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Abstract. We study two variants of delivery problems for mobile robots
sharing energy. Each mobile robot can store at any given moment at most
two units of energy, and whenever two robots are at the same location,
they can transfer energy between each other, respecting the maximum
capacity. The robots operate in a simple graph and initially each robot
has two units of energy. A single edge traversal by an robot reduces its
energy by one unit and the robot can only perform such move initially
having at least one unit of energy. There are two distinguished nodes s
and t in the graph and the goal for the robots is to deliver the package
initially present on s to the node t. The package can be passed from
one robot to another when they are colocated. In the first problem we
study, the robots are initially placed at some given nodes of the graph
and the question is whether the delivery is feasible. We prove that this
problem is NP-complete. In the second problem, the initial positions of
the robots are not fixed but a subset of nodes H of the graph is given as
input together with an integer k, and the question is as follows: is there
a placement of k robots at nodes in H such that the delivery is possible?
We prove that this problem can be solved in polynomial time.

Keywords: computational complexity, energy sharing, delivery, mo-
bile robots, power-aware

1 Introduction

We consider algorithms for coordinated tasks performed by swarms of
small inexpensive robots. There has been a lot of research interest on
designing teams of simple robots that can perform a given task in collab-
orative fashion. The task we consider is the basic operation of moving an
object or a package from its source to its target destination by one or more
? Partially supported by National Science Centre (Poland) grant number
2015/17/B/ST6/01887 and the project ANR-ANCOR (anr-14-CE36-0002-01).



mobile robots. For example, the package could be a sample collected by a
robotic sensor that needs to be delivered to a base station for analysis. One
can imagine an automated postal delivery system where packages need to
be delivered between sources and destinations using teams of robots or
drones. We can model the sources and destinations as nodes of a graph
and the Delivery problem consists of moving a single package from its
source node to the target node. The main issue when using small robots
is that they have a restricted supply of energy (e.g. a battery) and thus, a
robot can move only a limited distance before running out of power. How-
ever, many small robots can cooperate to deliver a package from source
to destination. Assuming that the robots start from different nodes of
the graph, scheduling the moves of the robots for collaborative delivery
is known to be a challenging task. Indeed, it was shown by Chalopin et
al. [9] that even if the graph is a tree of n nodes, collaborative delivery
from single source to a single destination using k robots having energy B
each is NP-hard. Czyzowicz et al. [10] studied the problem when the robots
can share their energy, i.e. a robot may give its unused energy to another
robot. They showed that the problem can be easily solved in trees in poly-
nomial time, but it remains NP-hard in general graphs. For all the above
results, the parameters k and B have arbitrary (non-constant) values.
Note that collaborative delivery for a constant value of k can be trivially
solved by brute force manner in constant time. In this paper, we consider
the problem when B is a small constant but k can have arbitrary values.
This corresponds to the case of many small robots each operating with
low power batteries such that each robot can move only for a constant
number of steps in the graph. A robot with depleted energy can gather
the unused energy of any other robot that it meets. However, no robot
can have more than B units of energy at any time. Surprisingly, we show
that even when B = 2, the smallest constant for which the problem is
non-trivial, collaborative delivery is still NP-hard in general graphs. On
the other hand, we provide an optimal polynomial-time algorithm for col-
laborative delivery with robots having B = 2 if we are allowed to choose
the initial placement of robots among designated homebase nodes in the
graph. Note that if we are allowed to place robots on any node of the
graph, then there is a trivial optimal solution where all robots are placed
on the shortest s-t path at intervals of distance 2. At the other extreme,
if there is only one homebase node, then the solution is non-trivial.

Our Contributions. We completely solve the problem of collaborative
delivery for B = 2 when energy sharing is allowed. We define two versions
of the problem. In the first version of the problem called Collabora-
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tiveDelivery with Fixed Placement, the initial placement of robots (i.e.
the energy distribution is given as part of the problem). In the second ver-
sion of the problem called CollaborativeDelivery with Chosen Place-
ment, a set of homebase nodes is given and the algorithm may choose the
distribution of robots among the homebase nodes. We show that the first
version of the problem is strongly NP-hard, while the second version of the
problem admits a polynomial time solution and we present such a solution
strategy. Proofs are omitted due to space constraints and will appear in
the full version of the paper.

