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Abstract. We introduce Colored Resource Allocation Games as a new
model for selfish routing and wavelength assignment in multifiber all-
optical networks. Colored Resource Allocation Games are a generaliza-
tion of congestion and bottleneck games where players have their strate-
gies in multiple copies (colors). We focus on two main subclasses of these
games depending on the player cost: in Colored Congestion Games the
player cost is the sum of latencies of the resources allocated to the player,
while in Colored Bottleneck Games the player cost is the maximum of
these latencies. We investigate the pure price of anarchy for three differ-
ent social cost functions and prove tight bounds for each separate case.
We first consider a social cost function which is particularly meaning-
ful in the setting of multifiber all-optical networks, where it captures
the objective of fiber cost minimization. Additionally, we consider the
two usual social cost functions (maximum and average player cost) and
obtain improved bounds that could not have been derived using earlier
results for the standard models for congestion and bottleneck games.

1 Introduction

Potential games are a widely used tool for modeling network optimization prob-
lems under a non-cooperative perspective. Initially studied in [1] with the in-
troduction of congestion games and further extended in [2] in a more general
framework, they have been successfully applied to describe selfish routing in
communication networks (e.g. [3]). The advent of optical networks as the tech-
nology of choice for surface communication has introduced new aspects of net-
works that are not sufficiently captured by the models proposed so far. In this
work, we propose a class of potential games which are more suitable for modeling
selfish routing and wavelength assignment in multifiber optical networks.

⋆ This research has been co-financed by the European Union (European Social Fund–
ESF) and Greek national funds through the Operational Program “Education and
Lifelong Learning” of the National Strategic Reference Framework (NSRF) — Re-
search Funding Program: THALIS Investing in knowledge society through the Eu-
ropean Social Fund.
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In optical networks, it is highly desirable that all communication should
be carried out transparently, that is, each signal should remain on the same
wavelength from source to destination. The need for efficient access to the optical
bandwidth has given rise to the study of several optimization problems in the
past years. The most well-studied among them is the problem of assigning a
path and a color (wavelength) to each communication request in such a way
that paths of the same color are edge-disjoint and the number of colors used is
minimized. Nonetheless, it has become clear that the number of wavelengths in
commercially available fibers is rather limited—and will probably remain such in
the foreseeable future. Therefore, the use of multiple fibers has become inevitable
in large scale networks. In the context of multifiber optical networks several
optimization problems have been defined and studied, the objective usually being
to minimize either the maximum fiber multiplicity per edge or the sum of these
maximum multiplicities over all edges of the graph.

1.1 Contribution

We introduce Colored Resource Allocation Games, a class of games that can
model non-cooperative versions of routing and wavelength assignment problems
in multifiber all-optical networks. They can be viewed as an extension of con-
gestion games where each player has his strategies in multiple copies (colors).
When restricted to (optical) network games, facilities correspond to edges of
the network and colors to wavelengths. The number of players using an edge
in the same color represents a lower bound on the number of fibers needed to
implement the corresponding physical link. Having this motivation in mind, we
consider the case in which each player’s cost is equal to the maximum edge con-
gestion encountered on her path (max player cost), as well as the case in which
each player’s cost is equal to the sum of edge congestions encountered on her
path (sum player cost). For our purposes of using Colored Resource Allocation
games to model resource allocation in optical networks, it makes sense to restrict
our study to the class of identity latency functions.

We use the price of anarchy (PoA) introduced in [4] as a measure of the
deterioration of the quality of solutions caused by the lack of coordination. We
estimate the price of anarchy of our games under three different social cost
functions. The first one (SCfib) is specially designed for the setting of multifiber
all-optical networks: it is equal to the sum over all facilities of the maximum
color congestion on each facility. Note that in the optical network setting this
function represents the total fiber cost needed to accommodate all players; hence,
it captures the objective of a well-studied optimization problem ([5–8]). The
other two social cost functions are standard in the literature (see e.g. [9]): the
first (SCmax) is equal to the maximum player cost and the second (SCsum) is
equal to the sum of player costs (equivalently, the average player cost).

