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Abstract

We study an edge coloring problem in multigraphs, in which each node in-
curs a cost equal to the number of appearances of the most frequent color
among those received by its incident edges. We seek an edge coloring with
a given number w of colors, that minimizes the total cost incurred by the
nodes of the multigraph. We consider a class of approximation algorithms
for this problem, which are based on orienting the edges of the multigraph,
then grouping appropriately the incoming and outgoing edges at each node
so as to construct a bipartite multigraph of maximum degree w, and finally
obtaining a proper edge coloring of this bipartite multigraph. As shown by
Nomikos et al. (Inform. Process. Lett. 80 (2001) 249-256), simply choosing
an arbitrary edge orientation in the first step yields a 2-approximation al-
gorithm. We investigate whether this approximation ratio can be improved
by a more careful choice of the edge orientation in the first step. We prove
that, assuming a worst-case bipartite edge coloring, this is not possible in
the asymptotic sense, as there exists a family of instances in which any ori-
entation gives a solution with cost at least 2−Θ

(
1
w

)
times the optimal. On

the positive side, we show how to produce an orientation which results in a

∗Corresponding author. Luminy Scientific & Technological Park, LIF bldg TPR1, 163
av de Luminy-Case 901, 13288 Marseille Cedex 9, France. E-mail: evangelos.bampas@

lif.univ-mrs.fr.
c© 2018. This accepted manuscript is licensed under the CC BY-NC-

ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/. The final
publication is available on ScienceDirect: https://doi.org/10.1016/j.dam.2018.03.

078.

Preprint submitted to Discrete Applied Mathematics July 27, 2018

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.dam.2018.03.078
https://doi.org/10.1016/j.dam.2018.03.078


solution with cost within a factor of 2− 1
2w

of the optimal, thus yielding an
approximation ratio strictly better than 2. This improvement is important
in view of the fact that this graph-theoretic problem models, among others,
wavelength assignment to communication requests in multifiber optical star
networks. In this context, the parameter w corresponds to the number of
available wavelengths per fiber, which is limited in practice due to techno-
logical constraints.

Keywords: edge coloring, path multicoloring, edge orientation, color
multiplicity, optical networks, approximation algorithms

1. Introduction

Let G = (V,E) be an undirected multigraph without self-loops. Given a
coloring of its edges, let µ(v, c) denote the number of edges incident to v that
have received color c and let µ(v) = maxc µ(v, c). We will call µ(v, c) the
multiplicity of c at v and µ(v) the multiplicity of v. In the Minimum Mul-
tiplicity Edge Multicoloring problem (MinMult-EMC), one seeks
an edge coloring with a given number of colors, that minimizes the sum of
node multiplicities. Formally:

Problem 1 (MinMult-EMC).
Instance: 〈G,w〉, where G = (V,E) is an undirected multigraph and w ∈ N
is the number of available colors.
Feasible solution: a coloring of E with w colors.
Goal: minimize

∑
v∈V µ(v).

There is a large literature on edge coloring, which typically considers the
problem from the point of view of minimizing the number of colors used, un-
der various constraints imposed on the obtained coloring. To the best of our
knowledge, the MinMult-EMC problem, which has a different objective
function, has not been studied as such in the literature. However, in view
of the diverse applications of edge coloring in domains such as job schedul-
ing, routing, network resource allocation, etc. [1–5], it is not surprising that
MinMult-EMC appears and has, in fact, been considered implicitly in the
context of wavelength allocation in multifiber optical networks [6].

We recall some known results and we make some preliminary observations
on MinMult-EMC in Section 1.1.
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Algorithm 1 A 2-approximation algorithm for MinMult-EMC [6]

Input: an instance 〈G,w〉 of MinMult-EMC, G = (V,E)
Output: a 2-approximate solution

1: Assign an arbitrary direction to each edge of G.

2: For each v ∈ V , group its doutv outgoing edges into
⌈doutv

w

⌉
groups of at

most w edges each, and let Vout denote the set of all groups of outgoing

edges. Similarly, for each v ∈ V , group its dinv incoming edges into
⌈dinv

w

⌉
groups of at most w edges each, and let Vin denote the set of all groups
of incoming edges.

3: Construct the bipartite multigraph H = (Vout ∪ Vin, A), where for each
edge in E, A contains one edge joining its outgoing group to its incoming
group. The maximum degree of H is bounded by w.