Related Work. Betke et al. [6] considered for the first time energy-
constrained robots in the context of exploration of grid graphs by a robot
who can return to its starting node for refueling. Awerbuch et al. [2] stud-
ied the same problem for general graphs. Duncan et al. [16] studied a
similar model where the robot is tethered to its starting position with
a rope of fixed length and they optimized the exploration time. Several
other papers have considered robots with limited energy, or the goal of
minimizing spent energy or maximum displacement of robots, e.g. in the
context of exploration [19, 17, 18, 12, 14, 20], formation [13, 7], coverage [11,
15], and broadcast/convergecast [10, 1] problems.

In what concerns specifically collaborative delivery by energy-aware
mobile robots, the problem has been considered in some recent works un-
der various assumptions. In [8], the authors assume robots with limited
energy that is consumed as they move. They prove that the problem of
deciding whether delivery is feasible is NP-hard even if the robots are ini-
tially collocated, and they provide a 2-approximation algorithm for the
optimization version of finding the minimum initial energy that can be
given to all robots so that delivery becomes feasible, as well as exact, ap-
proximation, and resource-augmented algorithms for variants of the prob-
lem. In [9], the authors show that the problem is weakly NP-hard even
on the line (with initially dispersed robots), and provide a quasi-, pseudo-
polynomial algorithm under the assumption of integer numerical values
in the problem instance. In [3], the authors consider the variant of the
delivery probem in which the robots have to return to their respective
starting positions and they prove that this problem is NP-hard for planar
graphs but can be solved efficiently on trees and lines, in contrast to the
non-returning version which is NP-hard on lines. They also give resource-
augmented algorithms for returning delivery in general graphs and prove
tight lower bounds on the resource augmentation for both the returning
and the non-returning variant. In [4], the robots do not have a limited en-
ergy source, but instead they have different rates of energy consumption
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and the goal is to find a delivery schedule that minimizes the total en-
ergy spent. Moreover, there are several messages that need to be delivered
from their respective source to their respective target. The authors study
separately three subtasks that need to be solved in order to compute the
optimal solution (collaboration of different robots on the same message,
planning for a robot that works on multiple messages, and assignment of
messages to robots) and they provide a polynomial-time (nonconstant)
approximation algorithm for the problem. In this setting, [5] studies the
design of truthful mechanisms in a game-theoretic model where the rate
of energy consumption is information private to each robot.

The only previous work that considers energy sharing by mobile robots
is [10], where this feature is introduced in the context of the delivery
and convergecast problems. The authors show that both problems can
be solved efficiently in trees, whereas they are NP-complete in general
undirected and directed graphs. It is important to note that, in the model
of [10], a robot may store an unlimited amount of energy as a result of
receiving energy from other robots it encounters. In other words, there
is no battery capacity constraint for the robots, in contrast to the model
that we study in the present paper.

2 Preliminaries

We now define precisely the collaborative delivery problem for a collection
of energy sharing mobile robots. Given a simple undirected graph G =
(V,E), with two special nodes s (source) and t (target), and a collection
of k mobile robots located initially in specific nodes of the graph, the
objective is to decide whether there is schedule of robot moves that can
deliver a package from s to t. Each robot has a constant energy budget
and we denote its value by B. Traversing each edge consumes one unit
of energy, thus, a fully charged robot can move a distance of B before
running out of energy. When two robots are at the same node, one robot
can transfer to the other robot, any integral part of its energy, with the
only constraint that no robot can have more than B units of energy at
any time.

In this paper, B = 2 for all robots. There is a unique package initially
at node s that needs to be moved to node t. To simplify the discussion, we
will assume that the system is synchronous (any synchronous strategy can
also be implemented in an asynchronous system using appropriate waits).
A robot r located at a node v at time j and having some positive energy,
can perform any subset of the following actions:
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– Pick up the package, if the package is present at v at time j.
– Transfer one unit of energy to another robot r′ that is located at v at

time j, if r′ is not fully charged.
– Move to a neighboring node u, consuming one unit of energy and

arriving at u at time j + 1.

A solution strategy is a sequence of steps as above, such that after the
last step, the package is located at node t.

In the general version of the problem described below, the position of
the robots is given by an adversary.