Let us also note that the SCmax function under the max player cost captures
the objective of another well known problem, namely minimizing the maximum
fiber multiplicity over all edges of the network [7, 10, 11]. In addition, note that
our model admits a number of different interpretations as discussed in [12].
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Table 1. The pure price of anarchy of Colored Bottleneck Games (max player cost)
under different social costs. Results for classical bottleneck games are shown in the
right column.

Colored Bottleneck Games Bottleneck Games

SCfib(A) =
∑

f∈F

max
a∈[W ]

nf,a(A) |EA|
|EOPT|

⌈

N
W

⌉

—

SCmax(A) = max
i∈[N]

Ci(A) Θ
(

N
W

)

Θ(N) [13]

SCsum(A) =
∑

i∈[N]

Ci(A) Θ
(

N
W

)

Θ(N) [13]

Table 2. The pure price of anarchy of Colored Congestion Games (sum player cost)
under different social costs. Results for classical congestion games are shown in the
right column.

Colored Congestion Games Congestion Games

SCfib(A) =
∑

f∈F

max
a∈[W ]

nf,a(A) Θ

(

√

W |F |
)

—

SCmax(A) = max
i∈[N]

Ci(A) Θ

(

√

N
W

)

Θ

(√
N

)

[9]

SCsum(A) =
∑

i∈[N]

Ci(A) 5
2

5
2
[9]

Our main contribution is the derivation of tight bounds on the price of an-
archy for Colored Resource Allocation Games. These bounds are summarized in
Tables 1 and 2. It can be shown that the bounds for Colored Congestion Games
remain tight even for network games.

Observe that known bounds for classical congestion and bottleneck games can
be obtained from our results by simply setting W = 1. On the other hand, one
might notice that our games can be casted as classical congestion or bottleneck
games with W |F | facilities. However we are able to derive better upper bounds
for most cases by exploiting the special structure of the players’ strategies.

1.2 Related Work

One of the most important solution concepts in the theory of non-cooperative
games is the Nash equilibrium [14], a stable state of the game in which no
player has incentive to change strategy unilaterally. A fundamental question in
this theory concerns the existence of pure Nash equilibria. For congestion and
bottleneck games [1, 2, 15] it has been shown with the use of potential functions
that they converge to a pure Nash equilibrium.

In [16] Roughgarden introduces a canonical framework for studying the price
of anarchy; in particular he identifies the following canonical sufficient condition,
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which he calls the “smoothness condition”:

n
∑

i=1

Ci(A
∗
i , A−i) ≤ λSC(A∗) + µSC(A) .

The key idea is that, by showing that a game is (λ, µ)-smooth, i.e. that it satisfies
the condition above for some choice of λ and µ, we immediately get an upper
bound of λ

1−µ
on the price of anarchy of the game. Hence, bounding the price

of anarchy reduces to the problem of identifying λ and µ which minimize the
aforementioned quantity, and for which the game is (λ, µ)-smooth. From the
games and welfare functions that we analyze only colored congestion games from
the perpsective of SCsum are smooth, a property implied by the existing analysis
of Christodoulou et al [9] and which we show remains tight even in our setting.
On the contrary, our other two social cost functions and our bottleneck game
analysis do not seem to admit a similar smoothness argument, and therefore a
different approach is required in order to upper bound the price of anarchy for
these settings.

Bottleneck games have been studied in [13, 15, 17, 18]. In [13] the authors
study atomic routing games on networks, where each player chooses a path to
route her traffic from an origin to a destination node, with the objective of
minimizing the maximum congestion on any edge of her path. They show that
these games always possess at least one optimal pure Nash equilibrium (hence
the price of stability is equal to 1) and that the price of anarchy of the game is
determined by topological properties of the network. A further generalization is
the model of Banner and Orda [15], where they introduce the notion of bottleneck
games. In this model they allow arbitrary latency functions on the edges and
consider both splittable and unsplittable flows. They show existence, convergence
and non-uniqueness of equilibria and they prove that the price of anarchy for
these games is exponential in the users’ demand.

Since bottleneck games traditionally have price of anarchy that is rather
high (proportional to the size of the network in many cases), in [19] the authors
study bottleneck games when the utility functions of the players are exponential
functions of their congestion, and they show that for this class of exponential
bottleneck games the price of anarchy is in fact logarithmic. Finally [20] investi-
gate the computational problem of finding a pure Nash equilibrium in bottleneck
games, as well as the performance of some natural (de-centralized) improvement
dynamics for finding pure Nash equilibria.