4: Compute a proper edge coloring of H with w colors.
5: Assign to each edge of G the color of the corresponding edge in H.

Notation. Throughout the paper, dv will denote the degree of a node v in
an undirected multigraph, whereas for directed multigraphs we will use dinv
(resp. doutv ) for the in-degree (resp. out-degree) of node v. An orientation of
an undirected multigraph is a directed multigraph in which each edge {u, v}
is replaced by one of the arcs (u, v) or (v, u). If G is a graph or a multigraph,
V (G) is the node set of G and E(G) is the edge set of G. For k ≥ 2, Ck

denotes the undirected cycle of size k and Kk denotes the clique of size k.
We use the binary operation a mod b for positive integers a, b, which gives
the remainder of the division a/b. If A is an event in a suitable sample space,
then P [A] denotes the probability of A.

1.1. Preliminaries

Fact 1. Under any edge coloring with w colors, the multiplicity of each node v
is at least

⌈
dv
w

⌉
, thus the minimum cost for any MinMult-EMC instance is

at least
∑

v∈V
⌈
dv
w

⌉
.

For any fixed w ≥ 3, MinMult-EMC is NP-hard via a straightforward
reduction from the decision version of the classical edge coloring problem on
w-regular graphs, which is known to be NP-complete [7, 8]. Nomikos et al. [6]
propose a 2-approximation algorithm which we restate as Algorithm 1 in
MinMult-EMC terms (the algorithm was originally stated in terms of wave-
length allocation in multifiber optical networks). The analysis in [6] is tight,
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as there exists a family of instances in which Algorithm 1 computes a solu-
tion with cost exactly twice the optimum: {〈Ck, w〉 : even k ≥ 2 and w ≥ 2}.
Indeed, if the directions assigned in step 1 are such that each node has in-
degree 1 and out-degree 1, then the resulting bipartite multigraph H will
contain k edges that can all be colored with the same color. Translated to
the original instance, this induces a cost of 2 for each node for a total cost
of 2k, whereas the optimum solution has cost k by coloring the edges with
alternating colors around the cycle.

Definition 1. Let 〈G,w〉 be an instance of MinMult-EMC and fix an
orientation of G. We say that a node v is locally optimal if the following
condition holds:(
dinv mod w = 0

)
∨
(
doutv mod w = 0

)
∨
(
(dinv mod w) + (doutv mod w) > w

)
The pertinence of locally optimal nodes is revealed by the following

lemma, which is implicit in the analysis in [6].

Lemma 2 ([6]). In any solution computed by Algorithm 1, each node v incurs
a cost of exactly

⌈
dv
w

⌉
if it is locally optimal with respect to the directions

assigned during step 1, or at most
⌈
dv
w

⌉
+ 1 if it is not locally optimal.

In other words, Algorithm 1 incurs an additional cost, with respect to the
lower bound of Fact 1, of at most one for each non-locally-optimal node. In
fact, as we prove in Section 2 (Lemma 3), for every orientation of the given
graph and for every edge grouping that can be chosen in steps 1 and 2 of
Algorithm 1, there exists a worst-case proper edge coloring of the resulting
bipartite multigraph (step 4 of Algorithm 1) that causes every non-locally-
optimal node v to contribute a cost of exactly

⌈
dv
w

⌉
+ 1.

If w = 2, then the problem can be solved exactly in polynomial time:
The Euler partition algorithm in [9] computes a partition of the edges of a
multigraph into open and closed paths, with the property that each vertex of
odd degree is the extremity of exactly one open path, and each vertex of even
degree is the extremity of no open paths. Note, then, that if we color the
edges of each path of the Euler partition alternately with the two available
colors, the resulting coloring will have the property that the edges incident
to each even-degree node will be partitioned into two color classes of equal
size, whereas the edges incident to each odd-degree node will be partitioned
into two color classes whose sizes differ by exactly one. This implies that
the cost incurred by each node v will be exactly

⌈
dv
2

⌉
, thus the solution is

optimal in view of Fact 1. We have thus proved the following:
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Theorem 1. There exists an exact polynomial-time algorithm for MinMult-
EMC with two available colors.

