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Abstract. We consider path multicoloring problems, in which one is
given a collection of paths defined on a graph and is asked to color
some or all of them so as to optimize certain objective functions. Typ-
ical objectives are: (a) the minimization of the average, over all edges,
of the maximum-multiplicity color when the number of colors is given
(MinAvgMult-PMC), (b) the minimization of the number of colors
when the maximum multiplicity for each edge is given (Min-PMC), or
(c) the maximization of the number of colored paths when both the
number of colors and a maximum multiplicity constraint for each edge
are given (Max-PMC). Such problems also capture edge multicoloring
variants (such as MinAvgMult-EMC, Min-EMC, and MaxEMC) as
special cases and find numerous applications in resource allocation, most
notably in optical and wireless networks, and in communication task
scheduling.
Our contribution is two-fold: On the one hand, we give an exact poly-
nomial-time algorithm for Min-PMC on spider networks with even ad-
missible color multiplicities on each edge. On the other hand, we present
an approximation algorithm for MinAvgMult-PMC in star networks,
with a ratio strictly better than 2; our algorithm uses an appropriate
path orientation. We also show that any algorithm which is based on
path orientation cannot achieve an approximation ratio better than 7
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Our results apply to the corresponding edge multicoloring problems as
well.

1 Introduction

In the class of path coloring problems, one is given a set of simple paths on a
graph and is asked to assign a color to each of them so as to optimize a cer-
tain objective function. Path coloring problems have been studied extensively in
the context of routing and wavelength assignment in optical networks, as well
as in several other applications varying from compiler optimization to vehicle
scheduling. In standard path coloring problems, edge-intersecting paths must
receive distinct colors. In a meaningful generalization, path multicoloring prob-
lems were defined and studied in [18, 21, 9, 1]. Note that, by the term ‘path mul-
ticoloring’, it is meant that edge-intersecting paths may receive identical colors.
This is in contrast to standard path coloring.

Various optimization objectives have been studied in the context of path
multicoloring. A usual one is to minimize the number of colors used, under the
assumption that, for each edge, an upper bound is given on the maximum color
multiplicity allowed on that edge, i.e., on the maximum number of paths using
this edge that can receive the same color. We will refer to this upper bound as
the admissible color multiplicity for that edge. This problem is called Minimum
Path Multicoloring (Min-PMC) and it is formally defined as follows:

Problem 1 (Minimum Path MultiColoring, Min-PMC).
Instance: 〈G,P , µ〉, where G = (V,E) is an undirected graph, P is a set of
undirected simple paths on G, and µ : E → N is a function that maps each edge
to the admissible color multiplicity on that edge.
Feasible solution: an assignment of one color from {1, . . . , w} to each path in P ,
where w is some positive integer, so that on every edge e, each color is used by
at most µ(e) paths.
Goal : minimize the number of colors w.

A well-studied variant [21, 9, 25, 1] assumes a bound on the number of avail-
able colors and asks for a coloring such that the sum of edge multiplicities (equiv-
alently, average edge multiplicity) over all edges of the graph is minimized. Here,
the multiplicity of an edge refers to the maximum number of paths of the same
color that share that edge, with respect to a certain coloring of paths. We will call
this latter problem Minimum Average Multiplicity Path Multicoloring
(MinAvgMult-PMC). It is formally defined as follows:

Problem 2 (Minimum Average Multiplicity Path MultiColoring,
MinAvgMult-PMC).
Instance: 〈G,P , w〉, where G = (V,E) is an undirected graph, P is a set of undi-
rected simple paths on G, and w ∈ N is the number of available colors.
Feasible solution: a coloring of P with w colors.
Goal : minimize

∑

e∈E µ(e), where µ(e) is the multiplicity of the maximum-
multiplicity color on e.



