(y0) measures an asymptotic sensitivity and that this
quantity depends on the chosen norms for the data and solution spaces. Note that the
condition number of a function is either infinite or a real positive number. If g is Lipschitz-
continuous in a neighbourhood of y0 , with Lipschitz constant c ≥ 0 , then K(y0) ≤ c .
It turns out that if g is Fréchet-differentiable in a neighbourhood of y0 , the condition
number has a simpler expression. We denote by |||.||| the operator norm induced by the
norms ‖.‖D and ‖.‖S . For a linear operator L mapping R

m to R
n :

|||L||| = max
y 6=0

‖L(y)‖S
‖y‖D

.

Proposition 1. [87] If the mapping g is Fréchet-differentiable in a neighbourhood of y0 ,
the condition number is the norm of the Fréchet derivative : K(y0) = |||g′(y0)||| .

The above proposition can be easily generalized to cover the case where the dependence
of x in y is expressed using an implicit form F (x, y) = 0 with F : R

n × R
m → R

n .

Proposition 2. Suppose that F is continuous in a neighbourhood of (x0, y0) such that
F (x0, y0) = 0 . Assume that ∂xF exists in a neighbourhood of (x0, y0) and is continu-
ous at (x0, y0) , and that ∂xF (x0, y0) is a nonsingular linear operator. Then there exist
neighbourhoods V1 and V2 of x0 and y0 respectively, such that, for any y ∈ S2 , the
equation F (x, y) has a unique solution x = g(y) . If ∂yF exists at (x0, y0) , g is Fréchet
différentiable at y0 and g′(y0) = −∂xF (x0, y0)

−1∂yF (x0, y0). The condition number of
the problem F (x, y) = 0 is then

K(y0) =
∣∣∣∣∣∣∂xF (x0, y0)

−1∂yF (x0, y0)
∣∣∣∣∣∣ .
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In this presentation of the condition number, we measure the perturbation using norms
of R

m and R
n , and the condition numbers obtained in this approach are called normwise

condition numbers. It is also possible to define condition numbers where the norms are
replaced by other functions, called metrics, and that take positive values. For instance, in
the componentwise metric, the quantity ‖y0 − y‖D is replaced by

d(y0, y) = min{ω, s.t. |y0 − y| ≤ ω|y0|},

and similarly, ‖g(y0)− g(y)‖S is replaced by

d(g(y0), g(y)) = min{ω, s.t. |g(y0)− g(y)| ≤ ω|g(y0)|},

in Definition 1. The resulting quantity is called componentwise condition number. We
denote by Dg (resp. Dy ) the diagonal matrix whose diagonal entries are the entries of
g(y0) (resp. y0 ), and if we identify g′(y0) with the matrix representing this operator in
the canonical basis. If all the entries of g(y0) are nonzero, it can be easily proved that
the componentwise condition number is ‖D−1

g g′(y0)Dy‖∞ .
We refer to [27] for more details concerning the componentwise stability.

4.1.3 Adjoint condition numbers

In a recent paper [53], a technique is presented to compute or estimate condition numbers
using adjoint formulae. The results are presented in Banach spaces, and make use of the
corresponding duality results. The aim of the present section is to prove that the same
results become easy and are helpful when presented in the framework of Euclidean spaces.

Consider a linear mapping J : E → G where E and G are equipped respectively with
norms ‖.‖E , ‖.‖G and scalar products < ., . >E and < ., . >G . We define J∗ : G → E
by

< y, Jx >G=< J∗y, x >E,

where (x, y) ∈ E ×G . We define the dual norm ‖.‖E∗ of ‖.‖E by

‖x‖E∗ = max
u6=0

< x, u >E

‖u‖E
,

and define similarly the dual norm ‖.‖G∗ . For the linear applications mapping E to G ,
we denote by ‖.‖E,G the operator norm induced by the norms ‖.‖E and ‖.‖G . Likewise,
the norm ‖.‖G∗,E∗ is the operator norm for linear applications mapping G to E and
induced by the dual norms ‖.‖G∗ and ‖.‖E∗ .
Then

‖J‖E,G = max
x∈E

‖Jx‖G
‖x‖E

= max
x∈E,u∈G

< Jx, u >G

‖u‖G∗‖x‖E
we use the “duality theorem” [63, p. 287]

= max
u∈G

1

‖u‖G∗
max
x∈E

< x, J∗u >E

‖x‖E

= max
u∈G

‖J∗u‖E∗
‖u‖G∗

= ‖J∗‖G∗,E∗,
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which proves the following theorem.

Theorem 4.
‖J‖E,G = ‖J∗‖G∗,E∗

Let consider the application to the full rank least squares problem where the solution
x is expressed by

x = g(A, b) = (ATA)−1AT b.

Using the formula of g′(A, b) given in [51, p. 525], we are interested in the linear function
J = g′(A, b) expressed by

J : R
m×n × R

m −→ R
n

(B, c) 7−→ (ATA)−1BT r −A†Bx+A†c
= J1(B) + J2(c)

, (4.2)

where A† denotes the pseudo inverse of A and r = b−Ax is the residual vector.

We consider the following norms and scalar products :

• on R
n , < x, y >= xT y , and we use the norm ‖x‖ = (xTx)1/2 . Then ‖x‖∗ = ‖x‖ .

• on R
m×n × R

m , we use the scalar product < (A, b), (B, c) >= trace(ATB) + bT c ,
and the product norm ‖(A, b)‖ν = ν(‖A‖2 , ‖b‖) where ν is an absolute norm on
R

2 (i.e such that ν(|x|) = ν(x) ∀x ∈ R
2 , [72, p. 367]).

Let ν∗ be the dual of ν with respect to the canonical inner-product of R
2 . Let consider

now the dual ‖.‖ν∗ of the product norm ‖.‖ν with respect to the scalar product of
R

m×n × R
m . The following theorem shows how ‖.‖ν∗ can be expressed as a function of

the dual norms on matrices and vectors.

Theorem 5. The dual of the product norm (A, b) 7→ ‖(A, b)‖ν is the norm (A, b) 7→
ν∗(‖A‖2∗, ‖b‖) .

This result can be justified as follows. By definition we have

‖(A, b)‖ν∗ = max
‖(B,c)‖ν=1

trace(ATB) + bT c.

From ‖A‖2∗ = maxB 6=0
trace(AT B)

‖B‖2
it follows that ∀B ∈ R

m×n trace(ATB) ≤ ‖A‖2∗ ‖B‖2 .

Since we also have bT c ≤ ‖b‖‖c‖ then we get

‖(A, b)‖ν∗ ≤ max
‖(B,c)‖ν=1

‖B‖2 ‖A‖2∗+‖c‖‖b‖ = max
ν(‖B‖2,‖c‖)=1

(
‖A‖2∗
‖b‖

)T ( ‖B‖2
‖c‖

)
= ν∗(‖A‖2∗, ‖b‖).

This establishes that ν∗(‖A‖2∗, ‖b‖) is an upper-bound for the dual of the product norm.
Let now consider BA and cb such that trace(ATBA) = ‖BA‖2‖A‖2∗ and bT cb = ‖cb‖‖b‖ .

Then ν∗(‖A‖2∗, ‖b‖) = maxν(α‖BA‖2,β‖cb‖)=1

(
‖A‖2∗
‖b‖

)T (
α ‖BA‖2
β‖cb‖

)
is attained for a

particular value (α′, β′) for which we have

ν∗(‖A‖2∗, ‖b‖) = α′‖A‖2∗ ‖BA‖2 + β′‖b‖‖cb‖
= α′ trace(ATBA) + β′ bT cb.
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Since ν is an absolute norm, we have

‖(α′BA, β
′cb)‖ν = ν(|α′| ‖BA‖2 , |β′|‖cb‖) = ν(α′ ‖BA‖2 , β′‖cb‖) = 1

and then we get

‖(A, b)‖ν∗ = max
‖(B,c)‖ν=1

trace(ATB) + bT c ≥ trace(ATα′BA) + bTβ′cb.

Thus ‖(A, b)‖ν∗ ≥ ν∗(‖A‖2∗, ‖b‖) and finally we obtain ‖(A, b)‖ν∗ = ν∗(‖A‖2∗, ‖b‖) .

Remark 6. Generalization:
Theorem 5 can be easily generalized to a product norm involving p spaces R

mi×ni , i =
1, · · · , p . On the product space we consider the scalar product

< (A1, · · · , Ap), (B1, · · · , Bp) >= trace(A1
TB1) + · · ·+ trace(Ap

TBp),

and the product norm

‖(A1, · · · , Ap)‖ν = ν(‖A1‖2 , · · · , ‖Ap‖2)

where ν is an absolute norm on R
p . Then we have

‖(A1, · · · , Ap)‖ν∗ = ν∗(‖A1‖2∗, · · · , ‖Ap‖2∗).

Lemma 3.5 of [90, p. 78] shows exactly that ‖A‖2∗ = ‖σ(A)‖1 , and since trace(ATA) =
‖A‖2F , ‖A‖F∗ = ‖A‖F .
Using (4.7), we obtain for the first part of the adjoint of the derivative J,

∀u ∈ R
n < u, J1B > = uT ((ATA)−1BT r −A†Bx)

= trace((ATA)−1BT ruT )− trace(A†BxuT )

= trace(ruT (ATA)−1BT )− trace(xuTA†B)

= trace((ruT (ATA)−1)TB)− trace(xuTA†B)

= trace(((ruT (ATA)−1)T − xuTA†)B)

= < ruT (ATA)−1 −A†TuxT , B >

= < J1
∗u,B > .

For the second part of the adjoint of the derivative J, we have

∀u ∈ R
n < u, J2c > = uTA†c

= < A†Tu, c >

= < J2
∗u, c > .

We therefore have the following results :

Theorem 6. The adjoint of J, Fréchet derivative of the full rank least squares solution,

J : R
m×n × R

m −→ R
n

(B, c) 7−→ (ATA)−1BT r −A†Bx+A†c
(4.3)

is
J∗ : R

n −→ R
m×n ×R

m

u 7−→ (ruT (ATA)−1 −A†TuxT , A†Tu)
. (4.4)
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As mentioned in [53] the main advantage of working with the adjoint J ∗ is that
the operator norm computation, involved in the condition number definition, implies a
maximization over a vector space of dimension n , instead of a maximization over a vector
space of dimension mn+m for J . Indeed we have, with the notation of Section 4.1.2

K(A, b) = max
‖(B,c)‖ν=1

‖J(B, c)‖ = max
‖u‖=1

‖J∗(u)‖ν∗.

Note that when we consider the Frobenius norm on matrices i.e when the product norm
is ν(‖A‖F , ‖b‖) , we get

‖(A, b)‖ν∗ = ν∗(‖A‖F , ‖b‖).
We will see in Section 4.4 that this idea will be especially attractive in the case where the
operator norm is directly computed using statistical methods based on sampling.