1.2. Our contributions

We consider the class of approximation algorithms for MinMult-EMC,
in which one computes some orientation of the given multigraph G and then
executes steps 2–5 of Algorithm 1. In particular, we investigate the possibility
of improving the approximation ratio of Algorithm 1 by choosing a more
sophisticated orientation of G in step 1. However, we show in Section 2 that
there exists an infinite family of instances in which no orientation whatsoever
can guarantee a solution with cost smaller than 2−Θ

(
1
w

)
times the optimal,

under the assumption that step 4 of Algorithm 1 may produce a worst-case
edge coloring.

On the positive side, we show in Section 3 how to compute an orientation
that yields an approximation ratio of 2− 1

2w
. This represents an improvement

with respect to the algorithm from [6], which has a tight approximation ratio
of 2.

Lastly, we explain in Section 4 how our results for MinMult-EMC can
be applied to a wavelength allocation problem in multifiber optical star net-
works. Our algorithm from Section 3 yields a

(
2− 1

2w

)
-approximation algo-

rithm for the wavelength allocation problem, which improves the previously
best ratio of 2. It should be noted that, in this context, w represents the
number of wavelengths (or optical frequencies) available in each optical fiber
in the system and this number is limited in practice due to technological
constraints. Therefore, an approximation ratio of 2 − 1

2w
represents an ap-

preciable improvement in practical terms.

2. The lower bound

Before we present the lower bound, we prove a general lemma concerning
the worst-case behavior of Algorithm 1 for non-locally-optimal nodes.

Lemma 3. Let 〈G,w〉 be a MinMult-EMC instance with G = (V,E),
G′ be an arbitrary orientation of G, and H = (Vout ∪ Vin, A) be a bipartite
multigraph as constructed in steps 2 and 3 of Algorithm 1. There exists a
proper edge coloring of H with w colors, such that, after every edge in E
receives the color of the corresponding edge in A in step 5 of Algorithm 1,
each non-locally-optimal node v ∈ V incurs a cost of

⌈
dv
w

⌉
+ 1.
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Proof. Let V ? be the set of non-locally-optimal nodes of G under the orienta-
tion G′. For each v ∈ V ?, let Vin(v) ⊆ Vin (resp. Vout(v) ⊆ Vout) be the set of⌈
dinv
w

⌉
groups of incoming (resp.

⌈
doutv

w

⌉
groups of outgoing) edges of v that are

created in step 2 of Algorithm 1 and let V ′in(v) = {g ∈ Vin(v) : |g| ≤ w − 1}
(resp. V ′out(v) = {g ∈ Vout(v) : |g| ≤ w − 1}). Also, let dv = avw + xv, where
av ∈ N and 0 ≤ xv ≤ w − 1. Since v is not locally optimal, dinv and doutv

are not integer multiples of w and also (dinv mod w) + (doutv mod w) ≤ w. We
write dinv = bvw + yv, where bv ∈ N and 1 ≤ yv ≤ w − 1. For the out-degree,
we have doutv = dv − dinv = (av − bv)w + (xv − yv), and since doutv is not an
integer multiple of w, it must hold that xv 6= yv.

We construct a new bipartite multigraph H ′ = (V ′in ∪ V ′out, A∪A′), where
V ′in = Vin ∪ {sv : v ∈ V ?}, V ′out = Vout ∪ {tv : v ∈ V ?}, and A′ contains the
following new edges for each v ∈ V ?:

• for each g ∈ V ′in(v), w − |g| parallel edges between g and tv,

• for each g ∈ V ′out(v), w − |g| parallel edges between g and sv, and

• the edge {sv, tv}.

Note that the degree of each g ∈ Vin(v) in H ′ is w and, therefore, a total

of
⌈dinv

w

⌉
w edges are incident to nodes in Vin(v). Of those,

⌈dinv
w

⌉
w − dinv =

w− (dinv mod w) = w− yv are newly added edges incident to nodes in V ′in(v),
whose other endpoint is tv. The degree of tv in H ′ is, therefore, 1+w−yv ≤ w.