Note that, in optical network terminology,MinAvgMult-PMC corresponds
to minimizing the number of parallel fiber links needed to accommodate a given
set of requests with a given set of wavelengths, assuming that no wavelength col-
lisions are allowed within the same fiber. A wavelength collision occurs when two
communication requests are routed on the same fiber and modulated on the same
wavelength. Other known variants include maximizing the number of satisfied
requests, given constraints on both the number of colors and the admissible color
multiplicities of edges (Maximum Path Multicoloring (Max-PMC)), and
minimizing the maximum edge multiplicity. The formal definition of Max-PMC
follows:

Problem 3 (Maximum Path MultiColoring, Max-PMC).
Instance: 〈G,P , µ, w〉, where G = (V,E) is an undirected graph, P is a set of
undirected simple paths on G, µ : E → N is a function that maps each edge
to the maximum admissible color multiplicity on that edge, and w ∈ N is the
number of available colors.
Feasible solution: a coloring of a subset Q ⊆ P with w colors, so that on every
edge e, each color is used by at most µ(e) paths.
Goal : maximize |Q|.

Apart from the optical networks setting, the above problems find applica-
tions in scheduling communication requests or tasks in generic networks. In such
scenarios, colors represent time slots and edge multiplicity represents congestion
on the corresponding network link, assuming that requests receiving the same
color are served simultaneously. Therefore, Min-PMC is the problem of min-
imizing the number of time slots, given the available bandwidth per link, and
MinAvgMult-PMC corresponds to minimizing the average congestion given
the number of available time slots.

Yet another interesting application comes through the known equivalence of
path (multi)coloring in stars to edge (multi)coloring in general graphs. It is note-
worthy that this equivalence is approximation-preserving. Therefore, one defines
the corresponding Min-EMC, MinAvgMult-EMC and Max-EMC problems
by replacing the path intersection relation with edge incidence to the same ver-
tex; (vertex) multiplicity now refers to the number of edges that are incident to
a vertex and receive the same color. Note that Min-EMC has been considered
by Coffman et al. [15] under the name ‘f -coloring’ as a problem of scheduling file
transfers among servers that can support a certain number of parallel transfers
each, in a minimum number of time slots. Drawing on their approach, we con-
sider MinAvgMult-EMC as a way to address the following problem: given a
graph where edges represent file transfer requests, and assuming that the num-
ber of requests that can be served simultaneously by a particular node depends
on the number of available ports, find a scheduling of the requests within a given
number time-slots so as to minimize the total number of ports needed to satisfy
all requests. Thus, solving MinAvgMult-EMC can help a network administra-
tor in allocating efficiently the necessary number of ports, or a network designer
who has access (in advance) to demand statistics among the nodes in designing
a more efficient network.



Edge (multi)-coloring problems have a self-evident connection to channel as-
signment problems in multi-channel wireless networks [16]. For example, different
colors may represent distinct communication channels and it is possible to have
parallel transmissions from the same transceiver, provided that distinct chan-
nels are used. Color multiplicity in such consdiretions can model the number of
time frames needed to complete a given set of communication tasks. Therefore,
solving MinAvgMult-EMC amounts to minimizing the average time per node,
while Min-EMC corresponds to minimizing the number of channels needed to
accomplish all tasks, given the time availability of each particular component of
the network. Finally, Max-EMC describes the situation where both the num-
ber of channels and the desired or available time per node are provided and the
goal is to maximize the number of served communication requests. Under an
orthogonal perspective, in a single-channel model color multiplicity may repre-
sent the available bandwidth, whereas colors may stand for time frames. Under
this approach, solving Min-EMC can help reduce the maximum time needed,
MinAvgMult-EMC minimizes the average bandwidth used, and Max-EMC
aims at maximizing the number of satisfied requests, given the bandwidth per
node and the time availability. For other, more specific applications of edge mul-
ticoloring to wireless channel assignment see [14, 4] and references therein.