Selfish path coloring in single fiber all-optical networks has been studied
in [21–24]. Bilò and Moscardelli [21] consider the convergence to Nash equilibria
of selfish routing and path coloring games. Bilò et al. [22] consider several in-
formation levels of local knowledge that players may have and give bounds for
the price of anarchy in chains, rings and trees. The existence of Nash equilibria
and the complexity of recognizing and computing a Nash equilibrium for selfish
routing and path coloring games under several payment functions are considered
by Georgakopoulos et al. [23]. In [24] upper and lower bounds for the price of
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anarchy of selfish path coloring with and without routing are presented under
functions that charge a player only according to her own strategy.

Selfish path multicoloring games are introduced in [12] where it is proved
that the pure price of anarchy is bounded by the number of available colors and
by the length of the longest path; constant bounds for the price of anarchy in
specific topologies are also provided. In those games, in contrast to the ones
studied here, routing is given in advance and players choose only colors.

2 Model Definition

We use the notation [X ] for the set {1, . . . , X}, where X is a positive natural
number.

Definition 1 (Colored Resource Allocation Games). A Colored Resource
Allocation Game is defined as a tuple 〈F,N,W, {Ei}i∈[N ]〉 such that:

1. F is a set of facilities fi.
2. [W ] is a set of colors.
3. [N ] is a set of players.
4. Ei is a set of possible facility combinations for player i such that:

a. ∀ i ∈ [N ] : Ei ⊆ 2F ,
b. Si = Ei × [W ] is the set of possible strategies of player i, and
c. Ai = (Ei, ai) ∈ Si is the notation of a strategy for player i, where Ei ∈ Ei

denotes the set of facilities and ai ∈ [W ] denotes the color chosen by the
player.

5. A = (A1, . . . , AN ) is a strategy profile for the game.
6. For a strategy profile A, ∀f ∈ F , ∀c ∈ [W ], nf,c(A) is the number of players

that use facility f in color c in strategy profile A.

Depending on the player cost function we define two subclasses of Colored Re-
source Allocation Games:

– Colored Bottleneck Games (CBG), where the player cost is

Ci(A) = max
e∈Ei

ne,ai
(A) .

– Colored Congestion Games (CCG), where the player cost is

Ci(A) =
∑

e∈Ei

ne,ai
(A) .

For each of the above variations we will consider three different social cost
functions:

– SCfib(A) =
∑

f∈F maxc∈[W ] nf,c(A).
– SCmax(A) = maxi∈[N ] Ci(A).
– SCsum(A) =

∑

i∈[N ] Ci(A). Note that, in the case of CCG games, the sum

social cost can also be expressed as SCsum(A) =
∑

f∈F

∑

c∈[W ] n
2
f,c(A).
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From the definition of pure Nash equilibrium we can derive the following two
facts that hold in Colored Congestion and Bottleneck Games respectively:

Fact 1. For a pure Nash equilibrium A of a CCG game it holds:

∀E′
i ∈ Ei, ∀c′ ∈ [W ] : Ci(A) ≤

∑

e∈E′

i

(ne,c′(A) + 1) . (1)

Fact 2. For a pure Nash equilibrium A of a CBG game it holds:

∀E′
i ∈ Ei, ∀c′ ∈ [W ] : Ci(A) ≤ max

e∈E′

i

(ne,c′(A) + 1) . (2)

Equivalently:

∀Ei ∈ Ei, ∀c ∈ [W ], ∃e ∈ Ei : Ci(A) ≤ ne,c(A) + 1 . (3)

In the rest of the paper, we will only deal with pure Nash equilibria and we
will refer to them simply as Nash equilibria.

3 Colored Bottleneck Games

By a standard lexicographic argument, one can show that every CBG game has
at least one pure Nash equilibrium and that the price of stability [25] is 1.

3.1 Price of Anarchy for Social Cost SCfib

Definition 2. We define ES to be the set of facilities used by at least one player
in the strategy profile S = (A1, . . . , AN ), i.e., ES = E1 ∪ . . . ∪ EN .