Problem 1 (CollaborativeDelivery with Fixed Placement). CDX
Instance: 〈G, s, t, k, h〉, where G = (V,E) is a simple undirected graph,
s, t ∈ V are, respectively, the source and target nodes, h : {1, . . . , k} → V
is the placement function that specifies the initial positions of the k ≥ 1
robots.
Question: Does there exist a solution strategy for moving the package
from s to t, when each robot start with B = 2 units of energy?

If the placement of robots among homebase nodes can be chosen by
the algorithm, then we have the following version of the problem:

Problem 2 (CollaborativeDelivery with Chosen Placement). CDC
Instance: 〈G, s, t, k,H〉, where G = (V,E) is a simple undirected graph,
s, t ∈ V are, respectively, the source and target nodes, k ≥ 1 is the number
of mobile robots and H ⊂ V is the set of homebase nodes.
Question: Does there exist a placement function p : {1, . . . , k} → H and a
corresponding solution strategy for moving the package from s to t, when
the i-th robot starts at node p(i) with B = 2 units of energy?

A path with nodes v1, . . . , vn and edges {vi, vi+1}, i ∈ {1, . . . , n− 1},
is denoted by (v1, . . . , vn). The path graph with n vertices and n−1 edges
is denoted by Pn. The length of the shortest path between two nodes u, v
of a graph G is denoted by dG(u, v), or simply d(u, v) when there is no
potential for confusion. If a robot is initially placed on a node v, then we
write a(v) to refer to this robot at any point of a strategy.

We obtian the following regarding the hardness of problem CDX:

Theorem 1. CDX is NP-complete in the class of graphs with degree bound-
ed by 5 and with each node being initially occupied by at most one robot.

Theorem 2. CDX is NP-complete in the class of graphs with diameter
at most 42 with each node being initially occupied by at most one robot.
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3 An efficient algorithm for CollaborativeDelivery
with Chosen Placement

Let I = 〈G, s, t,H〉 be an instance of CDC, with G = (V,E) and H ⊆ V .
Recall that a solution to I is a strategy that enables a group of energy-
exchanging robots starting from some or all of the nodes inH with battery
capacity B = 2 to transfer the package from s to t. The cost of a solution
is the total initial energy of the robots that are placed on nodes in H.
If u ∈ V , we denote by hu the node in H that is closest to u, breaking
ties arbitrarily, and we denote by z(u) the distance from u to hu in G,
i.e., z(u) = dG(hu, u). Let Ĝ be a weighted complete digraph with vertex
set V and arc set E′, and let the weight of an arc e = (u, v) ∈ E′ be
w(e) = 2z(u)+dG(u,v)−1. If P is a directed path in Ĝ, the weight of P is the
sum of the weights of the arcs in P . This section is devoted to the proof
of the following theorem:

Theorem 3. An optimal solution to I = 〈G, s, t,H〉 has cost dĜ(s, t).

It suffices to show that there exists a directed s-t path in Ĝ with
weight smaller than or equal to the cost of the optimal solution for I
and, additionally, that every directed s-t path in Ĝ corresponds to some
solution for I with cost equal to the weight of the path. The latter claim
is given in the following lemma:

Lemma 1. For every directed s-t path in Ĝ, there exists a solution for I
with cost equal to the weight of the path.

In the rest of this section, we derive some structural properties of
optimal solutions for I, which permit us to prove the former claim (cf.
Lemma 5). In Section 3.1 we introduce our main tool in the analysis:
an energy flow hypergraph that provides a way of presenting solutions
to CDC. Then, Sections 3.2 and 3.3 give a series of properties of this
hypergraph, allowing us to finish the proof of Theorem 3 in Section 3.4.
We assume that s 6= t, otherwise Theorem 3 holds trivially.

3.1 The energy flow hypergraph

Given a solution S for I with cost X > 0, we represent S by a triple
S = (V, E , Ẽ), where (V, E) = H is a directed hypergraph that represents
the flow and eventual consumption of energy units (cf. Definition 1 below)
and Ẽ ⊆ E corresponds to the package moves under S (cf. Definition 2
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below). The nodes of H are the energy arrival and extinction events of S,
as specified below.

We assume that the units of energy that are initially present at nodes
in H receive distinct identities from 1 to X. We distinguish two types of
events during the delivery under S. An arrival event occurs whenever a
robot with two units of energy i, j with i < j moves from some node u
of G to a neighbor v at time step t. We say that the unit of energy j is
wasted by i during the event and that the unit of energy i arrives at v at
time t+1. We denote this event as (i, t+1, v). An extinction event occurs
whenever a robot with one unit of energy i moves from some node u of G
to a neighbor v at time step t. We say that the unit of energy i wastes
itself during the event. We denote this event as (⊥i, t+ 1, v).