It makes sense to consider both undirected and directed versions of the above
problems. In this paper, we provide results mainly for the undirected versions.
Nonetheless, we will make use of some known results for directed versions of the
problems. Throughout the text, when we refer to a particular problem, we will
refer by default to its undirected version and we will state it explicitly whenever
we refer to the directed version.

Related work. Path coloring and path multicoloring problems have been exten-
sively studied during the last twenty years (see e.g. [24, 8, 7, 21, 9, 19, 20, 5, 2] and
references therein). All variants are NP-hard in general graphs and even in simple
topologies, e.g. stars and rings, whereas they can be solved optimally in chains.
In addition, most variants are hard to approximate in general graphs within a
constant factor. However, this is possible in stars and rings, and in some other
simple topologies.

The Min-PMC problem was defined independently in [9] (under the name
Min-Colors-PMC) and in [6], where it was proved to admit a 4-approximation
in trees. A (3/2)-approximation for stars was proposed in [19] and an asymptotic
(9/8)-approximation can be obtained directly from the equivalence of Min-PMC
in stars and the Min-EMC problem in general graphs (aka f -coloring) and the
result of Coffman et al. for f -coloring [15]. In [22], algorithms for Min-PMC
in spiders and caterpillars were proposed5, achieving approximation ratios of 2
and 3 respectively. In contrast, it was shown in [22] that the directed version of
Min-PMC can be solved exactly in spiders.

5 A spider graph is a tree with at most one node of degree strictly greater than 2. A
caterpillar is a tree in which all nodes of degree 2 or more lie on the same simple
path.



A more recent result of Bian and Gu [5] states that Min-PMC can be solved
exactly in spiders with uniform and even admissible color multiplicities (here,
uniform stands for ‘the same on each edge of the graph’). In addition, they
show that, for stars, the uniformity requirement can be removed and, therefore,
Min-EMC can also be solved optimally in graphs where the admissible color
multiplicity is e ven. However, Bian and Gu also prove that, in the case of odd
admissible color multiplicities, the situation is not similar: the problem becomes
NP-hard.

Regarding MinAvgMult-PMC, the problem was defined in [21], and inde-
pendently in [25]. In [21], an exact algorithm for chain graphs was presented,
as well as 2-approximation algorithms for rings and stars. These algorithms
were later extended in [20] to cover the generalized version of MinAvgMult-
PMC with non-uniform multiplicity costs. To the best of our knowledge, the
MinAvgMult-EMC problem has not been studied as such so far, hence the
best known result is the 2-approximation due to the approximation preserving
equivalence with MinAvgMult-PMC in stars, as explained previously.

Results for Max-PMC appear in [9], where a 2.54-approximation for trees
is proposed, in [23], where the authors give an exact algorithm for chains and
2-approximation algorithm for rings and stars, and in [5], where they provide a
1.58-approximation algorithm for the problem in spiders and an exact algorithm
for spiders with uniform and even admissible color multiplicity.

Finally, path multicoloring problems were also studied in a non-cooperative
setting in [2], where the social cost depends on the maximum color multiplicity.
A more general framework for studying path multicoloring under selfish consid-
erations was proposed in [3].

Our results. In this work, we take some steps towards coping with the path and
edge multicoloring problems described above.

Our first contribution is that we manage to show that Min-PMC can be
solved optimally in spiders with non-uniform even admissible color multiplicity
on each edge. This represents an improvement with respect to the result of Bian
and Gu [5], as it removes the uniformity requirement. As a byproduct, we obtain
an exact algorithm for Max-PMC in such graphs, i.e., spiders with non-uniform
even color multiplicity. This latter result holds for any number of given colors.