4.1.4 Backward error

Let us consider, as in Section 4.1.2, a mathematical problem where the dependence between
the solution x and the data y can be expressed using an implicit form F (x, y) = 0 .
Assume we have an approximate solution x̃ , a backward error aims to measure the distance
between the data y of the initial problem and the set of all data for which x̃ is the solution
of the perturbed problem, i.e {ỹ : F (x̃, ỹ) = 0}.

Definition 2. The (normwise) backward error in the meaning of the norm ‖.‖ is expressed
by

η(x̃) = inf{‖∆y‖ : F (x̃, y + ∆y) = 0}.

Note that the quantity η(x̃) is sometimes called optimal backward error in the litera-
ture. We may notice that in this definition there is no reference made to the exact solution
for the original data y .
Different situations may occur. If there does not exist a perturbation ∆y such that
F (x̃, y + ∆y) = 0 then we set by convention η(x̃) = +∞ . If there exists ∆y0 such
that F (x̃, y + ∆y0) = 0 and the partial function F (x̃, .) is continuous, then the set
{∆y : F (x̃, y + ∆y) = 0 and ‖∆y‖ ≤ ‖∆y0‖} is a compact set. Then the existence of
η(x̃) = is guaranteed and a ∆y that achieves η(x̃) is called an optimal perturbation.

η(x̃) is useful for measuring the quality of the solution in the sense that if it is smaller
than the errors in the definition of the problem (e.g discretization or measurement errors),
then x̃ can be considered as solving the problem. Conversely if η(x̃) is greater than these
uncertainties, then x̃ must be rejected.
We give here some fundamental results for the backward error analysis. The first one is
related to linear systems and was established by [88]:

Theorem 7. If ‖.‖ denotes any vector norm and the corresponding subordinate matrix
norm, then the (relative) backward error

η(x̃) = min{ε : (A+ ∆A)x̃ = b+ ∆b, ‖∆A‖ ≤ ε‖A‖, ‖∆b‖ ≤ ε‖b‖}

is given by

η(x̃) =
‖r‖

‖A‖‖x̃‖+ ‖∆b‖
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where r = b−Ax̃ . Optimal perturbations are

∆A =
‖A‖‖x̃‖

‖A‖‖x̃‖+ ‖b‖rz
T , ∆b = − ‖b‖

‖A‖‖x̃‖+ ‖b‖r

where z is a vector such that zT x̃ = ‖x̃‖‖z‖∗ = 1 (i.e z is the dual vector of x̃ ).

Note that in the case of linear systems, the backward error is inexpensive to compute
when the norms are easily computed.
Concerning the LLSP, an exact value for the backward error with respect to the Frobenius
norm was established by [100]:

Theorem 8. Let A ∈ R
m×n (m ≥ n) and b ∈ R

m and r = b−Ax̃ . The backward error

η(x̃) = min{‖[∆A θ∆b]‖F : ‖(A+ ∆A)x̃− (b+ ∆b)‖2 = min}

is given by

η(x̃) =

(
‖r‖22
‖x̃‖2

µ+ min{0, λ∗}
) 1

2

, (4.5)

where λ∗ = λmin{AAT − µ rrT

‖x̃‖2
2

} and µ =
θ2‖x̃‖2

2

1+θ2‖x̃‖2
2

.

As mentioned in [35], the parameter θ enables us to monitor perturbations on A and
b . For instance taking θ =∞ (resp. θ = 0 ) allows us to perturb A (resp. b ) only. Also

θ =
‖A‖F

‖b‖2
produces a relative backward error.

Formula (4.5) involves the difference of two potentially very small quantities when λ∗ < 0 .
In this respect its numerical evaluation may be unstable. Using the fact that, for the case
λ∗ < 0 , we have

(
‖r‖22
‖x̃‖2

µ+ λ∗

) 1
2

= σmin([A R]), R =
√
µ
‖r‖2
‖x̃‖2

(I − rr†)

where σmin denotes the smallest singular value and the pseudo-inverse of a nonzero vector
x corresponds to x† = xT /(xTx) , [100] gives another expression for the backward error
that is more suitable for calculation:

Corollary 1.

η(x̃) = min{φ, σmin([A φ(I − rr†])}, φ =
√
µ
‖r‖2
‖x̃‖2

.

This modified formula requires the SVD of an m× (n+m) matrix, which can be very
expensive in practice. This is why an estimate has been proposed in [52, 54, 67] for η(x̃)
when only A is perturbed. This estimate can be written

η̃(x̃) =

∥∥∥∥
(
‖x̃‖22ATA+ ‖r‖22 I

)−1/2
AT r

∥∥∥∥
F

. (4.6)
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We can find in [91] a synthesis of how this estimate has been studied.
First it comes from [67] that

η̃(x̃)

η(x̃)
≤ 2 +

√
2

2
≈ 1.707.

Then it has been shown in [54] that

‖r∗‖2
‖r‖2

≤ η̃(x̃)

η(x̃)
≤ 1 +

√
5

2
≈ 1.618,

where r∗ = b−Ax is the true residual of the LLSP and assumed that A has full column
rank. Finally, [52] established that η̃(x̃) asymptotically equals η(x̃) i.e that

lim
x̃→x

η̃(x̃)

η(x̃)
= 1,

where x is any solution of the LLSP and assumed that A , r∗ and x are not zero.
We point out that an inequality of the type η̃(x̃) ≤ 2η(x̃) is ideal for detecting instability
if η̃(x̃) is too large. But if η̃(x̃) is small, it cannot be generally inferred that η(x̃) is
small.
The computation of η̃(x̃) requires less computational effort than the computation of η(x̃)
using Corollary 1. As mentioned in [91], the computational cost of η̃(x̃) using (4.6)
is roughly the same number of floating-point operations as a SVD of A i.e O(mn2) .
Also, [76] has proposed an algorithm based on the Lanczos bidiagonalization that approx-
imates the backward perturbation bound for large sparse LLSP and requires O((m+n)l)
operations with l� min(m,n) .

4.2 Partial condition number

4.2.1 Motivation

In the rest of this chapter we consider the problem of calculating the quantity LTx , where
x is the solution of the LLSP minx∈Rn ‖Ax − b‖2 , b ∈ R

m , A ∈ R
m×n is a matrix of

full column rank n and L ∈ R
n×k (k ≤ n) . This estimation is a fundamental problem

of parameter estimation in the framework of the Gauss-Markov Model [85, p. 137]. More
precisely, we focus here on the evaluation of the sensitivity of LTx to small perturbations
of the matrix A and/or the right-hand side b .
The interest for this question stems for instance from parameter estimation where the
parameters of the model can often be divided into two parts : the variables of physical
significance and a set of ancillary variables involved in the models. For example, this
situation occurs in the determination of positions using the GPS system, where the 3-D
coordinates are the quantities of interest but the statistical model involves other parame-
ters such as clock drift and GPS ambiguities [66] that are generally estimated during the
solution process. It is then crucial to ensure that the solution components of interest can
be computed with satisfactory accuracy. The main goal of this chapter is to formalize this
problem in terms of a condition number and to describe practical methods to compute
or estimate this quantity. Note that as far as the sensitivity of a subset of the solution
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components is concerned, the matrix L is a projection whose columns consist of vectors
of the canonical basis of R

n .

In the special case where L is the identity matrix, we can summarize (similarly to [53])
the formulae that evaluate the condition number of an LLSP in Table 4.1 where σmin =
1/
∥∥A†∥∥

2
is the smallest singular value of A . We notice that these expressions are closed

(in Frobenius norm) or of correct order of magnitude (in spectral norm). Note also the
dependence in σ2

min when ‖r‖2 = ‖b−Ax‖2 is large.

Table 4.1: Condition number expressions for the full rank LLSP.

source data solution formula status

Björck 96
‖δA‖2
‖A‖2

‖δx‖2
‖x‖2

‖A‖2‖r‖2

σ2
min‖x‖2

+
‖A‖2
σmin

estimate

Geurts 82
‖δA‖F

‖A‖F

‖δx‖2
‖x‖2

‖A‖F

σmin‖x‖2

√
‖r‖2

2

σ2
min

+ ‖x‖22 exact

Gratton 96

√
‖δA‖2

F

‖A‖2
F

+
‖δb‖2

F

‖b‖2
F

‖δx‖2
‖x‖2

1
σmin‖x‖2

√
‖A‖2

F ‖r‖2
2

σ2
min

+ ‖A‖2F ‖x‖22 + ‖b‖22 exact

Grcar 04 max
{

‖δA‖F or 2

‖A‖F or 2
,
‖δb‖2
‖b‖2

}
‖δx‖2
‖x‖2

‖A‖F or 2‖r‖2

σ2
min‖x‖2

+ ‖A‖F or 2

σmin
+

‖b‖2
σmin‖x‖2

estimate

If we consider the norms ‖(A, b)‖F =
√
‖A‖2F + ‖b‖22 for the data space and ‖x‖2 for

the solution space, then [51] gives an explicit formula for the relative condition number
K(rel)(A, b) :

K(rel)(A, b) =
∥∥∥A†

∥∥∥
2

(∥∥∥A†
∥∥∥

2

2
‖r‖22 + ‖x‖22 + 1

) 1
2 ‖(A, b)‖F
‖x‖2

.

But does the value of K (rel)(A, b) give us useful information about the sensitivity of
LTx ? Can it in some cases overestimate the error in components or on the contrary be
too optimistic ?
Let us consider the following example.

A =




1 1 ε2

ε 0 ε2

0 ε ε2

ε2 ε2 2


 , x =




ε
ε
1
ε


 and b =




3ε
ε2 + ε
ε2 + ε

2ε3 + 2
ε


 ,

x is here the exact solution of the LLSP minx∈R3 ‖Ax−b‖2 . If we take ε = 10−8 then we
have x = (10−8, 10−8, 108)T and the solution computed in Matlab [94] using a machine
precision 2.22 · 10−16 is x̃ = (1.5 · 10−8, 1.5 · 10−8, 108)T . The LLSP condition number is
K(rel)(A, b) = 2.4 · 108 and the relative errors on the components of x are

|x1 − x̃1|
|x1|

=
|x2 − x̃2|
|x2|

= 0.5 and
|x3 − x̃3|
|x3|

= 0.

Then, if L =




1 0
0 1
0 0


 , we expect a large value for the condition number of LTx because

there is a 50% relative error on x1 and x2 . If now L = (0, 0, 1)T , then we expect that
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the condition number of LTx would be close to 1 because x̃3 = x3 . For these two values
of L , the LLSP condition number is far from giving a good idea of the sensitivity of LTx .
Note in this case that the perturbations are due to roundoff errors.
Let us now consider a simple example in the framework of parameter estimation where in
addition to roundoff errors, random errors are involved. Let b = {bi}i=1,··· ,10 be a series
of observed values depending on data s = {si} where si = 10 + i, i = 1, · · · , 10 . We
determine a 3-degree polynomial that approximates b in the least squares sense, and we
suppose that the following relationship holds

b = x1 + x2
1

s
+ x3

1

s2
+ x4

1

s3
with x1 = x2 = x3 = x4 = 1.