Similarly, the degree of each g ∈ Vout(v) in H ′ is w and a total of
⌈doutv

w

⌉
w

edges are incident to nodes in Vout(v). Of those,
⌈doutv

w

⌉
w − doutv = w −

(doutv mod w) are newly added edges incident to nodes in V ′out(v), whose other
endpoint is sv. The degree of sv in H ′ is, therefore, 1 + w − (doutv mod w).
If xv > yv, we have (doutv mod w) = xv − yv and therefore the degree of sv
is at most 1 + w − xv + yv ≤ w. On the other hand, if xv < yv, we have
(doutv mod w) = w+xv−yv and therefore the degree of sv is at most 1−xv +
yv ≤ w.

We conclude that the maximum degree of H ′ is bounded by w and thus
there exists a proper edge coloring of H ′ with w colors. We claim that the
restriction of this edge coloring to the edges of H is a proper edge coloring
of H with the desired property. Indeed, for v ∈ V ?, let cv be the color
assigned to the edge {sv, tv}. Since in H ′ the degree of every node in Vin(v)∪
Vout(v) is w, each of these nodes has an incident edge that is colored with cv.
However, that edge cannot be any of the edges in A′, since every edge in A′
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that is incident to a node in Vin(v)∪Vout(v) is also incident to one of the nodes
sv, tv and thus it cannot be colored with cv. Therefore, when we restrict the
coloring to the edges of H, each node in Vin(v)∪Vout(v) has an incident edge
that is colored with cv. This implies that, in the edge coloring of G that is

returned by the algorithm, µ(v, cv) = |Vin(v) ∪ Vout(v)| =
⌈dinv

w

⌉
+
⌈doutv

w

⌉
. We

will show that µ(v, cv) =
⌈
dv
w

⌉
+ 1, which concludes the proof.

If xv > yv, then we have xv > 0 and therefore
⌈
dv
w

⌉
= av + 1. We also

have µ(v, cv) = bv + 1 + (av − bv + 1) = av + 2 =
⌈
dv
w

⌉
+ 1.

If xv < yv, then µ(v, cv) = bv + 1 + av − bv = av + 1. It remains to show
that

⌈
dv
w

⌉
= av, or, equivalently, that xv = 0. Indeed, from the fact that v is

not locally optimal, we have (dinv mod w) + (doutv mod w) ≤ w, which can be
rewritten as yv + w + xv − yv ≤ w, therefore xv ≤ 0.

We are now ready to show the lower bound. For k ≥ 2, consider the
MinMult-EMC instance Ik = 〈K2k, 2k−1〉. In the optimal solution for Ik,
K2k is properly edge colored with w = 2k − 1 colors, so that the incident
edges to any node receive distinct colors. With this edge coloring, every node
contributes a cost of 1 =

⌈
dv
w

⌉
to the cost of the solution, therefore by Fact 1

this coloring must be an optimal solution with cost OPTk = 2k.
On the other hand, we argue that, under every possible orientation, K2k

has at least 2k − 2 non-locally-optimal nodes. Indeed, the in-degree and the
out-degree of each node are between 0 and w (inclusive) and their sum is
equal to w. Therefore, none of the nodes can satisfy the local optimality
condition (dinv mod w) + (doutv mod w) > w. Furthermore, if one of them is
locally optimal because, say, doutv = w, then at most one other can be locally
optimal (by having dinv′ = w). Symmetrically, if one of them has dinv = w,
then at most one other can be locally optimal (by having doutv′ = w). We
conclude that at most 2 nodes can be locally optimal and at least 2k− 2 will
be non-locally-optimal.

By Lemma 3, for every orientation of K2k and for every possible edge
grouping constructed in step 2 of Algorithm 1, there exists an edge coloring
of the corresponding bipartite multigraph (step 4) that results in a solution
in which each non-locally-optimal node incurs a cost of 2, whereas by Fact 1
each of the rest incurs a cost of at least 1. In total, the solution cost is
SOLk ≥ 2k + (2k − 2) = 4k − 2.

We thus have
SOLk

OPTk

≥ 4k − 2

2k
= 2− 1

k
.
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Since w = Θ(k) in this family of instances, we finally have the following:

Theorem 2. There exists an infinite family of MinMult-EMC instances
with increasing number of available colors w in which, for every orienta-
tion and for every edge grouping computed in steps 1 and 2 of Algorithm 1,
there exists a proper edge coloring of the corresponding bipartite multigraph
in step 4, such that Algorithm 1 returns a solution with cost at least 2−Θ

(
1
w

)
times the optimal.