We then turn our focus toMinAvgMult-EMC (equivalent toMinAvgMult-
PMC in stars) and start by rewriting an algorithm of [21] in edge multicoloring
terms. This algorithm, which achieves an approximation factor of 2, has a locally
near-optimal behaviour: the maximum multiplicity at each node differs from the
optimal by at most one. We take advantage of this property and first show that
MinAvgMult-EMC can be solved exactly if the number of available colors
equals 2. Next, we further fine-tune the algorithm, by adding a random orienta-
tion step together with a derandomization process, in order to come up with an
algorithm having an approximation ratio of 2 − 1

2w , where w is the number of
available colors. Since the ratio of 2 of the algorithm in [21] is tight, our results
represent the first, to the best of our knowledge, algorithm with an approxima-



tion ratio strictly better than 2, for both MinAvgMult-EMC in general graphs
and MinAvgMult-PMC in stars.

We conclude by proving a 7
6 lower bound for all orientation-based algorithms

for MinAvgMult-EMC, i.e., for algorithms that attempt to solve the (unori-
ented) edge (or path) multicoloring problem by computing an orientation of the
given multigraph (or set of paths) and then applying the algorithm from [21].

Remark 1 (Notation). Throughout the paper, we will use the notation Le for
the load of edge e with respect to a given path set, i.e., the number of paths
which contain edge e. Also, dv will denote the degree of a node v in the context
of an undirected graph, whereas for directed graphs we will use dinv (resp. doutv )
for the in-degree (resp. out-degree) of node v.

Some of the proofs are omitted due to lack of space and they are deferred to
the full version of the paper.

2 Min-PMC and Max-PMC on Spiders

In this section, we present exact algorithms for Min-PMC and Max-PMC on
spiders with non-uniform even admissible color multiplicity.

2.1 Minimizing the number of colors

With respect to the Min-PMC problem in any graph, one observes immediately
the following lower bound:

Fact 1. No Min-PMC instance can be colored with fewer than wlb = maxe

⌈

Le

µ(e)

⌉

colors.

It is known [24, 8] that Min-PMC is NP-hard when G is a star and µ(e) = 1
for all edges. Bian and Gu [5] prove that for every odd k, Min-PMC is NP-hard
when G is a star and µ(e) = k for all edges. They also give a polynomial-
time algorithm for the case where G is a spider and every leg of the spider has
uniform and even admissible color multiplicity. We extend their algorithm in
order to remove the uniformity requirement and we show that Min-PMC is
polynomial-time solvable on spiders with even admissible color multiplicity.

We reduce the problem to the directed version of Min-PMC, which is known
to be polynomial-time solvable on spiders [22]. Formally, the directed version of
the problem is defined as follows:

Problem 4 (Directed Minimum Path MultiColoring, Dir-Min-PMC).

Instance: 〈G, ~P , µ〉, where G = (V,E) is an undirected graph, ~P is a set of
directed simple paths on G, and µ : E → N is a function that maps each edge
to the admissible color multiplicity on that edge for each direction.
Feasible solution: a coloring of ~P so that on every edge e, each color is used by
at most µ(e) paths in each direction.
Goal : minimize the number of colors.



Fig. 1. Original Min-PMC instance (left) and instance with added dummy paths
(right).

Fig. 2. The corresponding graph H (left) and an orientation of the closed paths in its
Euler partition (right).

Fig. 3. The Dir-Min-PMC instance.

In order to perform the reduction, we need to decide on a direction for each
undirected path in the original Min-PMC instance 〈G,P , µ〉. We accomplish
this by adding unit-length dummy paths on edges with odd load, and then
considering the multigraph H which has the same node set as G and contains
one edge (u, v) for each path with endpoints u and v. It can be shown that
the addition of dummy paths ensures that all nodes of H have even degree.
Therefore, the Euler partition algorithm of [10] will partition the edges of G
into closed paths. We then perform an arbitrary orientation of each closed path
in the Euler partition. This assigns a direction to each edge of H , which in
turn corresponds to a direction for each path in P and for each dummy path.
Figures 1–3 illustrate the reduction.

Theorem 1. Algorithm 1 is an exact polynomial-time algorithm for Min-PMC
on spiders with even admissible color multiplicity.