We assume that the perturbation on each bi is 10−8 multiplied by a normally distributed
random number and denote by b̃ = {b̃i}i=1,··· ,10 the perturbed quantity. This corresponds
to the LLSP minx∈R4 ‖Ax− b̃‖2 where A is the Vandermonde matrix defined by Aij =

1

sj−1
i

. Let x̃ and ỹ be the computed solutions corresponding to two perturbed right-hand

sides. Then we obtain the following relative errors on each component:

|x̃1 − ỹ1|
|x̃1|

= 2 · 10−7,
|x̃2 − ỹ2|
|x̃2|

= 6 · 10−6,
|x̃3 − ỹ3|
|x̃3|

= 6 · 10−5, and
|x̃4 − ỹ4|
|x̃4|

= 10−4.

We have K(rel)(A, b) = 3.1 · 105 . Regarding the disparity between the sensitivity of
each component, we need a quantity that evaluates more precisely the sensitivity of each
solution component of the LLSP.
The idea of analyzing the accuracy of some solution components in linear algebra is by
no means new. For linear systems Ax = b, A ∈ R

n and for LLSP, [29] defines so called
componentwise condition numbers that correspond to amplification factors of the relative
errors in solution components due to perturbations of data A or b and explains how
to estimate them. In our formalism, these quantities are upper bounds of the condition
number of LTx where L is a column of the identity matrix. We also emphasize that the
term “componentwise” refers here to the solution components and must be distinguished
from the metric used for matrices and for which [103] provides a condition number for
generalized inversion and linear least squares.
For LLSP, [70] provides a statistical estimate for componentwise condition numbers due
to either relative or structured perturbations. In the case of linear systems, [24] proposes
a statistical approach, based on [69] that enables us to compute the condition number of
LTx in O(n2) .
Our approach differs from the previous studies in the following aspects:

1. we are interested in the condition of LTx where L is a general matrix and not only
a canonical vector of R

n ,

2. we are looking for a condition number based on the Fréchet-derivative, and not only
for an upper bound of this quantity.

We present in this chapter three ways to obtain information on the condition of LTx . The
first one uses an explicit formula based on the singular value decomposition of A . The
second is at the same time an upper bound of this condition number and an estimate of
correct order of magnitude. The third method supplies a statistical estimate. The choice
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between these three methods will depend on the size of the problem (computational cost)
and on the accuracy desired for this quantity.

The sequel of this chapter is organized as follows. In Section 4.2.2, we define the
notion of a partial condition number. Then, when perturbations on A are measured
using a Frobenius norm, we give a closed formula for this condition number in the general
case where L ∈ R

n×k and in the particular case when L ∈ R
n . In Section 4.3, we

establish bounds of the partial condition number in Frobenius as well as in spectral norm,
and we show that these bounds can be considered as estimates of it. In Section 4.4, we
describe a statistical method that enables us to estimate the partial condition number.
In Section 4.5, we present numerical results in order to compare the statistical estimate
and the exact condition number on sample matrices A and L . In Section 4.6, we give
a summary comparing the three ways to compute the condition of LTx as well as a
numerical illustration. Finally, some concluding remarks are given in Section 4.7.
We use the following notations. The matrix I is the identity matrix and ei is the i -th
canonical vector. We also denote by Im(A) the space spanned by the columns of A and
by Ker(A) the null space of A .

4.2.2 A closed formula for the partial condition number of an LLSP

Let L be an n× k matrix, with k ≤ n . We consider the function

g : R
m×n ×R

m −→ R
k

A, b 7−→ g(A, b) = LTx(A, b) = LT (ATA)−1AT b.
(4.7)

Since A has full rank n , g is continuously F-differentiable in a neighbourhood of (A, b)
and we denote by g′ its F-derivative. Let α and β be two positive real numbers. In the
present chapter we consider the Euclidean norm for the solution space R

k . For the data
space R

m×n × R
m , we use the product norms defined by

‖(A, b)‖F =

√
α2 ‖A‖2F + β2 ‖b‖22, α, β > 0

and

‖(A, b)‖2 =

√
α2 ‖A‖22 + β2 ‖b‖22, α, β > 0.

These norms are very flexible since they allow us to monitor the perturbations on A and
b . For instance, large values of α (resp. β ) enable us to obtain condition number
problems where mainly b (resp. A ) are perturbed. A more general weighted Frobenius
norm ‖(AT, βb)‖F , where T is a positive diagonal matrix is sometimes chosen. This is
for instance the case in [102] who give an explicit expression for the condition number of
rank deficient linear least squares using this norm.
According to Geurts [46], the absolute condition numbers of g at the point (A, b) using
the two product norms defined above is given by:

κg,F (A, b) = max
(∆A,∆b)

‖g′(A, b).(∆A,∆b)‖2
‖(∆A,∆b)‖F

and

κg,2(A, b) = max
(∆A,∆b)

‖g′(A, b).(∆A,∆b)‖2
‖(∆A,∆b)‖2

.
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The corresponding relative condition numbers of g at (A, b) are expressed by

κ
(rel)
g,F (A, b) =

κg,F (A, b) ‖(A, b)‖F
‖g(A, b)‖2

and

κ
(rel)
g,2 (A, b) =

κg,2(A, b) ‖(A, b)‖2
‖g(A, b)‖2

.

We call the condition numbers related to LTx(A, b) partial condition numbers of the LLSP
with respect to the linear operator L . The partial condition number defined using the
product norm ‖(., .)‖F is given by the following theorem.

Theorem 9. Let A = UΣV T be the thin singular value decomposition of A defined
in [50] with Σ = diag(σi) and σ1 ≥ σ2 · · · ≥ σn > 0 . The absolute condition number of
g(A, b) = LTx(A, b) is given by

κg,F (A, b) =
∥∥SV TL

∥∥
2

where S ∈ R
n×n is the diagonal matrix with diagonal elements Sii = σi

−1

√
σi

−2‖r‖2
2+‖x‖2

2
α2 + 1

β2 .

Proof. The demonstration is divided into three parts. In Part 1, we establish an explicit

formula of g′(A, b).(∆A,∆b) . In Part 2, we derive an upper bound for
‖g′(A,b).(∆A,∆b)‖2

‖(∆A,∆b)‖F
.

In Part 3, we show that this bound is reached for a particular (∆A,∆b) .
Part 1:
Let ∆A ∈ R

m×n and ∆b ∈ R
m . Using the chain rules of composition of derivatives, we

get

g′(A, b).(∆A,∆b) =

LT (ATA)−1∆AT (b−A(ATA)−1AT b)− LT (ATA)−1AT ∆A(ATA)−1AT b+ LTA†∆b

i.e
g′(A, b).(∆A,∆b) = LT (ATA)−1∆AT r − LTA†∆Ax+ LTA†∆b. (4.8)

We write ∆A = ∆A1 + ∆A2 by defining ∆A1 = AA†∆A (projection of ∆A on Im(A ))
and ∆A2 = (I−AA†)∆A (projection of ∆A on Im (A)⊥ ). We have ∆AT

1 r = 0 (because
r ∈ Im(A)⊥ ) and A†∆A2 = 0 . Then we obtain

g′(A, b).(∆A,∆b) = LT (ATA)−1∆AT
2 r − LTA†∆A1x+ LTA†∆b. (4.9)

Part 2:
We now prove that κg,F (A, b) ≤

∥∥SV TL
∥∥

2
. Let ui and vi be the i -th column of

respectively U and V .
From A† = V Σ−1UT , we get AA† = UUT =

∑n
i=1 uiu

T
i and since

∑n
i=1 viv

T
i = I , we

have ∆A1 =
∑n

i=1 uiu
T
i ∆A and ∆A2 = (I − AA†)∆A

∑n
i=1 viv

T
i . Moreover, still using

the thin SVD of A and A† , it follows that

(ATA)−1vi =
vi

σ2
i

, A†ui =
vi

σi
and A†∆b =

n∑

i=1

viu
T
i

∆b

σi
. (4.10)
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Thus (4.9) becomes

g′(A, b).(∆A,∆b) =

n∑

i=1

LT vi

[
vT
i ∆AT (I −AA†)

r

σ2
i

− uT
i ∆A

x

σi
+ uT

i

∆b

σi

]

= LT
n∑

i=1

viyi,

where we set yi = vT
i ∆AT (I −AA†) r

σ2
i

− uT
i ∆A x

σi
+ uT

i
∆b
σi
∈ R .

Thus if Y = (y1, y2, · · · , yn)T , we get ‖g′(A, b).(∆A,∆b)‖2 =
∥∥LTV Y

∥∥
2

and then

∥∥g′(A, b).(∆A,∆b)
∥∥

2
=
∥∥LTV SS−1Y

∥∥
2
≤
∥∥SV TL

∥∥
2

∥∥S−1Y
∥∥

2
.

We denote by wi =
vT

i ∆AT (I−AA†)r

Siiσ2
i

− uT
i ∆Ax
Siiσi

+
uT

i ∆b
Siiσi

the i -th component of S−1Y . Then

we have

|wi| ≤ α
∥∥∥vT

i ∆AT (I −AA†)T
∥∥∥

2

‖r‖2
αSiiσ2

i

+ α
∥∥uT

i ∆A
∥∥

2

‖x‖2
αSiiσi

+ β|uT
i ∆b| 1

βSiiσi

≤ (
‖r‖22

α2S2
iiσ

4
i

+
‖x‖22

α2S2
iiσ

2
i

+
1

β2S2
iiσ

2
i

)
1
2 (α2

∥∥∥(I −AA†)∆Avi

∥∥∥
2

2
+ α2

∥∥uT
i ∆A

∥∥2

2
+ β2|uT

i ∆b|2) 1
2

=
Sii

Sii
(α2

∥∥∥(I −AA†)∆Avi

∥∥∥
2

2
+ α2

∥∥uT
i ∆A

∥∥2

2
+ β2|uT

i ∆b|2) 1
2 .

Hence

∥∥S−1Y
∥∥2

2
≤

n∑

i=1

α2
∥∥∥(I −AA†)∆Avi

∥∥∥
2

2
+ α2

∥∥uT
i ∆A

∥∥2

2
+ β2|uT

i ∆b|2

= α2
∥∥∥(I −AA†)∆AV

∥∥∥
2

F
+ α2

∥∥UT ∆A
∥∥2

F
+ β2

∥∥UT ∆b
∥∥2

2

= α2
∥∥∥(I −AA†)∆A

∥∥∥
2

F
+ α2

∥∥UT ∆A
∥∥2

F
+ β2

∥∥UT ∆b
∥∥2

2
.