We also consider as arrival events the appearance of the X units of
energy at the homebases at time 0, and we denote them as (i, 0, hi), for
1 ≤ i ≤ X, where hi ∈ H is the homebase where energy unit i was placed.

We are now ready to define the energy flow hypergraph H = (V, E) in
terms of the arrival and extinction events as follows:

Definition 1 (Energy flow hypergraph). The vertex set V contains
all of the arrival and extinction events, as specified above. The hyperarc
set E contains ({(i, t1, u), (j, t2, u)}, {(i, t, v)}) if t ≥ 1, the unit of energy i
came from node u during the event (i, t, v), j > i is the unit of energy
consumed during the event (i, t, v), and in addition t1 < t, t2 < t, and i
(resp. j) is not involved in any other events between times t1 (resp. t2)
and t. Furthermore, E contains ({(i, t1, u)}, {(⊥i, t, v)}) if t1 < t and i is
not involved in any other events between times t1 and t.

Definition 2 (Item moves). The set Ẽ is defined as the subset of E
that contains all of the hyperarcs that correspond to package moves. More
precisely, a hyperarc ({(i, t1, u), (j, t2, v)}, {(i, t, v)}) ∈ Ẽ if the robot that
arrived with energy unit i at v at time t was carrying the package. Simi-
larly, a hyperarc ({(i, t1, u)}, {(⊥i, t, v)}) ∈ Ẽ if the robot that arrived with
zero energy at v at time t (having wasted energy unit i) was carrying the
package.

We illustrate the energy flow hypergraph H corresponding to a simple
solution for a CDC instance in Figure 1. Note that the cost of S is given
by the total number of energy units that “arrive” at nodes in H at time 0,
which corresponds to the number of nodes of the form (·, 0, ·) in H.

By construction, there is no cycle in H. Moreover, the head of every
hyperarc of H has size 1 and every node of H is contained in at most one
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(1, 0, H) (2, 0, H) (3, 0, H) (4, 0, H)

(1, 1, s) (3, 1, s)

(1, 2, a)

(⊥1, 3, b)

(5, 0, H) (6, 0, H) (7, 0, H) (8, 0, H)

(5, 1, t) (7, 1, t)

(5, 2, b)

(⊥5, 4, t)

H

s t

a b

Fig. 1. An energy flow hypergraph constructed for a graph G shown on the left. The
hypergraph consists of two components (the hyperarcs that correspond to package
moves are highlighted): the first component dictates two robots to move from H to s
and then one of those robots picks up the package and travels along path (s, a, b); the
second component makes two robots to move from H to t and then one of them goes
to b, picks up the package and returns to t.

hyperarc head and in at most one hyperarc tail. Therefore, H consists of
a number of independent components H1, . . . ,Hσ, each of which has a
tree-like structure, as in Figure 1.

Notation If e ∈ E , we denote by head(e) the unique node that is in the
head of e. If v ∈ V, we denote by g(v) the node of G that is involved
in the event v. If e ∈ E , then we denote by gtail(e) the node of G that
is involved in the events in the tail of e (recall that, by definition of the
hypergraph H, all events in the tail of e must involve the same node of G),
and by ghead(e) the node of G that is involved in the unique event in the
head of e (i.e., ghead(e) = g(head(e))).

If v ∈ V, let∆v denote the subgraph ofH induced by the ancestors of v
and v itself. Let height(v) denote the number of hyperarcs in the longest
path that terminates at v. If e ∈ E , we abuse the notation slightly and
we denote by height(e) the height of head(e). If v, v′ ∈ V, we write v ≺ v′
if v is an ancestor of v′ and we write v @ v′ if v precedes v′ temporally,
i.e., v = (i, t, x) and v′ = (i′, t′, x′) with t < t′. Note that v ≺ v′ implies
v @ v′. As above, we extend the notation to arcs and we write e ≺ e′ if
head(e) ≺ head(e′) and e @ e′ if head(e) @ head(e′).