Algorithm 1 An exact algorithm forMin-PMC in spiders with even admissible
color multiplicity

Input: an instance 〈G,P , µ〉 of Min-PMC, where G = (V,E) is a spider and µ(e) is
even for all e

Output: an optimal solution using wlb colors
1: For any edge with odd load, add one unit-length dummy path on that edge. Let

P ′ be the resulting set of paths.
2: Construct the multigraph H = (V,E′), where E′ contains one edge (u, v) for each

path in P ′ with endpoints u and v.
3: Use the algorithm EP in [10] to find an Euler partition of H . Orient each closed

path of the Euler partition in an arbitrary manner, thus obtaining a directed multi-
graph ~H . Assign a direction to each path in P ′ according to the orientation of the
corresponding edge in ~H, thus obtaining a set ~P ′ of directed paths on G.

4: Find an optimal coloring c of theDir-Min-PMC instance 〈G, ~P ′, µ′〉, where µ′(e) =
µ(e)
2

for all e, using the algorithm in [22, Theorem 6].
5: Return the coloring c restricted to the original paths in P .

2.2 Maximizing the number of satisfied requests

A corollary of Theorem 1 is that the Max-PMC problem is also optimally
solvable in polynomial time on spiders with (non-uniform) even admissible color
multiplicity.

In [5], Bian and Gu propose a deterministic polynomial-time algorithm for
Max-PMC on spiders with uniform even admissible color multiplicity, which
works as follows:

1. First, it computes a maximum-size subset Q of P such that every edge e
of the spider is used by at most wµ(e) paths in Q. This is accomplished by
solving optimally an instance of the Call Control problem on spiders, via an
algorithm developed in [5].

2. Then, Q is colored optimally with w colors using the algorithm for Min-
PMC on spiders with uniform even admissible color multiplicity.

By plugging in Algorithm 1 instead in step 2, we can solveMax-PMC on spiders
with non-uniform admissible color multiplicity. Thus, we have the following:

Theorem 2. There exists an exact polynomial-time algorithm for Max-PMC
on spiders with even admissible color multiplicity.

3 Reducing Average Color Multiplicity on Stars

In this section, we present our results on the approximability of MinAvgMult-
PMC on stars. We will only be interested in MinAvgMult-PMC instances in
which all paths in P are of length 2. In view of the following proposition, we
can essentially ignore paths of length 1 if we ensure that our algorithm produces
solutions whose cost is at most a constant times OPTLB(I) =

∑

e∈E

⌈

Le

w

⌉

(a
lower bound on the cost of any optimal solution of I):



Proposition 1. Let A be a polynomial-time algorithm for MinAvgMult-PMC
instances with paths of length 2 which, for any such instance I, produces a solu-
tion with cost SOLA(I) ≤ α ·OPTLB(I), where α ≥ 1 is a constant. Then, there
exists a polynomial-time algorithm B with the same approximation guarantee for
general instances I ′ of MinAvgMult-PMC.

It has been pointed out before in the literature [11, 8] that there exists an
easily computed bijection between pairs (G,P), where G is a star and P is a set
of paths of length 2 on G, and multigraphs G′, such that the conflict graph of P
is isomorphic to the line graph of G′. Therefore, MinAvgMult-PMC can be
equivalently cast as the following problem:

Problem 5 (Minimum Average Multiplicity Edge MultiColoring,
MinAvgMult-EMC).
Instance: 〈G,w〉, where G = (V,E) is an undirected multigraph and w ∈ N is
the number of available colors.
Feasible solution: a coloring of E with w colors.
Goal : minimize

∑

v∈V µ(v), where µ(v) is the multiplicity of the maximum-
multiplicity color over all edges incident to v.

Fact 2. The multiplicity of the maximum multiplicity color incident to node v
is at least

⌈

dv

w

⌉

, thus the minimum cost for any MinAvgMult-EMC instance

is at least
∑

v∈V

⌈

dv

w

⌉

.