Since
∥∥UT ∆A

∥∥
F

=
∥∥UUT ∆A

∥∥
F

=
∥∥AA†∆A

∥∥
F

and
∥∥UT ∆b

∥∥
2

=
∥∥UUT ∆b

∥∥
2
≤ ‖∆b‖2 ,

we get ∥∥S−1Y
∥∥2

2
≤ α2 ‖∆A1‖2F + α2 ‖∆A2‖2F + β2 ‖∆b‖22 .

From ‖∆A‖2F = ‖∆A1‖2F + ‖∆A2‖2F , we get
∥∥S−1Y

∥∥2

2
≤ ‖(∆A,∆b)‖2F and thus

∥∥g′(A, b).(∆A,∆b)
∥∥

2
≤
∥∥SV TL

∥∥
2
‖(∆A,∆b)‖F .

So we have shown that
∥∥SV TL

∥∥
2

is an upper bound for κg,F (A, b) .
Part 3:
We now prove that this upper bound can be reached i.e that

∥∥SV TL
∥∥

2
=

‖g′(A,b).(∆A,∆b)‖2
‖(∆A,∆b)‖F

holds for some (∆A,∆b) ∈ R
m×n ×R

m .
Let consider the particular choice of (∆A,∆b) defined by

(∆A,∆b) = (∆A2 + ∆A1,∆b) = (

n∑

i=1

αi

α

r

‖r‖2
vT
i +

n∑

i=1

βi

α
ui

xT

‖x‖2
,

n∑

i=1

γi

β
ui)

77



where αi , βi , γi are real constants to be chosen in order to achieve the upper bound
obtained in Part 2.
Since ∆AT

1 r = 0 and A†∆A2 = 0 , it follows from (4.9) and (4.10) that

g′(A, b).(∆A,∆b) = LT (ATA)−1
n∑

i=1

αi

α
‖r‖2 vT

i − LTA†
n∑

i=1

βi

α
ui ‖x‖2 + LTA†

n∑

i=1

γi

β
ui

= LT
n∑

i=1

αi

ασ2
i

vi ‖r‖2 − LT
n∑

i=1

βi

ασi
vi ‖x‖2 + LT

n∑

i=1

γi

βσi
vi

=

n∑

i=1

LTvi(
αi

ασ2
i

‖r‖2 −
βi

ασi
‖x‖2 +

γi

βσi
).

Thus by denoting ξi = [LT vi
‖r‖2

ασ2
i

,−LT vi
‖x‖2
ασi

, LT vi

βσi
] ∈ R

k×3 and Γ = [ξ1, . . . , ξn] ∈ R
k×3n ,

and X = (α1, β1, γ1, · · · , αn, βn, γn)T ∈ R
3n×1 we get

g′(A, b).(∆A,∆b) = ΓX. (4.11)

Since ∀i, j trace
(
( r
‖r‖2

vT
i )T ( r

‖r‖2
vT
i )
)

= trace
(
(ui

xT

‖x‖2
)T (ui

xT

‖x‖2
)
)

= δij where δij is

the Kronecker symbol and trace
(
( r
‖r‖2

vT
i )T (ui

xT

‖x‖2
)
)

= 0 , then { r
‖r‖2

vT
i }i=1,··· ,n and

{ui
xT

‖x‖2
}i=1,··· ,n form an orthonormal set of matrices for the Frobenius norm and we get

‖∆A‖F =
∑n

i=1(α
2
i + β2

i ) . It follows that

‖(∆A,∆b)‖2F =
n∑

i=1

α2
i +

n∑

i=1

β2
i +

n∑

i=1

γ2
i = ‖X‖22 ,

and Equation (4.11) yields

‖g′(A, b).(∆A,∆b)‖2
‖(∆A,∆b)‖F

=
‖ΓX‖2
‖X‖2

.

We know that ‖Γ‖2 = maxX
‖ΓX‖2
‖X‖2

is reached for some X = (α1, β1, γ1, · · · , αn, βn, γn)T .

Then for the (∆A,∆b) corresponding to this X , we have
‖g′(A,b).(∆A,∆b)‖2

‖(∆A,∆b)‖F
= ‖Γ‖2 .

Furthermore we have

ΓΓT = LT v1(
‖r‖22
α2σ4

1

+
‖x‖22
α2σ2

1

+
1

β2σ2
1

)vT
1 L+ · · ·+ LT vn(

‖r‖22
α2σ4

n

+
‖x‖22
α2σ2

n

+
1

β2σ2
n

)vT
nL

= LT v1S
2
11v

T
1 L+ · · · + LTvnS

2
nnv

T
nL

= (LTV S)(SV TL).

Hence

‖Γ‖2 =
√
‖ΓΓT‖2 =

∥∥SV TL
∥∥

2

and α1, β1, γ1, · · · , αn, βn, γn are such that
‖g′(A,b).(∆A,∆b)‖2

‖(∆A,∆b)‖F
=
∥∥SV TL

∥∥
2
.

Thus
∥∥SV TL

∥∥
2
≤ κg,F (A, b) , which concludes the proof.
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Remark 7. Let lj be the j -th column of L , j = 1, · · · , k . From

SV TL =




S11v1
T

...
Snnvn

T


 (l1, · · · , lk) =




S11v1
T l1 · · · S11v1

T lk
...

...
Snnvn

T l1 · · · Snnvn
T lk


 ,

it follows that
∥∥SV TL

∥∥
2

is large when there exists at least one large Sii and a lj such

that vi
T lj 6= 0 . In particular, the condition number of LTx(A, b) is large when A has

small singular values and L has components in the corresponding right singular vectors
or when ‖r‖2 is large.

Remark 8. In the general case where L is an n×k matrix, the computation of κg,F (A, b)
via the exact formula given in Theorem 9 requires the computation of the singular values
and the right singular vectors of A , which might be expensive in practice since it involves
2mn2 operations if we use a R-SVD algorithm and if m � n (see [50, p. 254]). If the
LLSP is solved using a direct method, the R factor of the QR decomposition of A (or
equivalently in exact arithmetic, the Cholesky factor of ATA ) might be available. Since
the right singular vectors of A are also those of R , the condition number can be computed
in about 12n3 flops (using the Golub-Reinsch SVD, [50, p. 254]).

4.2.3 Special cases and GSVD

In this section, we analyze some special cases of practical relevance. Moreover, we relate
the formula given in Theorem 9 for

κg,F (A, b)

to the Generalized Singular Value Decomposition (GSVD) ([21, p. 157], [50, p. 466], and
[80, 99]). Using the GSVD of A and LT , there exist UA ∈ R

m×m, UL ∈ R
k×k orthogonal

matrices and Z ∈ R
n×n invertible such that:

UT
AA =

(
DA

0

)
Z and UT

LL
T =

(
DL 0

)
Z

with

DA = diag(α1, · · · , αn), DL = diag(β1, · · · , βk),

α2
i + β2

i = 1 i = 1, · · · , k, αi = 1, i = k + 1, · · · , n.

The diagonal matrix S can be decomposed in the product of two diagonal matrices

S = Σ−1D

with

Dii =

√
σi

−2 ‖r‖22 + ‖x‖22
α2

+
1

β2
.

Then, taking into account the following relations

∥∥SV TL
∥∥

2
=
∥∥LTV S

∥∥
2

=
∥∥LTV Σ−1UTUD

∥∥
2

=
∥∥∥LTA†UD

∥∥∥
2
,

LTA† = UL

(
DL 0

)
ZZ−1

(
D−1

A 0
)
UT

A ,
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we can represent κg,F (A, b) as

κg,F (A, b) =
∥∥∥TH̃D

∥∥∥
2

where T ∈ R
k×k is a diagonal matrix with Tii = βi/αi, i = 1, · · · , k and H̃ ∈ R

k×n is

H̃ =
(
I 0

)
UT

AU.

Note that
∥∥LTA†∥∥

2
= ‖T‖2 .

We also point out that the diagonal entries of T are the nonzero generalized eigenvalues
of

λATAz = LLT z.

There are two interesting special cases where the expression of κg,F (A, b) is simpler.
First, when r = 0 , i.e. the LLSP problem is consistent, we have

D =

√
‖x‖22
α2

+
1

β2
I

and

κg,F (A, b) =
∥∥∥TH̃

∥∥∥
2

√
‖x‖22
α2

+
1

β2
.

Second, if we allow only perturbations on b and if we use the expression (4.8) of the
derivative of g(A, b) , we get

κg,F (A, b) =

∥∥LTA†∥∥
2

β
=
‖T‖2
β

(see Remark 11 in Section 4.3).

Other relevant cases where the expression for κg,F (A, b) has a special interest are
L = I and L is a column vector.

In the special case where L = I , the formula given by Theorem 9 becomes

κg,F (A, b) =
∥∥SV TL

∥∥
2

= ‖S‖2 = max
i
Sii = σn

−1

√
σn

−2 ‖r‖22 + ‖x‖22
α2

+
1

β2
.

Since
∥∥A†∥∥

2
= σn

−1 , we obtain that

κg,F (A, b) =
∥∥∥A†

∥∥∥
2

√
‖A†‖22 ‖r‖

2
2 + ‖x‖22

α2
+

1

β2
.

This corresponds to the result known from [51] and also to a generalization of the formula
of the condition number in Frobenius norm given in [46, p. 92] (where only A was
perturbed).

Finally, let us study the particular case where L is a column vector i.e when g is a
scalar derived function.
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Corollary 2. In the particular case when L is a vector (L ∈ R
n ), the absolute condition

number of g(A, b) = LTx(A, b) is given by

κg,F (A, b) =

(
∥∥LT (ATA)−1

∥∥2

2

‖r‖22
α2

+
∥∥∥LTA†

∥∥∥
2

2
(
‖x‖22
α2

+
1

β2
)

) 1
2

.

Proof. By replacing (ATA)−1 = V Σ−2V T and A† = V Σ−1UT in the expression of K =

(
∥∥LT (ATA)−1

∥∥2

2
‖r‖22 +

∥∥LTA†∥∥2

2
(‖x‖22 + 1))

1
2 we get

K2 =
∥∥LTV Σ−2V T

∥∥2

2

‖r‖22
α2

+
∥∥LTV Σ−1UT

∥∥2

2
(
‖x‖22
α2

+
1

β2
)

=
∥∥LTV Σ−2

∥∥2

2

‖r‖22
α2

+
∥∥LTV Σ−1

∥∥2

2
(
‖x‖22
α2

+
1

β2
)

=
∥∥Σ−2V TL

∥∥2

2

‖r‖22
α2

+
∥∥Σ−1V TL

∥∥2

2
(
‖x‖22
α2

+
1

β2
).