If ∆v contains x nodes of the form (·, 0, ·), then we say that ∆v incurs
a cost of x. This represents the energy units used by the solution in order
to generate the event v. We also say that a component Hi incurs a cost
equal to the cost incurred by its maximal node (under ≺). The cost of S
is the sum of the costs incurred by the components of H.

8



3.2 Properties of optimal solutions

The goal of this section is to prove a property of optimal solutions that
can be informally stated as follows: every component of the hypergraph
corresponding to the solution contains exactly one chain of item moves
and the last hyperarc of this chain is an extinction event of the component.

Proposition 1. For every solution S = (V, E , Ẽ) in which there exist
arcs f, g ∈ Ẽ with f ≺ g, there exists a solution S ′ = (V, E , Ẽ ′) with
Ẽ ′ = Ẽ \ {e : f @ e @ g} ∪ {e : f ≺ e ≺ g}.

f

g

f

g

Fig. 2. Illustration of Proposition 1. Triangles represent components of the solution
hypergraph. The solution S is shown on the left (in which some arcs of the path from
f to g are not package moves — those package moves can be possibly in different
components; the dotted arrows represent the time succession between package moves
that take the package from f to g) and the corresponding S ′ is shown on the right.

By repeated application of Proposition 1, we obtain the following:

Corollary 1. For every solution S = (V, E , Ẽ), there exists a solution S ′ =
(V, E , Ẽ ′) and a partition of Ẽ ′ into sets Ẽ ′1, . . . , Ẽ ′τ such that, for every i,
the hyperarcs of Ẽ ′i form a chain in H and, for every e ∈ Ẽ ′i and e′ ∈ Ẽ ′j
with i < j, we have e @ e′, e 6≺ e′, and e′ 6≺ e.

Note that Proposition 1 and Corollary 1 apply to any solution (not
necessarily an optimal one). Furthermore, in both statements, the ob-
tained solution S ′ has the same energy flow hypergraph as S, and therefore
it has the same cost as S.

Lemma 2. For every optimal solution S = (V, E , Ẽ) and for every com-
ponent Hi of H = (V, E) with maximum (under ≺) hyperarc ri, we have
ri ∈ Ẽ and head(ri) is an extinction event.

By applying Corollary 1 to an arbitrary optimal solution, we obtain
the following corollary in view of Lemma 2:
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Corollary 2. There exists an optimal solution S = (V, E , Ẽ) such that
every component Hi of H = (V, E) with maximum (under ≺) hyperarc ri
contains exactly one chain of package moves whose last hyperarc is ri and,
in addition, head(ri) is an extinction event.

3.3 Canonical nodes

Given a solution S = (V, E , Ẽ) for I, let v ∈ V such that ∆v does not
contain any hyperarc in Ẽ . Intuitively, if v is not an extinction event,
then the sole function of ∆v in the solution is to bring one unit of energy
to g(v). It thus makes sense that, if S is optimal, then the energy units
that participate in the events of ∆v travel along shortest paths from their
respective homebases to g(v). If v satisfies these conditions, then we say
that v is canonical. The following definition captures this notion:

Definition 3 (Canonical nodes). Given a solution S = (V, E , Ẽ), a
node v ∈ V is called canonical if either height(v) = 0, or height(v) = h+1
for some h ≥ 0 (in this case, v = head(e) for some e ∈ E) and all of the
following hold: (i) for every node u in the tail of e, u is canonical and
height(u) = h, (ii) e /∈ Ẽ, and (iii) z(g(v)) = 1 + z(gtail(e)).

The two propositions below follow easily by induction on the height
of v. Recall that, by definition of H, if height(v) = 0 then g(v) ∈ H.

Proposition 2. If v is canonical, then z(g(v)) = height(v).

Proposition 3. If v is canonical and it is not an extinction event, then
the cost incurred by ∆v is 2height(v).

We can now prove that, in every optimal solution, every node v whose∆v
does not contain any package move is canonical.

Lemma 3. For every optimal solution S = (V, E , Ẽ) and for every v ∈ V,
v is canonical or ∆v contains a hyperarc in Ẽ.