For any fixed w ≥ 3, MinAvgMult-EMC is NP-hard via a straightfor-
ward reduction from the decision version of the classical edge coloring problem
on w-regular graphs, which is known to be NP-complete [13, 17]. Nomikos et
al. [21] propose a 2-approximation algorithm which we restate as Algorithm 2 in
MinAvgMult-EMC terms (the algorithm was originally stated inMinAvgMult-
PMC terms). The analysis in [21] is tight, as there exists a family of instances
on which Algorithm 2 computes a solution with cost exactly twice the optimum:
{〈Ck, w〉 : k ≥ 2 and w ≥ 2}, where Ck is the ring graph with k nodes. Indeed,
if the directions assigned in step 1 are such that each node has in-degree 1 and
out-degree 1, then the resulting solution will have cost 2k, whereas the optimum
solution has cost k.

If we have only two available colors, the problem can be solved exactly in
polynomial time: The Euler partition algorithm in [10] computes a partition of
the edges of a multigraph into open and closed paths, with the property that
each vertex of odd degree is the end of exactly one open path, and each vertex
of even degree is the end of no open paths. Note, then, that if we color the edges
of each path of the Euler partition alternately with the two available colors, the
resulting coloring will have the property that the edges incident to each even-
degree node will be equipartitioned into two same-colored subsets, whereas the
edges incident to each odd-degree node will be partitioned into two same-colored
subsets whose sizes differ by exactly one. This implies that the cost incurred by
each node v will be exactly

⌈

dv

2

⌉

, thus the solution is optimal in view of Fact 2.
We have thus proved the following:



Algorithm 2 A 2-approximation algorithm for MinAvgMult-EMC [21]

Input: an instance 〈G,w〉 of MinAvgMult-EMC, G = (V,E)
Output: a 2-approximate solution
1: Assign an arbitrary direction to each edge of G.
2: For each v ∈ V , group its outv outgoing edges into

⌈

outv
w

⌉

groups of at most w

edges each, and let Vout denote the set of all groups of outgoing edges. Similarly,
for each v ∈ V , group its inv incoming edges into

⌈

inv

w

⌉

groups of at most w edges
each, and let Vin denote the set of all groups of incoming edges.

3: Construct the bipartite multigraph H = (Vout∪Vin, A), where for each edge in E, A
contains one edge joining its outgoing group to its incoming group. The maximum
degree of H is bounded by w.

4: Use an algorithm for edge coloring of bipartite multigraphs (e.g. [10]) to compute
an edge coloring of H with w colors.

5: Assign to each edge of G the color of the corresponding edge in H .

Theorem 3. There exists an exact polynomial-time algorithm for MinAvgMult-
EMC with two available colors.

3.1 An approximation algorithm with ratio strictly better than 2

We first show that if we assign random directions to the edges of a multigraph
with n nodes, then the resulting orientation will have, in expectation, at least
1
2w ·n nodes such that, if we subsequently execute steps 2-5 of Algorithm 2 on this
orientation, each of them will contribute the minimum possible cost to the cost of
the solution:

⌈

dv

w

⌉

. Then, we show how to derandomize this procedure in order to
obtain a deterministic algorithm for MinAvgMult-EMC with approximation
ratio at most

(

2− 1
2w

)

.
As a preliminary observation, consider the simplest conceivable randomized

algorithm forMinAvgMult-EMC, i.e. the one that assigns a random color with
uniform probability to each edge. Unfortunately, this algorithm performs quite
poorly in the following family of instances: The multigraph contains two nodes
with w parallel edges joining them, where w is the number of available colors.

As is well known [12], the maximum multiplicity color will appear Θ
(

logw
log logw

)

times with high probability, whereas the optimum cost is 2. This motivates us
to search for a randomized algorithm with a better performance guarantee.