By writing (z1, · · · , zn)T the vector V TL ∈ R
n we obtain

K2 =

n∑

i=1

z2
i

σ4
i

‖r‖22
α2

+

n∑

i=1

z2
i

σ2
i

(
‖x‖22
α2

+
1

β2
)

=
n∑

i=1

z2
i

σ2
i

(
σ−2

i ‖r‖
2
2 + ‖x‖22
α2

+
1

β2
)

=

n∑

i=1

S2
iiz

2
i

=
∥∥SV TL

∥∥2

2
,

and Theorem 9 gives the result.

Remark 9. If the R factor in the QR decomposition of A is available, then we have
∥∥LTA+

∥∥
2

=
∥∥R−TL

∥∥
2

and
∥∥LT (ATA)−1

∥∥
2

=
∥∥R−1(R−TL)

∥∥
2
. (4.12)

It follows that, when L ∈ R
n , the computation of κg,F (A, b) can be performed by solving

two successive n -by- n triangular systems which involve about 2n2 flops.

4.3 Estimate of the partial condition number in Frobenius

and spectral norms

In many cases, obtaining a lower and/or an upper bound of κg,F (A, b) is satisfactory
when these bounds are tight enough and significantly cheaper to compute than the exact
formula. Moreover, many applications use condition numbers expressed in the spectral
norm. In the following theorem, we give bounds that have a correct order of magnitude
for the partial condition numbers in the Frobenius and spectral norms.
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Theorem 10. The absolute condition numbers of g(A, b) = LTx(A, b) (L ∈ R
n×k) in the

Frobenius and spectral norms can be respectively bounded as follows

f(A, b)√
3
≤ κg,F (A, b) ≤ f(A, b)

f(A, b)√
3
≤ κg,2(A, b) ≤

√
2f(A, b)

where

f(A, b) =

(
∥∥LT (ATA)−1

∥∥2

2

‖r‖22
α2

+
∥∥∥LTA†

∥∥∥
2

2

(
‖x‖22
α2

+
1

β2

)) 1
2

.

Proof. Part 1:
We start by establishing the lower bounds. Let w1 and w′

1 (resp. a1 and a′1 ) be right
(resp. the left) singular vectors corresponding to the largest singular values of respectively
LT (ATA)−1 and LTA† . We use a particular perturbation (∆A,∆b) expressed as

(∆A,∆b) = (
r

α ‖r‖2
wT

1 + εw′
1

xT

α ‖x‖2
,−εw

′
1

β
),

where ε = ±1 .
By replacing this value of (∆A,∆b) in (4.8) we get

g′(A, b).(∆A,∆b) =
‖r‖2
α

LT (ATA)−1w1 +
ε

α ‖x‖2
LT (ATA)−1xw′T

1 r

− LTA†r
wT

1 x

α ‖r‖2
− ε ‖x‖2

α
LTA†w′

1 −
ε

β
LTA†w′

1.

Since r ∈ Im(A)⊥ we have A†r = 0 . Moreover, we have w′
1 ∈ Ker(LTA†)⊥ and

thus w′
1 ∈ Im(A+TL) and can be written w′

1 = A+TLδ for some δ ∈ R
k . Then

w′T
1 r = δTLTA†r = 0 . It follows that

g′(A, b).(∆A,∆b) =
‖r‖2
α

LT (ATA)−1w1 −
ε ‖x‖2
α

LTA†w′
1 −

ε

β
LTA†w′

1.

From LT (ATA)−1w1 =
∥∥LT (ATA)−1

∥∥
2
a1 and LTA†w′

1 =
∥∥LTA†∥∥

2
a′1 , we obtain

g′(A, b).(∆A,∆b) =
∥∥LT (ATA)−1

∥∥
2

‖r‖2
α

a1 − ε(
‖x‖2
α

+
1

β
)
∥∥∥LTA†

∥∥∥
2
a′1.

Since a1 and a′1 are unit vectors, ‖g′(A, b).(∆A,∆b)‖2 can be developed as

∥∥g′(A, b).(∆A,∆b)
∥∥2

2
=

∥∥LT (ATA)−1
∥∥2

2

‖r‖22
α2

+
∥∥∥LTA†

∥∥∥
2

2
(
‖x‖2
α

+
1

β
)2

−2ε
∥∥LT (ATA)−1

∥∥
2

‖r‖2
α

(
‖x‖2
α

+
1

β
)
∥∥∥LTA†

∥∥∥
2
cos(a1, a

′
1).
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By choosing ε = −sign(cos(a1, a
′
1)) the third term of the above expression becomes

positive. Furthermore we have (
‖x‖2

α + 1
β )2 ≥ ‖x‖2

2
α2 + 1

β2 . Then we obtain

∥∥g′(A, b).(∆A,∆b)
∥∥

2
≥
(
∥∥LT (ATA)−1

∥∥2

2

‖r‖22
α2

+
∥∥∥LTA†

∥∥∥
2

2
(
‖x‖22
α2

+
1

β2
)

) 1
2

i.e ∥∥g′(A, b).(∆A,∆b)
∥∥

2
≥ f(A, b).

On the other hand, we have

‖∆A‖2F =

∥∥∥∥
r

α ‖r‖2
wT

1

∥∥∥∥
2

F

+

∥∥∥∥w
′
1

xT

α ‖x‖2

∥∥∥∥
2

F

+2 ε trace

(
(

r

α ‖r‖2
wT

1 )T (w′
1

xT

α ‖x‖2
)

)
and

∥∥∥∥
w′

1

β

∥∥∥∥
2

2

=
1

β2

with

∥∥∥∥
r

α ‖r‖2
wT

1

∥∥∥∥
2

F

=

∥∥∥∥w
′
1

xT

α ‖x‖2

∥∥∥∥
2

F

=
1

α2
and trace

(
(

r

α ‖r‖2
wT

1 )T (w′
1

xT

α ‖x‖2
)

)
= 0.

Then ‖(∆A,∆b)‖F =
√

3 and thus we have
‖g′(A,b).(∆A,∆b)‖2

‖(∆A,∆b)‖F
≥ f(A,b)√

3
for a particular

value of (∆A,∆b) . Furthermore, from ‖(∆A,∆b)‖2 ≤ ‖(∆A,∆b)‖F we get
‖g′(A,b).(∆A,∆b)‖2

‖(∆A,∆b)‖2
≥

f(A,b)√
3

(for the same particular value of (∆A,∆b) ).

Then we obtain κg,F (A, b) ≥ f(A,b)√
3

and κg,2(A, b) ≥ f(A,b)√
3

.

Part 2:
Let us now establish the upper bound for κg,F (A, b) and κg,2(A, b) .
If ∆A1 = AA†∆A and ∆A2 = (I−AA†)∆A , then it comes from (4.9) that ∀(∆A,∆b) ∈
R

m×n × R
m

∥∥g′(A, b).(∆A,∆b)
∥∥

2
≤

∥∥LT (ATA)−1
∥∥

2
‖∆A2‖2 ‖r‖2 +

∥∥∥LTA†
∥∥∥

2
‖∆A1‖2 ‖x‖2 +

∥∥∥LTA†
∥∥∥

2
‖∆b‖2

= Y X,

where

Y =

(∥∥LT (ATA)−1
∥∥

2
‖r‖2

α
,

∥∥LTA†∥∥
2
‖x‖2

α
,

∥∥LTA†∥∥
2

β

)

and

X = (α ‖∆A2‖2 , α ‖∆A1‖2 , β ‖∆b‖2)T .

Hence, from the Cauchy-Schwarz inequality we get

∥∥g′(A, b).(∆A,∆b)
∥∥

2
≤ ‖Y ‖2 ‖X‖2 , (4.13)

with

‖X‖22 = α2 ‖∆A1‖22 + α2 ‖∆A2‖22 + β2 ‖∆b‖22 ≤ α2 ‖∆A1‖2F + α2 ‖∆A2‖2F + β2 ‖∆b‖22
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and

‖Y ‖2 = f(A, b).

Then, since ‖∆A‖2F = ‖∆A1‖2F + ‖∆A2‖2F , we have ‖X‖2 ≤ ‖(∆A,∆b)‖F and (4.13)
yields ∥∥g′(A, b).(∆A,∆b)

∥∥
2
≤ ‖(∆A,∆b)‖F ‖Y ‖2

which implies that

κg,F (A, b) ≤ f(A, b).

An upper bound of κg,2(A, b) can be computed in a similar manner: we get from (4.8)
that

∥∥g′(A, b).(∆A,∆b)
∥∥

2
≤ (

∥∥LT (ATA)−1
∥∥

2
‖r‖2 +

∥∥∥LTA†
∥∥∥

2
‖x‖2) ‖∆A‖2 +

∥∥∥LTA†
∥∥∥

2
‖∆b‖2

= Y ′X ′,

where Y ′ =

(
‖LT (AT A)−1‖

2
‖r‖2+‖LT A†‖

2
‖x‖2

α ,
‖LT A†‖

2
β

)
and X ′ = (α ‖∆A‖2 , β ‖∆b‖2)T .

Since ‖X ′‖2 = ‖(∆A,∆b)‖2 we have κg,2(A, b) ≤ ‖Y ′‖2 .
Using then the inequality

(∥∥LT (ATA)−1
∥∥

2
‖r‖2 +

∥∥∥LTA†
∥∥∥

2
‖x‖2

)2
≤ 2

(∥∥LT (ATA)−1
∥∥2

2
‖r‖22 +

∥∥∥LTA†
∥∥∥

2

2
‖x‖22

)

we get ‖Y ′‖2 ≤
√

2 ‖Y ‖2 and finally obtain κg,2(A, b) ≤
√

2f(A, b) which concludes the
proof.

Theorem 10 shows that f(A, b) can be considered as an estimate of the partial condi-
tion number that lies within a factor

√
3 of κg,F (A, b) or κg,2(A, b) .

Another observation is that we have

1√
6
≤ κg,F (A, b)

κg,2(A, b)
≤
√

3.

Thus even if the Frobenius and spectral norms of a given matrix can be very different (for
X ∈ R

m×n , we have ‖X‖2 ≤ ‖X‖F ≤
√
n ‖X‖2 ), the condition numbers expressed in

both norms are of same order. The result is that a good estimate of κg,F (A, b) is also a
good estimate of κg,2(A, b) .
Moreover, (4.12) shows that if the R factor of A is available, f(A, b) can be computed
by solving two n -by- n triangular systems with k right-hand sides and thus the compu-
tational cost is 2kn2 .

Remark 10. We can check on the following example that κg,F (A, b) is not equal to
f(A, b) . Let us consider

A =




2 0
0 1
0 0


 , L =

(
3 0
0 1

)
and b =




2/
√

2

1/
√

2
1


 .
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We have

x = (1/
√

2, 1/
√

2)T and ‖x‖2 = ‖r‖2 = 1,

and we get

κg,F (A, b) =

√
45

4
< f(A, b) =

√
13

2
.