Theorem 1. The price of anarchy of any CBG game with social cost SCfib is

at most |EA|
|EOPT|

⌈

N
W

⌉

, where A is a worst-case Nash equilibrium and OPT is an

optimal strategy profile.

Proof. We exclude from the sum over the facilities, those facilities that are not
used by any player since they do not contribute to the social cost. Thus we focus
on facilities with maxc ne,c > 0. Let A be a worst-case Nash equilibrium and let
cmax(e) denote the color with the maximum multiplicity at facility e. Let Pi be a
player that uses the facility copy (e, cmax(e)). Since Ci(A) = maxe∈Ei

ne,ai
(A) it

must hold that ne,cmax(e)(A) ≤ Ci(A). In fact, we can state the following general
property:

∀e ∈ F, ∃i ∈ [N ] : ne,cmax(e) ≤ Ci(A) . (4)

Suppose that there exists a player with cost
⌈

N
W

⌉

+ 1 or more. From Fact 2,

at least
⌈

N
W

⌉

players must play each of the other colors. By a simple calculation,
this implies that there are at least N+1 players in the game, a contradiction. We
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conclude that each player’s cost is at most
⌈

N
W

⌉

, thus Ci(A) ≤
⌈

N
W

⌉

. Moreover,
it is easy to see that SCfib(OPT) ≥ |EOPT|. From the above we can conclude:

SCfib(A)

SCfib(OPT)
≤ |EA|

|EOPT|

⌈

N

W

⌉

. (5)

⊓⊔
Theorem 2. There exists a class of CBG games with social cost SCfib with

PoA = |EA|
|EOPT|

⌈

N
W

⌉

.

Proof. Consider a game in which each player i has the following strategy set:
Ei = {{fi}, {f1, . . . , fM}}, where M ≥ N ≥ W . In the worst-case Nash equilib-
rium A, all players will play the second strategy leading to SCfib(A) = M

⌈

N
W

⌉

=

|EA|
⌈

N
W

⌉

. On the other hand in the optimal outcome all players will play the
first strategy leading to SCfib(OPT) = N = |EOPT|. Thus the price of anarchy

for this instance is PoA = |EA|
|EOPT|

⌈

N
W

⌉

. ⊓⊔

3.2 Price of Anarchy for Social Cost SCmax

Theorem 3. The price of anarchy of any CBG game with social cost SCmax is
at most

⌈

N
W

⌉

.

Proof. It is easy to see that SCmax(OPT) ≥ 1. We established in the proof
of Theorem 1 that the maximum player cost in a Nash equilibrium is

⌈

N
W

⌉

.

Therefore, for any worst-case Nash equilibrium A, SCmax(A) ≤
⌈

N
W

⌉

. ⊓⊔
Theorem 4. There exists a class of CBG games with social cost SCmax with
PoA =

⌈

N
W

⌉

.

Proof. Consider the following class of CBG games. We have N players and N

facilities. Each player Pi has two possible strategies: Ei = {{fi}, {f1, . . . , fN}}.
In a worst-case Nash equilibrium, all players choose the second strategy and
they are equally divided in the W colors. This leads to player cost

⌈

N
W

⌉

for each

player and thus to a social cost
⌈

N
W

⌉

. In the optimal strategy profile, all players
would choose their first strategy leading to player and social cost equal to 1.
Thus the price of anarchy for this instance is

⌈

N
W

⌉

. ⊓⊔

3.3 Price of Anarchy for Social Cost SCsum

Theorem 5. The price of anarchy of any CBG game with social cost SCsum is
at most

⌈

N
W

⌉

.

Proof. As before, we know that the maximum player cost in a Nash equilibrium is
⌈

N
W

⌉

, therefore the social cost is at most N ·
⌈

N
W

⌉

. Moreover, SCsum(OPT) ≥ N .

Thus the price of anarchy is bounded by
⌈

N
W

⌉

. ⊓⊔
The instance used in the previous section can also be used here to prove that

the above inequality is tight for a class of CBG games.
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4 Colored Congestion Games

4.1 Price of Anarchy for Social Cost SCfib

Theorem 6. The price of anarchy of any CCG game with social cost SCfib is

at most O
(

√

W |F |
)

.