Definition 1 (Locally optimal nodes). Let 〈G,w〉 be an instance of the

MinAvgMult-EMC problem, let ~G be an orientation of G, and let v be a node
of G. We say that v is locally optimal if the following condition holds:

(

dinv mod w = 0
)

∨
(

doutv mod w = 0
)

∨
(

(dinv mod w) + (doutv mod w) > w
)

The following lemma is implicit in the analysis in [21].

Lemma 1 ([21]). In any solution computed by Algorithm 2, each node v incurs
a cost of exactly

⌈

dv

w

⌉

if it is locally optimal with respect to the directions assigned

after step 1, or
⌈

dv

w

⌉

+ 1 if it is not locally optimal.



In other words, Algorithm 2 incurs an additional cost, with respect to the
lower bound of Fact 2, of exactly one for each non-locally-optimal node. The
existence of an algorithm that computed an orientation of G in which at least
some fraction of the nodes were guaranteed to be locally optimal would yield
an approximation algorithm for MinAvgMult-EMC with ratio strictly better
than 2. We now consider the algorithm that assigns a random direction to each
edge of G and then executes steps 2-5 of Algorithm 2.

Definition 2. S(d, w) denotes the set of integers i such that, if exactly i out
of d incident edges to a d-degree node are incoming and (d − i) incident edges
are outgoing, then the node is locally optimal assuming we have w colors.

Lemma 2. If d is a multiple of w, then S(d, w) = {i · w : 0 ≤ i ≤ d
w
}.

Lemma 3. If d = r · w + x, where 0 < x < w, then S(d, w) is exactly the set:
⋃r

i=0 {i · w + j : j ∈ {0, x, x+ 1, . . . , w − 1}} ∩ {0, 1, . . . , d}.

Lemma 4. Let 〈G,w〉 be an instance of MinAvgMult-EMC and let ~G be a
random orientation of G in which each edge receives each of the two possible
directions with probability 1

2 . The expected fraction of locally optimal nodes in ~G
is at least 1

2w .

Theorem 4. There exists a
(

2− 1
2w

)

-approximation algorithm for MinAvgMult-
EMC.

Proof. By Lemma 4, if we assign random directions to the edges of G, we get
at least 1

2w · n locally optimal nodes in expectation. This algorithm can be de-
randomized by a straightforward application of the method of conditional ex-
pectations. Indeed, if we assume that the orientation of a subset of the edges
has already been fixed, we can compute in polynomial time the probability that
a fixed node v of degree d will be locally optimal if we assign the rest of the
directions randomly, as follows: Assume that a of its incident edges have already
been oriented as incoming to v, and b of its incident edges have already been
oriented as outgoing from v. Then, the probability that the node will be locally
optimal is 1

2d−a−b ·
∑

s:s+a∈S(d,w)

(

d−a−b
s

)

.

Therefore, the algorithm which examines edges in an arbitrary order, and
to each edge assigns the direction which maximizes the expected number of
locally optimal nodes under the current partial orientation, runs in deterministic
polynomial time and produces an orientation with at least 1

2w ·n locally optimal
nodes. Taking also into account Lemma 1, this implies that, if we execute steps
2-5 of Algorithm 2 on this orientation, we will obtain a solution with cost SOL
that can be expressed as follows: (let V denote the set of nodes of G and O



Fig. 4. The graphs G1, G2, and G3, as defined in Section 3.2.

denote the set of locally optimal nodes)

SOL =
∑

v∈O

⌈

dv
w

⌉

+
∑

v∈V \O

(⌈

dv
w

⌉

+ 1

)

=
∑

v∈V

⌈

dv
w

⌉

+ |V \ O|

≤
∑

v∈V

⌈

dv
w

⌉

+

(

1−
1

2w

)

· |V | . (1)

If OPT is the cost of an optimal solution, then Eq. 1, Fact 2, and the observation
that OPT ≥ |V | yield: SOL ≤

(

2− 1
2w

)

·OPT. ⊓⊔

3.2 A lower bound for orientation-based algorithms

Let {Gi}i≥1 be the infinite family of graphs where G1 = K4, and Gi+1 is con-
structed by attaching to each degree-3 node of Gi a new cliqueK4 (by identifying
the degree-3 node of Gi to which the K4 is attached with one of the nodes of
the attached clique). Figure 4 illustrates the first few graphs in the family. For
every i ≥ 1, consider the instance Ii = 〈Gi, 3〉 of MinAvgMult-EMC.