Remark 11. Using the definition of the condition number and of the product norms, tight
estimates for the partial condition number for perturbations of A only (resp. b only) can
be obtained by taking α > 0 and β = +∞ (resp. β > 0 and α = +∞ ) in Theorem 10.
In particular, when we perturb only b we have, with the notations of Section 4.2.3,

f(A, b) =

∥∥LTA†∥∥
2

β
=
‖T‖2
β

= κg,F (A, b).

Moreover, when r = 0 we have

f(A, b) =
∥∥∥LTA†

∥∥∥
2

(
‖x‖22
α2

+
1

β2

) 1
2

= ‖T‖2

(
‖x‖22
α2

+
1

β2

) 1
2

.

Remark 12. In the special case where L = I , we have

f(A, b) =

(
∥∥(ATA)−1

∥∥2

2

‖r‖22
α2

+
∥∥∥A†

∥∥∥
2

2
(
‖x‖22
α2

+
1

β2
)

) 1
2

.

Since
∥∥(ATA)−1

∥∥
2

=
∥∥A†∥∥2

2
we obtain that

f(A, b) =
∥∥∥A†

∥∥∥
2

√
‖A†‖22 ‖r‖

2
2 + ‖x‖22

α2
+

1

β2
.

In that case κg,F (A, b) is exactly equal to f(A, b) due to [51].
Regarding the condition number in spectral norm, since we have ‖(∆A,∆b)‖2 ≤ ‖(∆A,∆b)‖F
we get κg,2(A, b) ≥ f(A, b) . This lower bound is similar to that obtained in [46] (where
only A is perturbed). As mentioned in [46], an upper bound of κg,2(A) is κu

g,2(A) =∥∥A†∥∥2

2
‖r‖2 +

∥∥A†∥∥
2
‖x‖2 . If we take α = 1 and β = +∞ , we notice that f(A, b) ≤

κu
g,2(A) ≤

√
2f(A, b) showing thus that our upper bound and κu

g,2(A) are essentially the
same.

Remark 13. Generalization to other product norms:
Other product norms may have been used for the data space R

m×n × R
m .

If we consider a norm ν on R
2 such that c1ν(x, y) ≤

√
x2 + y2 ≤ c2ν(x, y) then we

can define a product norm ‖(A, b)‖F,ν = ν(α ‖∆A‖F , β ‖∆b‖2) . For instance in [53],
ν corresponds to ‖.‖∞ . Note that the product norm ‖(., .)‖F used throughout this
chapter corresponds to ν = ‖.‖2 and that with the above notation we have ‖(A, b)‖F,2 =
‖(A, b)‖F . Then the following inequality holds

c1‖(∆A,∆b)‖F,ν ≤ ‖(∆A,∆b)‖F ≤ c2‖(∆A,∆b)‖F,ν .
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If we denote κg,F,ν(A, b) = max(∆A,∆b)
‖g′(A,b).(∆A,∆b)‖2

‖(∆A,∆b)‖F,ν
we obtain

κg,F,ν(A, b)

c2
≤ κg,F (A, b) ≤ κg,F,ν(A, b)

c1
.

Using the bounds for κg,F given in Theorem 10 we can obtain tight bounds for the
partial condition number expressed using the product norm based on ν and when the
perturbations on matrices are measured with the Frobenius norm:

c1√
3
f(A, b) ≤ κg,F,ν(A, b) ≤ c2f(A, b).

Similarly, if the perturbations on matrices are measured with the spectral norm, we get

c1√
3
f(A, b) ≤ κg,2,ν(A, b) ≤ c2

√
2f(A, b).

The bounds obtained for three possible product norms ( ν = ‖.‖∞ , ν = ‖.‖2 and ν =
‖.‖1 ) are given in Table 4.2 when using the Frobenius norm for matrices and in Table 4.3
when using the spectral norm for matrices.

Table 4.2: Bounds for partial condition number (Frobenius norm on matrices).

product norm ν, c1, c2 lower bound upper bound
(factor of f(A, b)) (factor of f(A, b))

max{α ‖∆A‖F , β ‖∆b‖2} ‖.‖∞, 1√
2
, 1 1√

6
1√

α2 ‖∆A‖2F + β2 ‖∆b‖22 ‖.‖2, 1, ,1 1√
3

1

α ‖∆A‖F + β ‖∆b‖2 ‖.‖1, 1,
√

2 1√
3

√
2

Table 4.3: Bounds for partial condition number (spectral norm on matrices).

product norm ν, c1, c2 lower bound upper bound
(factor of f(A, b)) (factor of f(A, b))

max{α ‖∆A‖2 , β ‖∆b‖2} ‖.‖∞, 1√
2
, 1 1√

6

√
2√

α2 ‖∆A‖22 + β2 ‖∆b‖22 ‖.‖2, 1, 1 1√
3

√
2

α ‖∆A‖2 + β ‖∆b‖2 ‖.‖1, 1,
√

2 1√
3

2

4.4 Statistical estimation of the partial condition number

In this section we compute a statistical estimate of the partial condition number. We have
seen in Section 4.3 that using the Frobenius or the spectral norm for the matrices gives
condition numbers that are of the same order of magnitude. We compute here a statistical
estimate of κg,F (A, b) .
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Let (z1, z2, · · · , zq) be an orthonormal basis for a subspace of dimension q ( q ≤ k ) that
has been randomly and uniformly selected from the space of all q -dimensional subspaces
of R

k (this can be done by choosing q random vectors and then orthogonalizing). Let us
denote gi(A, b) = (Lzi)

Tx(A, b) .
Since Lzi ∈ R

n , the absolute condition number of gi can be computed via the exact
formula given in Corollary 2 i.e

κgi,F (A, b) =

(
∥∥(Lzi)T (ATA)−1

∥∥2

2

‖r‖22
α2

+
∥∥∥(Lzi)TA†

∥∥∥
2

2

(
‖x‖22
α2

+
1

β2

)) 1
2

. (4.14)

We define the random variable φ(q) by

φ(q) = (
k

q

q∑

i=1

κgi,F (A, b)2)
1
2 .

Let the operator E(.) denote the expected value. The following proposition shows that
the root mean squared of φ(q) , defined by R(φ(q)) =

√
E(φ(q)2) can be considered as

an estimate for the condition number of g(A, b) = LTx(A, b) .

Proposition 3. The absolute condition number can be bounded as follows:

R(φ(q))√
k
≤ κg,F (A, b) ≤ R(φ(q)). (4.15)

Proof. Let vec be the operator that stacks the columns of a matrix into a long vector and

M be the k -by-m(n+1) matrix such that vec(g ′(A, b).(∆A,∆b)) = M

(
vec(α∆A)
vec(β∆b)

)
.

Note that M depends on A , b , L and not on the zi .
Then we have:

κg,F (A, b) = max
(∆A,∆b)

‖g′(A, b).(∆A,∆b)‖2
‖(∆A,∆b)‖F

= max
(∆A,∆b)

‖vec(g′(A, b).(∆A,∆b))‖2∥∥∥∥
(
vec(α∆A)
vec(β∆b)

)∥∥∥∥
2

= max
z∈Rm(n+1),z 6=0

‖M z‖2
‖z‖2

= ‖M‖2 =
∥∥MT

∥∥
2
.

Let Z = [z1, z2, · · · , zq] be the k -by- q random matrix with orthonormal columns zi .

From [55] it follows that k
q

∥∥MTZ
∥∥2

F
is an unbiased estimator of the Frobenius norm of

the m(n+ 1) -by- k matrix MT i.e we have E(k
q

∥∥MTZ
∥∥2

F
) =

∥∥MT
∥∥2

F
.

From

∥∥MTZ
∥∥2

F
=

∥∥ZTM
∥∥2

F

=

∥∥∥∥∥∥∥




zT
1 M
...

zT
q M




∥∥∥∥∥∥∥

2

F
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we get, since zT
i M is a row vector,

∥∥MTZ
∥∥2

F
=

q∑

i=1

∥∥zT
i M

∥∥2

2
.

We notice that for all vector u ∈ R
k , if we consider the function gu(A, b) = uT g(A, b) ,

then we have
∥∥uTM

∥∥
F

= ‖g′u(A, b)‖ = κgu,F (A, b) and therefore

∥∥zT
i M

∥∥
F

= κgi,F (A, b).

Eventually we obtain

∥∥MT
∥∥2

F
= E(

k

q

q∑

i=1

κgi,F (A, b)2) = E(φ(q)2).

Moreover, considering that MT ∈ R
m(n+1)×k and using the well-known inequality

∥∥MT
∥∥

F√
k
≤
∥∥MT

∥∥
2
≤
∥∥MT

∥∥
F
,

we get the result (4.15). Then we will consider φ(q)
‖(A,b)‖F

‖LT x̃‖2
as an estimator of κ

(rel)
g,F (A, b) .

The root mean squared of φ(q) is an upper bound of κg(A, b) , and estimates κg,F (A, b)
within a factor

√
k . Proposition 3 involves the computation of the condition number of

each gi(A, b), i = 1, · · · , q . From Remark 9, it follows that the computational cost of each
κgi,F (A, b) is 2n2 (if the R factor of the QR decomposition of A is available). Hence,
for a given sample of vectors zi , i = 1, . . . , q , computing φ(q) requires about 2qn2 flops.
However, Proposition 3 is mostly of theoretical interest, since it relies on the computation
of the root mean squared of a random variable, without providing a practical method to
obtain it. In the next proposition, the use of the small sample estimate theory developed by
Kenney and Laub [55] gives a first answer to this question by showing that the evaluation
of φ(q) using only one sample of q vectors z1, z2, · · · , zq in the unit sphere may provide
an acceptable estimate.

Proposition 4. For any α > 10 ,

Pr

(
φ(q)

α
√
k
≤ κg,F (A, b) ≤ αφ(q)

)
≥ 1− α−q.

This probability approaches 1 very fast as q increases. For α = 11 and q = 3 the
probability for φ(q) to estimate κg,F (A, b) within a factor 11

√
k is 99.9% .

Proof. We define as in the proof of Proposition 3 the matrix M as the matrix related to
the vec operation representing the linear operator g ′(A, b) . From [55, (4) p. 781 and (9)
p. 783] we get

Pr

(∥∥MT
∥∥

F

α
≤ φ(q) ≤ α

∥∥MT
∥∥

F

)
≥ 1− α−q. (4.16)
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We have seen in the proof of Proposition 3 that κg,F (A, b) =
∥∥MT

∥∥
2
. Then we have

κg,F (A, b) ≤
∥∥MT

∥∥
F
≤ κg,F (A, b)

√
k.

It follows that, for the random variable φ(q) , we have

Pr

(
κg,F (A, b)

α
≤ φ(q) ≤ ακg,F (A, b)

√
k

)
≥ Pr

(∥∥MT
∥∥

F

α
≤ φ(q) ≤ α

∥∥MT
∥∥

F

)
.