3. Edge orientation to approximate MinMult-EMC

As a first observation, consider the simplest conceivable randomized al-
gorithm for MinMult-EMC, i.e., the one that assigns a random color with
uniform probability to each edge. Unfortunately, this algorithm performs
quite poorly in the following family of instances: The multigraph contains
two nodes with w parallel edges joining them, where w is the number of avail-
able colors. As is well known, the maximum multiplicity color will appear
Θ
(

logw
log logw

)
times with high probability [10]. On the other hand, one obtains

an optimum solution with cost 2 simply by assigning a different color to each
edge. This motivates us to search for a randomized algorithm with a better
performance guarantee.

We now consider the algorithm that assigns a random direction to each
edge of G and then executes steps 2-5 of Algorithm 1. We first show in
Lemma 6 that, given a MinMult-EMC instance 〈G,w〉, the assignment
of random directions to the edges of G yields in expectation at least 1

2w
· n

locally optimal nodes. Then, we show in Theorem 3 how to derandomize this
procedure in order to obtain a deterministic algorithm for MinMult-EMC
with approximation ratio at most 2− 1

2w
.

Definition 2. S(d, w) denotes the set of integers i such that, if exactly i out
of d incident edges to a d-degree node are incoming and (d− i) incident edges
are outgoing, then the node is locally optimal assuming we have w colors.

Lemma 4. If d is a multiple of w, then S(d, w) = {i · w : 0 ≤ i ≤ d
w
}.

Proof. Since every k ∈ {i · w : 0 ≤ i ≤ d
w
} is a multiple of w, a node with k

incoming edges and (d− k) outgoing edges is clearly locally optimal.
Now, consider some k 6∈ {i·w : 0 ≤ i ≤ d

w
}, i.e., 0 ≤ k ≤ d and k = t·w+y,

where 0 < y < w. Since d is a multiple of w, neither k nor d−k are multiples
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of w. Moreover, (k mod w)+
(
(d−k) mod w

)
= y+(w−y) = w. Therefore,

a node with k incoming edges and (d− k) outgoing edges cannot be locally
optimal.

Lemma 5. If d = r · w + x, where 0 < x < w, then S(d, w) is exactly the
set:

⋃r
i=0

{
i · w + j : j ∈ {0, x, x+ 1, . . . , w − 1}

}
∩ {0, 1, . . . , d}.

Proof. Let k = i ·w+ j, where j ∈ {0, x, x+ 1, . . . , w− 1}. If j = 0, then k is
a multiple of w. If j = x, then d−k = (r−i) ·w. Finally, if x+1 ≤ j ≤ w−1,
then (k mod w) +

(
(d − k) mod w

)
= j +

(
w − (j − x)

)
> w. Therefore, in

all cases, a node with k incoming edges and (d− k) outgoing edges is locally
optimal.

Now, consider some k such that k = i · w + j, where 1 ≤ j ≤ x− 1. We
have that k is not a multiple of w, (d− k) mod w = (x− j) mod w > 0, and
(k mod w) + ((d− k) mod w) = j+ (x− j) = x < w. Therefore, a node with
k incoming edges and (d− k) outgoing edges cannot be locally optimal.

Lemma 6. Let 〈G,w〉 be an instance of MinMult-EMC and let ~G be a
random orientation of G in which each edge receives each of the two possible
directions with probability 1

2
. The expected number of locally optimal nodes

in ~G is at least 1
2w
· n.

Proof. For any fixed node v, let Xv denote the indicator random variable
which takes the value 1 if v is locally optimal, and takes the value 0 otherwise.
Note that, by linearity of expectation, the expected number of locally optimal
nodes in ~G is exactly

∑
v∈V P [Xv = 1]. We now prove that P [Xv = 1] ≥ 1

2w
.