3.4 Completing the proof of Theorem 3

In the following, let S? = (V, E , Ẽ) be an optimal solution as guaranteed by
Corollary 2, with the maximum number σ of components of H = (V, E).
Let (Hi)i=1,...,σ be an enumeration of the components of H in temporal
order of their extinction events. For i ∈ {1, . . . , σ}, component Hi is re-
sponsible for moving the package along a path Pi = (ui,0, ui,1, . . . , ui,ρi)
in G, where u1,0 = s, uσ,ρσ = t, and ui,ρi = ui+1,0 (for i < σ).
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Lemma 4. For every i, j in the ranges 1 ≤ i ≤ σ and 0 ≤ j < ρi − 1,
z(ui,j+1) = 1 + z(ui,j).

Corollary 3. The cost incurred by component Hi is 2z(ui,0)+ρi−1.

LetQ be the directed s-t path in Ĝ that consists of the arcs (u1,0, u1,ρ1),
(u2,0, u2,ρ2),. . . , (uσ,0, uσ,ρσ). By definition of Ĝ, the i-th arc of Q has
weight 2z(ui,0)+dG(ui,0,ui,ρi )−1. However, Pi is a path in G from ui,0 to ui,ρi
and its length is ρi. Therefore, dG(ui,0, ui,ρi) ≤ ρi. In view of Corollary 3,
we conclude that the weight of the i-th arc of Q is at most equal to the
cost of Hi and thus the total weight of the arcs of Q is at most equal to
the cost of S?. We have proved the following lemma, which concludes the
proof of Theorem 3:

Lemma 5. There exists a directed s-t path in Ĝ with weight at most equal
to the cost of an optimal solution to I.

4 Concluding remarks

Our work reveals an interesting differentiation in the complexity of the
collaborative delivery problem by robots with battery capacity B = 2,
depending on whether the energy allocation to the homebases (starting
nodes of robots) is given as part of the input on the one hand, or the
allocation can be chosen as part of the solution on the other hand.

As we showed, the problem with fixed allocation of energy units to
the homebases is NP-complete. However, we proved in Section 3 that the
delivery problem in which one is given the total available energy and is
asked if it is possible to distribute this energy to robots at the homebases
in order to achieve delivery is solvable in polynomial time. In fact, what
we proved is that the underlying optimization problem, i.e., finding the
minimum amount of energy that can be distributed to the homebases so
that delivery is feasible, is solvable in polynomial time by reduction to a
shortest path computation in a complete directed graph.

A natural question is how to handle greater battery capacities B ≥ 3.
While we expect that our NP-completeness reduction generalized to B ≥
3, the situation is less clear when it comes to the question of computing
the energy allocation to the homebases as part of the solution. A straight-
forward adaptation of our algorithm from Section 3 would be to reduce
the problem to computing the shortest s-t path in a directed graph Ĝ
similar to the one we construct in Section 3, except that the weight of
an arc (u, v) would be equal to the minimum amount of energy required
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h s tu v

Fig. 3. An example of a graph in which the straightforward adaptation of our algorithm
from Section 3 to B = 3 does not give an optimal solution. Here, H = {h} and the
shortest s-t path in Ĝ is s → v → t, with each arc having a weight of 41 for a total
cost of 82. However, the optimal solution has a cost of 81: 27 fully charged robots start
from h and they reach u with 16 remaining energy units in total. At u, the robots split
into two groups with 8 units of energy each. The first group goes to s and then to v
from the top branch, picking up the package from s on the way. The second group goes
to v from the bottom branch, picks up the package, and continues until t.

by robots with capacity B to traverse the path hu  u  v, where hu
is the nearest homebase to u. Unfortunately, this algorithm is no longer
guaranteed to produce an optimal solution for B ≥ 3 (see Figure 3).

The reason is that several nice properties of the optimal solutions for
B = 2 no longer hold for B ≥ 3. In particular, since the hyperarcs in
the energy flow hypergraph can now have up to two nodes in their heads,
each component can now have more than one bottommost nodes and it
can contain more than one chains of package moves. This is exactly the
case in the example of Figure 3, where the energy flow hypergraph of the
optimal solution has only one component, which contains two chains of
package moves. Furthermore, it is no longer the case that all of the nodes
in the tail of a given hyperarc have the same height. This can be seen even
in cases where the optimal solution consists of only one component with
only one chain of package moves (see Figure 4).

h1

s tu

h2

h2

h1

s

u

t

Fig. 4. An example of a graph (left, with H = {h1, h2}) in which the energy flow
hypergraph of the optimal solution (right) contains a hyperarc with nodes of different
heights in its tail.
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