Then we obtain the result from

Pr

(
κg,F (A, b)

α
≤ φ(q) ≤ ακg,F (A, b)

√
k

)
= Pr

(
φ(q)

α
√
k
≤ κg,F (A, b) ≤ αφ(q)

)
.

We see from this proposition that it may not be necessary to estimate the root mean
squared of φ(q) using sophisticated algorithms. Indeed only one sample of φ(q) obtained
for q = 3 provides an estimate of κg,F (A, b) within a factor α

√
k .

Remark 14. If k = 1 then Z = 1 and the problem is reduced to computing κg1(A, b)
In this case, φ(1) is exactly the partial condition number of LTx(A, b) .

Remark 15. Concerning the computation of the statistical estimate in the presence of
roundoff errors, the numerical reliability of the statistical estimate relies on an accurate
computation of the κgi,F (A, b) for a given zi . Let A be a 17 -by- 13 Vandermonde
matrix, b a random vector and L ∈ R

n the right singular vector vn

Using the Mathematica software [106] that computes in exact arithmetic, we obtained

κ
(rel)
g,F (A, b) ≈ 5 · 108 . If the triangular factor R form ATA = RTR is obtained by the

QR decomposition of A , we get κ
(rel)
g,F (A, b) ≈ 5 · 108 . If R is computed via a classical

Cholesky factorization, we get κg,F (A, b)(rel) ≈ 1010 .
Corollary 2 and Remark 9 show that the computation of κg,F (A, b)(rel) involves linear
systems of the type ATAx = d , which differs from the usual normal equation for least
squares in their right-hand side. Our observation that for this kind of ill-conditioned
systems, a QR factorization is more accurate than a Cholesky factorization is in agreement
with [45].

Another approach is proposed in [24] and [70] to obtain partial condition statistical
estimates for LLSP and linear systems. Using this method gives the following proposition.

Proposition 5. The partial condition number of g(A) = pTx(A, b) can be approximated
by

ψ(q) =
Eq(
∑q

i=1 κgi,F (A, b)2)
1
2 ‖(A, b)‖

Ek ‖pT x̃‖2
where z1, z2, · · · , zq are q orthonormal vectors uniformly and randomly selected in Sk−1 ,
Eq and Ek being the Wallis factors. Moreover, we have the inequality

ψ(q) ≤ √qEq

Ek
κ

(rel)
g,F (A, b)
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Proof. It comes from (4.1) that for estimating the condition number of g(A, b) = pTx(A, b) ,

we are concerned with the relative error δ =
‖pT x−pT x̃‖

2

‖pT x‖2
. If we approximate x by x̃ ,

then we obtain

δ =

∥∥pT (x− x̃)
∥∥

2

‖pT x̃‖2
(4.17)

We will estimate δ by using a method that is referred to as small-sample statistical
method [69]. For any v ∈ R

k , if z1, · · · , zq are random orthogonal vectors from Sk−1 ,
then we have

E(
√
|vT z1|2 + · · ·+ |vT zq|2) =

Ek

Eq
‖v‖2 (4.18)

where E1 = 1 , and for k > 1

Ek =
1 · 3 · 5 · · · (k − 2)

2 · 4 · 6 · · · (k − 1)
for k odd

Ek =
2

π

2 · 4 · 6 · · · (k − 2)

1 · 3 · 5 · · · (k − 1)
for k even.

Ek is called the Wallis factor and can be approximated by
√

2
π(k− 1

2
)
.

That means that we can estimate ‖v‖2 by

ζ(q) =
Eq

Ek
E(
√
|vT z1|2 + · · ·+ |vT zq|2).

For instance for q = 3 the probability that ζ(q) lies within a factor α of ‖v‖2 is

Pr(
‖v‖2
α
≤ ζ(q) ≤ α ‖v‖2) ≈ 1− 32

3π2α3
. (4.19)

For α = 10 , we obtain a probability of 99.9% .
Now we are going to apply the above method to estimate v = pT (x− x̃) . We consider q
random orthogonal vectors in Sk−1 , these vectors being obtained for instance via a QR
factorization of a random matrix Z ∈ R

k×q . We denote

εq =
Eq(
∑q

i=1((pzi)
T (x− x̃))2) 1

2

Ek ‖pTx‖2
.

Then for each i ∈ {1, · · · , q} , we have the first-order bound

|(pzi)T (x− x̃)| ≤
∥∥g′i(A, b).(∆A,∆b)

∥∥
2
. (4.20)

Then using 4.1 we get

|(pzi)T (x− x̃)| ≤ ‖g′i(A, b)‖‖(∆A,∆b)‖.

Hence

εq ≤
Eq(
∑q

i=1 ‖g′i(A, b)‖2)
1
2 ‖(A, b)‖

Ek ‖pT x̃‖2
‖(∆A,∆b)‖
‖(A, b)‖ .
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Since, with the notation of Section 4.2.2, we have

∀(∆A,∆b) ∈ R
m×n × R

m,

∥∥pTx− pT x̃
∥∥

2

‖pTx‖2
≤ κ(rel)

g,F (A, b)
‖(∆A,∆b)‖
‖(A, b)‖

then we will consider that

ψ(q) =
Eq(
∑q

i=1 κgi,F (A, b)2)
1
2 ‖(A, b)‖

Ek ‖pT x̃‖2
(4.21)

is an estimate of κ
(rel)
g,F (A, b) , each κgi,F (A, b) being computed using (4.14).

From g′i(A, b).(∆A,∆b) = zi
T g′(A, b).(∆A,∆b) we get

‖g′i(A, b)‖ = max
(∆A,∆b)

|g′i(A, b).(∆A,∆b)|
‖(∆A,∆b)‖ = max

(∆A,∆b)

|zT
i g

′(A, b).(∆A,∆b)|
‖(∆A,∆b)‖

and Cauchy-Schwarz yields

‖g′i(A, b)‖ ≤
∥∥zT

i

∥∥
2

max
(∆A,∆b)

‖g′(A, b).(∆A,∆b)‖2
‖(∆A,∆b)‖ = κg,F (A, b).

Then from (4.21) it is straightforward that

ψ(q) ≤ √qEq

Ek
κ

(rel)
g,F (A, b).

Contrary to the result of Proposition 3, the expected value of ψ(q) may not be an

upper bound of κ
(rel)
g,F (A, b) because of the first-order approximation (4.20). This is the

reason why we think that φ(q) should be preferred.

4.5 Numerical experiments

All experiments were performed in Matlab 6.5 using a machine precision 2.22 · 10−16 .

4.5.1 Examples

For the examples of Section 4.2, we compute the partial condition number using the
formula given in Theorem 9.
In the first example we have

A =




1 1 ε2

ε 0 ε2

0 ε ε2

ε2 ε2 2




and we assume that only A is perturbed. If we consider the values for L that are


1 0
0 1
0 0


 and L = (0, 0, 1)T then we obtain partial condition numbers κ

(rel)
g,F (A) that
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are respectively 1024 and 1.22 , as expected since there is 50% relative error on x1 and
x2 and there is no error on x3 .

In the second example where A is the 10 − by − 4 Vandermonde matrix defined by

Aij = 1
(10+i)j−1 and only b is perturbed, the partial condition numbers κ

(rel)
g,F (b) with

respect to each component x1, x2, x3, x4 are respectively 4.5 · 102, 2 · 104, 3 · 105, 1.4 · 106

which is consistent with the error variation given in Section 4.2 for each component.

4.5.2 Average behaviour of the statistical estimate

We compare here the statistical estimate φ(q) described in the previous section with the
partial condition number obtained via the exact formula given in Theorem 9. We suppose
that only A is perturbed and then the partial condition number can be expressed as

κ
(rel)
g,F (A) . We use the method described in [81], also used in [22], in order to construct

test problems [A, x, r, b] = P (m,n, nr, l) with

A = Y

(
D
0

)
ZT ∈ R

m×n, Y = I − 2yyT , Z = I − 2zzT ,

where y ∈ R
m and z ∈ R

n are random unit vectors and D = n−ldiag(nl, (n−1)l, · · · , 1) .

x = (1, 22, · · · , n2)T is given and r = Y

(
0
c

)
∈ R

m is computed with c ∈ R
m−n

random vector of norm nr . The right-hand side is b = Y

(
DZx
c

)
. By construction,

the condition number of A and D is nl .
In our experiments, we consider the matrices

A =

(
A1 E′

E A2

)
and L =

(
I
0

)
,

where A1 ∈ R
m1×n1 , A2 ∈ R

m2×n2 , L ∈ R
n×n1 , m1 +m2 = m , n1 + n2 = n , and E

and E′ contain the same element ep which defines the coupling between A1 and A2 .
The matrices A1 and A2 are randomly generated using respectively P (m1, n1, nr1 , l1)
and P (m2, n2, nr2 , l2) .

For each sample matrix, we compute in Matlab:

1. the partial condition number κ
(rel)
g,F (A) using the exact formula given in Theorem 9

and based on the singular value decomposition of A ,

2. the statistical estimate φ(3) using three random orthogonal vectors and computing
each κgi,F (A, b), i = 1, 2, 3 with the R factor of the QR decomposition of A .

These data are then compared by computing the ratio

γ =
φ(3)

κ
(rel)
g,F (A)

.

Table 4.4 contains the mean γ and the standard deviation s of γ obtained on 1000
random matrices with m1 = 12, n1 = 10,m2 = 17, n2 = 13 by varying the condition
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numbers n1
l1 and n2

l2 of respectively A1 and A2 and the coupling coefficient ep . The
residual norms are set to nr1 = nr2 = 1 . In all cases, γ is close to 1 and s is about 0.3 .

The statistical estimate φ(3) lies within a factor 1.22 of κ
(rel)
g,F (A) which is very accurate

in condition number estimation. We notice that in two cases, φ(3) is lower than 1 . This
is possible because Proposition 3 shows that E(φ(3)2) is an upper bound of κg,F (A)2 but
not necessarily φ(3)2 .

Table 4.4: Mean and standard deviation of the ratio between statistical and exact condition
number of LTx .

condition ep = 10−5 ep = 1 ep = 105

l1 l2 γ s γ s γ s

1 1 1.22 2.28 · 10−1 1.15 2.99 · 10−1 1.07 3.60 · 10−1

1 8 1.02 3.19 · 10−1 1.22 3.05 · 10−1 1.21 3.35 · 10−1

8 1 9 · 10−1 3 · 10−1 1.13 3 · 10−1 1.06 3.45 · 10−1

8 8 9.23 · 10−1 2.89 · 10−1 1.22 2.95 · 10−1 1.18 3.33 · 10−1

4.6 Estimates vs exact formula

We assume that the R factor of the QR decomposition of A is known. We gather in
Table 4.5 the results obtained in this chapter in terms of accuracy and flops counts for the
estimation of the partial condition number for the LLSP.

Table 4.5: Comparison between exact formula and estimates for κg,F (A, b) .