By Definition 2, v is locally optimal if and only if dinv ∈ S(d, w), where d
is the degree of v. Therefore, P [Xv = 1] =

∑
s∈S(d,w) P

[
dinv = s

]
. However,

note that P
[
dinv = s

]
is simply given by 1

2d

(
d
s

)
. We conclude that we can write

P [Xv = 1] as follows:

P [Xv = 1] =
1

2d

∑
s∈S(d,w)

(
d

s

)
It suffices, therefore, to show that

∑
s∈S(d,w)

(
d
s

)
≥ 2d−w. We distinguish the

following cases:
Case 1 : d = r · w, for r ≥ 2. By Lemma 4, we have:∑

s∈S(d,w)

(
d

s

)
=

r∑
i=0

(
r · w
i · w

)
(1)
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By repeated applications of the identity
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
, we can derive

the inequality:(
r · w
i · w

)
≥

w∑
j=0

(
(r − 1) · w

(i− 1) · w + j

)
, for 1 ≤ i ≤ r − 1 (2)

The combination of Eq. 1 and 2 yields:

∑
s∈S(d,w)

(
d

s

)
>

r−1∑
i=1

w∑
j=0

(
(r − 1) · w

(i− 1) · w + j

)

≥
(r−1)·w∑

i=0

(
(r − 1) · w

i

)
= 2(r−1)·w = 2d−w

Case 2 : d = r · w + x, for r ≥ 1 and 0 < x < w. By Lemma 5, we have:

∑
s∈S(d,w)

(
d

s

)
>

r−1∑
i=0

w∑
j=x

(
r · w + x

i · w + j

)
(3)

Again, by repeated applications of the identity
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
, it is

possible to derive the following:

w∑
j=x

(
r · w + x

i · w + j

)
≥

w∑
j=0

(
r · w

i · w + j

)
(4)

The combination of Eq. 3 and 4 yields:

∑
s∈S(d,w)

(
d

s

)
>

r−1∑
i=0

w∑
j=0

(
r · w

i · w + j

)

≥
r·w∑
i=0

(
r · w
i

)
= 2r·w = 2d−x > 2d−w

Case 3 : d ≤ w. In this case, 2d−w ≤ 1 and
∑

s∈S(d,w)

(
d
s

)
= 2 > 2d−w,

since, by Lemmas 4 and 5, we have that S(d, w) = {0, d}.
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Theorem 3. There exists a MinMult-EMC algorithm which computes
an orientation of the given multigraph and then executes steps 2-5 of Al-
gorithm 1, that has an approximation ratio of at most 2− 1

2w
.

Proof. By Lemma 6, if we assign random directions to the edges of G, we
get at least 1

2w
· n locally optimal nodes in expectation. This algorithm can

be derandomized by a standard application of the method of conditional
expectations. Indeed, let’s assume that the orientation of a subset of the
edges has already been fixed. Then, we can compute in polynomial time
the probability that a fixed node v of degree d will be locally optimal if we
assign the rest of the directions randomly, as follows: If a of its incident edges
have already been oriented as incoming to v, and b of its incident edges have
already been oriented as outgoing from v, then the probability that the node
will be locally optimal is 1

2d−a−b ·
∑

s≥a:s∈S(d,w)

(
d−a−b
s−a

)
.

Therefore, the algorithm which examines edges in an arbitrary order, and
to each edge assigns the direction which maximizes the expected number of
locally optimal nodes under the current partial orientation, runs in deter-
ministic polynomial time and produces an orientation with at least 1

2w
· n

locally optimal nodes. Taking also into account Lemma 2, this implies that,
if we execute steps 2-5 of Algorithm 1 on this orientation, we will obtain a
solution with cost SOL that can be expressed as follows: (let O denote the
set of locally optimal nodes)

SOL ≤
∑
v∈O

⌈dv
w

⌉
+
∑

v∈V \O

(⌈dv
w

⌉
+ 1
)

=
∑
v∈V

⌈dv
w

⌉
+ |V \ O|

≤
∑
v∈V

⌈dv
w

⌉
+
(

1− 1

2w

)
· n (5)

If OPT is the cost of an optimal solution, then Eq. 5, Fact 1, and the
observation that n ≤

∑
v∈V
⌈
dv
w

⌉
imply: SOL ≤

(
2 − 1

2w

)
·
∑

v∈V
⌈
dv
w

⌉
≤(

2− 1
2w

)
·OPT.