Proof. We denote by ne(S) the vector [ne,c1(S), . . . , ne,cW (S)]. We can rewrite

the social cost as SCfib(S) =
∑

e∈F maxc∈[W ] ne,c(S) =
∑

e∈F ‖ne(S)‖∞. From
norm inequalities, we have:

‖ne(S)‖2√
W

≤ ‖ne(S)‖∞ ≤ ‖ne(S)‖2 , (6)

hence:

SCfib(S) =
∑

e∈F

‖ne(S)‖∞ ≤
∑

e∈F

√

∑

c

n2
e,c(S) ≤

√

|F |
√

∑

e∈F

∑

c

n2
e,c(S) , (7)

where the last inequality is a manifestation of the norm inequality ‖x‖1 ≤√
n‖x‖2, where x is a vector of dimension n. Now, from the first inequality

of (6) we have:

SCfib(S) ≥
1√
W

∑

e∈F

√

∑

c

n2
e,c(S) ≥

1√
W

√

∑

e∈F

∑

c

n2
e,c(S) . (8)

Combining (8) and (7), we get:

1√
W

√

SCsum(S) ≤ SCfib(S) ≤
√

|F |
√

SCsum(S) . (9)

From [9] we know that the price of anarchy with social cost SCsum(S) is at
most 5/2. Let A be a worst-case Nash equilibrium under social cost SCfib and
let OPT be an optimal strategy profile. From (9) we know that SCfib(A) ≤
√

|F |
√

SCsum(A) and SCfib(OPT) ≥ 1√
W

√

SCsum(OPT). Thus:

PoA =
SCfib(A)

SCfib(OPT)
≤
√

W |F |
√

SCsum(A)

SCsum(OPT)
≤
√

W |F |
√

5

2
. (10)

⊓⊔
Theorem 7. There exists a class of CCG games with social cost SCfib with
PoA =

√

W |F |.
Proof. Consider a colored congestion game with N players, |F | = N facilities
and W = N colors. Each player has as strategies the singleton sets consisting of
one facility: Ei = {{f1}, {f2}, . . . , {fN}}.

The above instance has a worst-case equilibrium with social cost N when
all players choose a different facility in an arbitrary color. On the other hand
in the optimum strategy profile players fill all colors of the necessary facilities.
This needs N

W
facilities with maximum capacity over their colors 1. Thus the

optimum social cost is N
W

leading to a PoA =
√

W |F |. ⊓⊔
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4.2 Price of Anarchy for Social Cost SCmax

Theorem 8. The price of anarchy of any CCG game with social cost SCmax is

at most O
(√

N
W

)

.

Proof. Let A be a Nash equilibrium and let OPT be an optimal strategy profile.
Without loss of generality, we assume that player 1 is a maximum cost player:
SCmax(A) = C1(A). Thus, we need to bound C1(A) with respect to the optimum
social cost SCmax(OPT) = max

j∈[N ]
Cj(OPT).

Since A is a Nash equilibrium, no player benefits from changing either her
color or her choice of facilities. We denote by OPT1 = (E⋆

1 , a
⋆
1) the strategy of

player P1 in OPT. Since A is a Nash equilibrium it must hold:

∀c ∈ [W ] : C1(A) ≤
∑

e∈E⋆

1

(ne,c(A) + 1) ≤
∑

e∈E⋆

1

ne,c(A) + C1(OPT) . (11)

The second inequality holds since any strategy profile cannot lead to a cost for
a player that is less than the size of her facility combination.

Let I ⊂ [N ] be the set of players that, in A, use some facility e ∈ E⋆
1 . The

sum of their costs is:

∑

i∈I

Ci(A) ≥
∑

e∈E⋆
1

∑

c∈[W ]

n2
e,c(A) ≥

(
∑

e∈E⋆
1

∑

c∈[W ] ne,c(A))
2

|E⋆
1 |W

≥

(W minc∈[W ]

∑

e∈E⋆
1

ne,c(A))
2

|E⋆
1 |W

≥
W (minc∈[W ]

∑

e∈E⋆
1

ne,c(A))
2

|E⋆
1 |

.