κg,F (A, b) flops accuracy

exact formula 12n3 exact
n� m

estimate f(A, b) 2kn2 f(A,b)√
3
≤ κg,F (A, b) ≤ f(A, b)

k � n

stat. estimate φ(q) 2qn2 φ(q)

α
√

k
≤ κg,F (A, b) ≤ αφ(q)

q � k Pr ≥ 1− α−q for α > 10

Table 4.6 gives the exact value and the estimates of the partial condition number (with
their computational cost) in the particular situation where

m = 1500, n = 1000, k = 50,

A1 =

(
2 0
0 1

)
, L1 =

(
3 0
0 1

)
,

A =




A1 0
0 In−2

0 0


 and b =

1√
2
(2, 1, · · · , 1)T , L =




L1 0
0 Ik−2

0 0


 .
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We see here that the statistical estimates may provide information on the condition num-
ber using a very small amount of floating-point operations compared with the two other
methods.

Table 4.6: Exact value and estimates of the partial condition number for a particular
example.

Computed quantity κ
(rel)
g,F (A, b) f(A, b)

‖(A,b)‖F

‖LT x̃‖2
φ(q)

‖(A,b)‖F

‖LT x̃‖2

Obtained value 2.09 · 102 2.18 · 102 11.44 · 102

Flop count (×106) 12,000 100 6

4.7 Conclusion of Chapter 4

We have shown the relevance of the partial condition number for test cases from parameter
estimation. This partial condition number evaluates the sensitivity of LTx where x is
the solution of an LLSP when A and/or b are perturbed. It can be computed via a closed
formula, an estimate of correct order of magnitude or a statistical estimate. The choice will
depend on the size of the LLSP and on the needed accuracy. The closed formula requires
O(n3) flops and is affordable for small problems only. The estimates will be preferred for
larger problems especially if k � n since their computational cost is in O(n2) .

The partial condition number defined in this chapter can be very useful for the GOCE
application. On the one hand, the computed solution sometimes includes internal variables
that are inherent in instruments or in the mission. These variables do not correspond to
gravity field coefficients and must not be considered when estimating the condition number
of the LLSP solution. On the other hand, the polar gap problem due to the non-polar orbit
implies an observability problem at the poles. It is observed that this effect may cause
numerical instabilities that affect more particularly some gravity field parameters [83].
These coefficients may be computed with much less accuracy than others and it could be
worth to compute different partial condition numbers in that case. The partial condition
number has not been implemented yet in the parallel solver. It will be tested in a further
step, first in a serial version, when the GOCE data will be available.
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Conclusion

This thesis proposes computational and numerical tools that help in solving the large lin-
ear least squares problems encountered in gravity field computations.

Our work contributes to the research in two areas which are in dense parallel com-
puting and in linear least squares error analysis. The distributed packed storage format
defined in this thesis enables us to save about half the memory for in-core calculations
because it takes advantage of the symmetric or triangular structure of the matrices. This
possibility is not yet available in the standard parallel libraries for dense linear algebra.
This distributed packed storage can be easily extended to other linear algebra parallel
computations. Moreover, we have established closed formulae and have proposed sharp
and statistical estimates in order to compute the condition number of a linear function of
a least squares solution.

This thesis is also of practical interest for computing efficiently and accurately the
gravity field parameters coming from GOCE observations. An operational parallel solver
based on the normal equations approach was integrated into the GINS solver from the
French Space Agency. Also, a parallel distributed QR solver using our distributed packed
storage scheme was implemented in a research version. When the GOCE data will be avail-
able, the users will have the choice between the two methods, depending on the required
accuracy. This choice will involve a trade off between computational cost and accuracy
(normal equations vs QR factorization) and also between memory and performance for
large processor counts (packed implementation vs existing libraries). Because of the par-
tial condition number proposed in Chapter 4, physicists will have more information about
the sensitivity of the physical problem.

Subsequent to this thesis there are some research directions that deserve to be inves-
tigated:

- The performance tuning performed throughout this thesis was often based on empir-
ical models. The selection of the algorithm and the choice of the parameters strongly
depend on the platform and on the implementation of the parallel libraries on these
platforms. Future work could consist in studying models and automatic tools for
algorithm tuning and selection in a parallel distributed environment.

- In order to also handle the huge complex linear systems encountered in electromag-
netics (see Appendix), the packed storage described in Chapter 3 could be generalized
to out-of-core calculations.
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- Some further tracks related to the results of Chapter 4 would be interesting to follow.
We could investigate extending our results to componentwise condition numbers. We
could also perform a study on backward error analysis for the partial solution of an
LLSP. When applied to linear systems, a first application of this “partial” backward
error could be the validation of the averaging process used in electromagnetics with
the Radar Cross Section (see Appendix) where the computed quantities are of the
form pTA−1p .

- Regarding the application to GOCE, a next step would be the use of the QR parallel
solver described in Chapter 3 in an operational mode for GOCE calculations. It could
be also useful to realize a parallel implementation of the partial condition number
studied in Chapter 4. Regularization techniques for ill-posed problems are only
mentioned in this thesis. They deserve a more detailed study for solutions obtained
via the QR approach (e.g L-curves [60]).
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Appendix: application to

electromagnetism

Motivation

In recent years, there has been a significant amount of work on the simulation of elec-
tromagnetic wave propagation phenomena, addressing various topics ranging from radar
cross section to electromagnetic compatibility, to absorbing materials, and antenna de-
sign. To address these problems the Maxwell equations are often solved in the frequency
domain [31, 97]. The discretization by the Boundary Element Method (BEM) results in
linear systems with dense complex symmetric matrices [30, 77]. With the advent of par-
allel processing, solving these equations via direct methods has become viable for large
problems and the typical problem size in the electromagnetics industry is on the increase.
Nowadays, the usual problem size is a few tens of thousands. We may notice that there is
no efficient parallel solver based on compact storage for symmetric dense complex matrices
suited for the modelling of electromagnetic scattering and running on moderate processor
configurations (less than 32 processors).
The numerical simulations we are interested in are performed in a daily production mode
by the Electro-Magnetism and Control (EMC) Project at CERFACS.

We propose to use the parallel distributed Cholesky factorization described in Chap-
ter 2 in order to solve the large, dense and symmetric linear systems in complex arithmetic
resulting from boundary-element formulations for the solution of the 3D-Maxwell’s equa-
tions. Many of these applications are still exploiting direct methods like LU (or sometimes
LDLT ) factorization [2, 14].

By extending the factorization technique that we developed in real arithmetic to com-
plex arithmetic, we save 50% of the storage compared with standard software considered
in [2, 14]. Moreover, the computational cost of a U TU factorization is half that of a LU

factorization ( n3

3 instead of 2n3

3 and with complex operations). Note that a LDLT

factorization with Bunch-Kauffman diagonal pivoting [50, p. 169] could have also be
used but, as shown in [15], if there is no need for pivoting, a U TU factorization is as
accurate and faster. A particular class of complex matrices of the form A = B + iC
with B and C both symmetric positive definite is mentioned in [61, p. 209] as having a
normwise backward stable LU factorization without pivoting. Although the computations
performed by the EMC project never required any pivoting, we could not justify the fact
that the matrices resulting from BEM modelling are of the type described above. The
properties of these matrices will need further investigations. However, in order to improve
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the accuracy and stability of our solver, we implemented, similarly to [75], an iterative
refinement functionality [61, p. 232]. In pratice, we did not need to use this possibility in
our experiments.

Our solver enables us to switch the data type easily and to replace the LAPACK rou-
tine DPOTRF (that factors diagonal blocks) by a routine performing unblocked complex
UTU factorization. Even if this routine is less efficient than the corresponding LAPACK
routine ZPOTRF (which cannot be used here because it provides a UHU factorization),
this has no significant effect on the factorization time since the number of operations in-
volved in factorizing the diagonal blocks represent a very small part of total operations.

Numerical results

Experiments were conducted on eight processors of the HP-COMPAQ Alpha Server from
CERFACS. The selected geometry is an aircraft with a mesh size of 18, 264 represented in
Figure 4.1. The observed elapsed times were 762s for our U TU factorization and 1, 310s
for the ScaLAPACK LU factorization used in the code CESC [14] from the CERFACS

EMC Project. We computed the corresponding scaled residual ‖Ax̃−b‖
‖b‖ and we obtained

2.75 · 10−14 (for 64-bit double precision calculation). Since the physicists require a scaled
residual of order 10−6 , iterative refinement was not activated.

Figure 4.1: Mesh of aircraft test example for electromagnetism calculation.

Another validation performed by physicists consists in plotting the Radar Cross Sec-
tion curve that represents the response of the object to the wave. Figure 4.2 represents the
RCS curve for the aircraft depicted in Figure 4.1. We notice on the RCS that both curves
coincide and this complies with the requirements of the physicists. However, the RCS can
be viewed as an averaging process on the components and it does not fully guarantee the
reliability of the solution. Thus it cannot replace the computation of the scaled residual
‖Ax̃−b‖

‖b‖ that is needed to warn (or confirm) the numerical quality of the computed solu-
tion.
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Even if our algorithm involves half the number of operations required for an LU fac-
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Figure 4.2: Radar Cross Section.

torization, we do not obtain a factorization time that is exactly half that of a LU. This
relatively poor performance of a Cholesky factorization compared to a LU factorization
can be explained by the fact that the ScaLAPACK LU factorization does not involve twice
the number of message exchanges as our Cholesky factorization. In fact, at each step of
the algorithm, the Cholesky factorization performed either by ScaLAPACK or our sym-
metric solver involves two communications as opposed to three for the ScaLAPACK LU.
To illustrate this, we show in Table 4.7 the ratio between factorization times obtained
by ScaLAPACK LU and our solver. These results have been obtained in complex arith-
metic and the matrix size depends on the number of processors with the same rule of
isogranularity detailed in Section 2.2.3 but taking here n1 = 6, 600 (corresponding to a
constant storage of 700 Mbytes per processor for ScaLAPACK LU and 350 Mbytes for
our left-looking solver). We notice that the performance ratio decreases when the number
of processors grows and thus when there is a bigger impact of the communication on the
global performance. We obtain similar ratios when we compare performance of ScaLA-
PACK LU with that of ScaLAPACK Cholesky. Similar behaviour was observed by [33].

Table 4.7: Performance ratio between LU and U TU factorization (HP-COMPAQ Alpha).

nb procs size LU ScaLAPACK/Our solver

1 6600 1.95

2 9334 1.91

4 13200 1.81

8 18668 1.72

16 26400 1.62
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Summary

The parallel distributed solver presented in Chapter 2 has been extended to solve efficiently
complex linear systems encountered in electromagnetism. It enables us to save about half
the memory required by the existing software. The solutions obtained meet the precision
needed by the physicists and we can solve problems of a size corresponding to the target
applications.
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