4. Application to wavelength allocation in multifiber optical star
networks

In a multifiber optical network, physical links are implemented by mul-
tiple parallel optical fibers and communication requests between nodes are
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represented as simple (undirected) paths on the network. The network oper-
ator needs to assign a wavelength (optical frequency, also referred to as color)
to each request for transmission through an optical fiber. A single optical
fiber supports a given number of wavelengths for transmission of requests.
If two requests are assigned the same wavelength, then they cannot use the
same optical fiber on any edge. Therefore, if an edge carries f requests that
are assigned the same wavelength, then the operator will need to deploy at
least f parallel optical fibers on that edge in order to accommodate these
requests. The fiber demand on a given edge is determined by the wavelength
that is used the most among those assigned to paths using that edge. It thus
makes sense to strive for a wavelength assignment that minimizes the sum
of maximum color loads over all edges, since this directly affects the total
number of fibers that need to be deployed and, consequently, the cost of the
network. We call this problem Minimum Multiplicity Path Multicol-
oring (MinMult-PMC).1

MinMult-PMC was defined in [6], where an exact algorithm for chains
was presented, as well as 2-approximation algorithms for rings and stars.
These algorithms were later extended to a generalized version of MinMult-
PMC with non-uniform multiplicity costs [11]. Path multicoloring problems
with different objective functions were defined and studied in [6, 12–14].
Path multicoloring problems were also studied in a non-cooperative setting
in [15, 16].

Let us introduce some further notation before we define the problem
formally. We will use Le for the load of edge e with respect to a given path
set in a simple graph, i.e., Le is the number of paths which contain edge e.
Given, additionally, a coloring of the path set, f(e) will denote the maximum
color multiplicity on edge e, i.e., the number of paths in the largest color class
among the paths that use edge e. The formal definition of MinMult-PMC
is as follows:

Problem 2 (MinMult-PMC).
Instance: 〈G,P , w〉, where G = (V,E) is an undirected simple graph, P is a
set of undirected simple paths on G, and w ∈ N is the number of available
colors.

1The term “path multicoloring” refers to the fact that color collisions are allowed
between edge-intersecting paths. This is in contrast to standard path coloring, where
edge-intersecting paths must receive distinct colors.
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Figure 1: A graph G with a set P of paths of length 2 (left) and the corresponding
multigraph G′ (right). Every node of G corresponds to a node of G′ (with the exception
of the central node of the star) and each edge of G′ corresponds to a path in P that joins
its two endpoints. It is straightforward to verify that the line graph of G′ is isomorphic to
the conflict graph of P.

Feasible solution: a coloring of P with w colors.
Goal: minimize

∑
e∈E f(e).

It has been pointed out before in the literature [17, 18] that there exists
an easily computed bijection between pairs (G,P) on the one hand, where
G is a star and P is a set of paths of length 2 on G, and multigraphs G′ on
the other hand, such that the conflict graph of P (i.e., a graph with vertex
set P and edges connecting two nodes if the corresponding paths are not
edge-disjoint in G) is isomorphic to the line graph of G′. Figure 1 illustrates
the bijection.

Consequently, MinMult-PMC in star networks with paths (requests) of
length 2 can be equivalently cast as MinMult-EMC. We now prove that any
approximation algorithm for MinMult-EMC can also be used for general
instances of MinMult-PMC in stars (i.e., instances that may also contain
paths of length 1), under the assumption that the algorithm performs well
with respect to the lower bound of Fact 1.

Theorem 4. Suppose that there is a polynomial-time algorithm that, given
a MinMult-EMC instance 〈H,w〉, produces a solution with cost at most
α
(
|V (H)|, |E(H)|, w

)
·
∑

v∈V (H)

⌈
dv
w

⌉
, where α is increasing in the second

argument. Then, there exists a polynomial-time algorithm that, given a
MinMult-PMC instance 〈G,P , w〉 where G is a star, computes a solution
with cost within a factor α

(
|E(G)|, |P|, w

)
of the optimal.

Proof. Let I = 〈G,P , w〉 be an instance of MinMult-PMC where G =
(V,E) is a star, let P ′ be the subset of P that contains only the paths
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of length 2, and let H be the multigraph corresponding to (G,P ′) via the
bijection explained above. Let A be the stipulated approximation algorithm
for MinMult-EMC and consider the following algorithm B for MinMult-
PMC:

1. Execute algorithm A on the MinMult-EMC instance 〈H,w〉.
2. Obtain a coloring of P ′ by assigning to each path in P ′ the color of the

corresponding edge in H.

3. Complete the coloring produced in the previous step as follows: For
each path of length 1 on edge e (in an arbitrary order), color it with the
color of smallest multiplicity on edge e in the current partial coloring.