A simple calculation reveals that the number of nodes ni in Gi is ni =
2 · (3i − 1). In particular, for i ≥ 2, the number of nodes of degree 3 in Gi

is n′
i = 4 · 3i−1, whereas the rest of the nodes have degree 6.
For every i ≥ 2, there exists a coloring of the edges of Gi, such that each

node v contributes exactly
⌈

dv

w

⌉

to the cost of the solution (Figure 5). By Fact 2,
this coloring is necessarily optimal. Therefore, the cost of the optimal solution
for Ii is: OPTi = n′

i + 2(ni − n′
i) =

8
3 · 3i − 4.

On the other hand, for i ≥ 2, for every orientation of Gi, out of every three
nodes of degree 3 which belong to the same K4 subgraph of Gi, at most two
will be locally optimal. Indeed, these nodes form a triangle in Gi, and thus any
orientation of the edges between them will result in at least one of the nodes
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3

2
2

1

3

Fig. 5. An optimal coloring of K4 with three colors. We obtain an optimal coloring
for Ii by repeating this coloring for every K4 clique contained in Gi.

having at least one outgoing and at least one incoming edge. Therefore, ev-
ery MinAvgMult-EMC algorithm which computes an orientation of the given
multigraph and then executes steps 2-5 of Algorithm 2, will compute a solution

for Ii with cost: SOLi ≥ 2 ·
n′

i

3 +
2n′

i

3 + 2 · (ni − n′
i) =

28
9 · 3i − 4.

By the calculations for OPTi and SOLi and letting i −→ +∞, we obtain:

Theorem 5. No MinAvgMult-EMC algorithm which computes an orienta-
tion of the given multigraph and then executes steps 2-5 of Algorithm 2 can have
an approximation ratio which is better than 7

6 .

4 Concluding Remarks

We gave exact algorithms for Min-PMC and Max-PMC on spiders with (non-
uniform) even admissible color multiplicity, thus extending the algorithms from [5]
which work only for spiders with uniform even admissible color multiplicity.

Furthermore, we gave an approximation algorithm for MinAvgMult-PMC
on stars with approximation ratio at most

(

2− 1
2w

)

. This improves a previous
algorithm from [21], which guarantees an approximation ratio of 2. Note that the
bound of 2 on the approximation ratio of the algorithm from [21] is tight. Having
said that, one could easily modify that algorithm to guarantee an approxima-

tion ratio of
(

2− 1
|E|

)

, where |E| is the number of edges of the star network.

However, from a practical standpoint, in most applications the number of col-
ors w represents a scarce network resource which needs to be utilized efficiently
(e.g., in particular in the context of optical networks, w represents the number
of available wavelengths per fiber, which is very limited due to technological
constraints), whereas the size of the network can grow unbounded. Therefore,
the approximation ratio of our algorithm represents a significant improvement
over the previous algorithms.

Finally, we have provided a lower bound of 7
6 on the approximation ratio of

any algorithm which computes an orientation of the edges of the given multi-
graph and then executes steps 2-5 of Algorithm 2. In view of the large gap
between this lower bound and the upper bound of Theorem 4, it makes sense to
try to improve the performance of the edge orientation algorithm. For example,
one could try to tweak the probabilities with which edges receive one of the two
directions, in order to increase the expected number of locally optimal nodes.
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