(12)

The first inequality holds since a player in I might use facilities (e, c) not in E⋆
1

and the second inequality holds from the Cauchy-Schwarz inequality. Denoting
by cmin the color argminc∈[W ]

∑

e∈E⋆
1

ne,c(A), we have:





∑

e∈E⋆
1

ne,cmin
(A)





2

≤ |E⋆
1 |

W

∑

i∈I

Ci(A) . (13)

We know from [9] that:

∑

i∈[N ]

Ci(A) ≤
5

2

∑

i∈[N ]

Ci(OPT) . (14)

Combining the above two inequalities we have:





∑

e∈E⋆
1

ne,cmin
(A)





2

≤ |E⋆
1 |

W

∑

i∈I

Ci(A) ≤
|E⋆

1 |
W

∑

i∈[N ]

Ci(A) ≤
5

2

|E⋆
1 |

W

∑

i∈[N ]

Ci(OPT)

(15)
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.........

h1 h2 hk

k − 1 dashed paths

over eah edge hi

Fig. 1. A worst-case instance that proves the asymptotic tightness of the upper bound
on the price of anarchy of CCG games with social cost SCmax, depicted as a network
game. A dashed line represents a path of length k connecting its two endpoints.

Combining with (11) for cmin, we get

C1(A) ≤ C1(OPT) +

√

√

√

√

5

2

|E⋆
1 |

W

∑

i∈[N ]

Ci(OPT) . (16)

Since |E⋆
1 | ≤ C1(OPT) and Ci(OPT) ≤ SCmax(OPT) for any i ∈ [N ], we get

C1(A) ≤
(

1 +

√

5

2

N

W

)

SCmax(OPT) . (17)

⊓⊔

Theorem 9. There exists a class of CCG games with social cost SCmax with

PoA = Θ

(
√

N

W

)

.

Proof. Given integers k > 1 and W > 0, we will describe the lower bound
instance as a network game. The set of colors is [W ]. The network consists of
a path of k + 1 nodes n0, . . . , nk. In addition, each pair of neighboring nodes
ni, ni+1 is connected by k − 1 edge-disjoint paths of length k. Figure 1 provides
an illustration.

In this network, W major players want to send traffic from n0 to nk. For
every i, 0 ≤ i ≤ k−1, there are (k−1)W minor players that want to send traffic
from node ni to node ni+1. In the worst-case equilibrium A all players choose
the short central edge, leading to social cost SCmax(A) = k2. In the optimum
the minor players are equally divided on the dashed-line paths and the major
players choose the central edge. This leads to SCmax(OPT) = k, and the price
of anarchy is therefore:

PoA = k = Θ

(
√

N

W

)

. (18)

⊓⊔
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4.3 Price of Anarchy for Social Cost SCsum

The price of anarchy of CCG games with social cost SCsum is upper-bounded
by 5/2, as proved in [9]. For the lower bound, we use a slight modification
of the instance described in [9]. We have NW players and 2N facilities. The
facilities are separated into two groups: {h1, . . . , hN} and {g1, . . . , gN}. Players
are divided into N groups of W players. Each group i has strategies {hi, gi} and
{gi+1, hi−1, hi+1}. The optimal allocation is for all players in the i-th group to
select their first strategy and be equally divided in the W colors, leading to
SCsum(OPT) = 2NW . In the worst-case Nash equilibrium, players choose their
second strategy and are equally divided in the W colors, leading to SCsum(A) =
5NW . Thus, the price of anarchy of this instance is 5/2 and the upper bound
remains tight in our model as well.

5 Discussion

In this paper we introduced Colored Resource Allocation Games, a class of
games which generalize both congestion and bottleneck games. The main feature
of these games is that players have their strategies in multiple copies (colors).
Therefore, these games can serve as a framework to describe routing and wave-
length assignment games in multifiber all-optical networks. Although we could
cast such games as classical congestion games, it turns out that the proliferation
of resources together with the structure imposed on the players’ strategies allows
us to prove better upper bounds.

Regarding open questions, it would be interesting to consider more general
latency functions. This would make sense both in the case where fiber pricing is
not linear in the number of fibers, and also in the case where the network operator
seeks to determine an appropriate pricing policy so as to reduce the price of
anarchy. Another interesting direction is to examine which network topologies
result in better system behavior.
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