Let L′e be the load of edge e in G with respect to path set P ′, let f ′(e) be

the cost on edge e after the partial coloring of step 2, and let δe = f ′(e)−
⌈
L′e
w

⌉
.

By the properties of algorithm A and the bijection between (G,P ′) and H,

we know that
∑

e∈E f
′(e) ≤ α

(
|E(G)|, |P ′|, w

)
·
∑

e∈E
⌈L′e

w

⌉
. Substituting f ′(e)

and denoting α̂ = α
(
|E(G)|, |P ′|, w

)
, we obtain:

∑
e∈E

δe ≤ (α̂− 1) ·
∑
e∈E

⌈L′e
w

⌉
(6)

Furthermore, let Le be the load of edge e with respect to path set P ,
let f(e) be the cost on edge e after step 3, and let E+ ⊆ E be the set of
edges e with f(e) > f ′(e). Consider an edge e ∈ E+. The fact that the
cost of e increased with respect to the partial coloring of step 2 implies that
the paths on e are now partitioned equitably into w color classes. Therefore,
f(e) =

⌈
Le

w

⌉
. On the other hand, if e ∈ E \ E+, we have f(e) = f ′(e) =

δe +
⌈L′e

w

⌉
≤ δe +

⌈
Le

w

⌉
, because L′e ≤ Le. The cost of the solution returned

by algorithm B is, therefore:∑
e∈E

f(e) =
∑
e∈E+

f(e) +
∑

e∈E\E+

f(e)

≤
∑
e∈E+

⌈Le

w

⌉
+

∑
e∈E\E+

(
δe +

⌈Le

w

⌉)
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≤
∑
e∈E

⌈Le

w

⌉
+
∑
e∈E

δe

≤
∑
e∈E

⌈Le

w

⌉
+ (α̂− 1) ·

∑
e∈E

⌈L′e
w

⌉
(by Eq. 6)

≤ α̂ ·
∑
e∈E

⌈Le

w

⌉
(since L′e ≤ Le)

Since |P ′| ≤ |P| and α is increasing in the second argument, we have
α̂ ≤ α

(
|E(G)|, |P|, w

)
. Moreover,

∑
e∈E
⌈
Le

w

⌉
is a lower bound for the cost of

the optimal solution of I, therefore B satisfies the desired property.

By our analysis, the algorithm that we propose in Theorem 3 satisfies the
condition of Theorem 4. Consequently, MinMult-PMC in stars admits an
approximation algorithm with ratio 2− 1

2w
.

5. Concluding remarks

We investigated the possibility of improving Algorithm 1 for MinMult-
EMC, by choosing a more appropriate edge orientation in step 1 instead of
taking an arbitrary orientation that yields a 2-approximation algorithm [6].
Note that it is possible to compute an orientation that yields an approxima-
tion ratio of 2 − Θ

(
1
n

)
, where n is the number of nodes of the multigraph,

simply by taking an orientation that creates at least one source and one sink,
which is always feasible. In Section 3, we gave an algorithm with approxi-
mation ratio 2− 1

2w
.

The comparative advantage of our algorithm is highlighted in view of
its application to the MinMult-PMC problem in stars, as we explained
in Section 4. The naive MinMult-EMC algorithm with ratio 2 − Θ

(
1
n

)
is translated by Theorem 4 to a MinMult-PMC algorithm with ratio 2 −
Θ
(

1
m

)
, where m is the number of edges in the star network. It is crucial to

note that, in the context of optical networks, the parameter w represents the
number of available wavelengths per fiber, which is limited in practice due to
technological constraints (see, e.g., [19, Section 1.8.3]). On the other hand,
the parameter m represents the size of the network, which may be arbitrarily
large. Consequently, from a practical standpoint, a

(
2− 1

2w

)
-approximation

algorithm for MinMult-EMC is arguably more desirable than an algorithm
with ratio 2−Θ

(
1
n

)
.
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We also showed, in Theorem 2, a lower bound of 2−Θ
(
1
w

)
on the approx-

imation ratio of any algorithm which computes an orientation of the given
multigraph and then executes steps 2-5 of Algorithm 1, under the assumption
that step 4 of Algorithm 1 may produce a worst-case edge coloring. There-
fore, we may need to design a special edge coloring procedure or to employ
different techniques in order to achieve an approximation ratio asymptoti-
cally better than 2.
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