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Abstract

We give an exact polynomial-time algorithm for the problem of coloring a col-

lection of paths defined on a spider graph using a minimum number of colors

(Min-PMC), while respecting a given even maximum admissible color mul-

tiplicity on each edge. This complements a previous result on the complexity

of Min-PMC in spider graphs, where it was shown that, for every odd k, the

problem is NP-hard in spiders with admissible color multiplicity k on each

edge. We also obtain an exact polynomial-time algorithm for maximizing

the number of colored paths with a given number of colors (Max-PMC) in

spider graphs with even admissible color multiplicity on each edge.
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1. Introduction

Path coloring problems have been studied extensively in the context of

routing and wavelength assignment in optical networks, as well as in several

other applications, including, for example, compiler optimization and vehi-

cle scheduling. In a meaningful generalization, path multicoloring problems

were defined and studied in [2, 9, 12, 13, 18]. Note that the term “path

multicoloring” means that color collisions are allowed for edge-intersecting

paths. This is in contrast to standard path coloring, where edge-intersecting

paths must receive distinct colors.

Various optimization objectives have been studied in the context of path

multicoloring. In this article, we are interested in two problems that arise

from bounding the admissible color multiplicity on each edge, i.e., the maxi-

mum number of paths that can use this edge and receive the same color. In

Min-PMC, one seeks to color all paths with the minimum number of colors.

The problem is defined formally as follows:

Problem 1 (Minimum Path MultiColoring, Min-PMC).

Instance: 〈G,P , µ〉, where G = (V,E) is an undirected graph, P is a set of

undirected simple paths on G, and µ : E → N is a function that maps each

edge to its admissible color multiplicity.

Feasible solution: a coloring of P so that, for every edge e, at most µ(e)

paths using e have the same color.

Goal: minimize the number of colors used.
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In the maximization version of the problem, the number of available colors

is limited and one seeks to maximize the number of paths that are colored.

This problem, Max-PMC, is defined formally as follows:

Problem 2 (Maximum Path MultiColoring, Max-PMC).

Instance: 〈G,P , µ, w〉, where G = (V,E) is an undirected graph, P is a set

of undirected simple paths on G, µ : E → N is a function that maps each

edge to its admissible color multiplicity, and w ∈ N is the number of available

colors.

Feasible solution: a coloring of a subset Q ⊆ P with at most w colors, so

that, for every edge e, at most µ(e) paths using e have the same color.

Goal: maximize |Q|.

The restriction of Min-PMC (resp. Max-PMC) to instances with µ(e) =

1 for each edge e is known as the minimum (resp. maximum) path coloring

problem and is denoted by Min-PC (resp. Max-PC).

Related work. Path coloring and path multicoloring problems have been ex-

tensively studied during the last twenty years (see e.g. [3, 5, 7–9, 16–18, 22]

and references therein). Most meaningful variants are NP-hard in general

graphs and even in simple topologies, e.g. stars and rings, whereas they can

be solved exactly in chains. In addition, most variants are hard to approxi-

mate in general graphs within a constant factor. This, however, is possible

in stars, rings, and in some other simple topologies.

The Min-PMC problem was first considered in [12, 13] in the context of

wavelength assignment in multifiber all-optical networks with an equal num-

ber of fibers per link. Complexity lower bounds and inapproximability results
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for Min-PMC follow from the corresponding results for Min-PC. Specifi-

cally, Min-PC is NP-hard already in rings and stars and one can exploit

the connection of Min-PC in stars with the edge coloring problem in multi-

graphs to show that Min-PC in stars cannot have a (4
3
− ε)-approximation

algorithm, unless P = NP [8, 11]. Furthermore, there exists a constant c > 0

such that Min-PC in grids does not admit a |V |ε-approximation algorithm

for any ε < c, unless P = NP [15, Corollary 6.1].

Moving on to positive results for Min-PMC, it was shown in [6] that it ad-

mits a 4-approximation in trees. A 3
2
-approximation for stars was proposed

in [16]; however, an asymptotic 9
8
-approximation can be obtained directly

from the equivalence between Min-PMC in stars and f -coloring in multi-

graphs and the result of Nakano et al. for f -coloring of multigraphs [14].

In [16], the authors also give a 2-approximation algorithm for rings and an

exact algorithm for chains. In [20] algorithms for Min-PMC in spiders1

and caterpillars2 were proposed, achieving approximation ratios of 2 and 3,

respectively. In contrast, it was shown in [20] that the directed version of

Min-PMC can be solved exactly in spiders.

A more recent result of Bian and Gu [5] states that Min-PMC can be

solved exactly in spiders with uniform and even admissible color multiplicity

(uniform stands for ‘the same on each edge of the graph’). In fact, the same

algorithm works under a slightly relaxed uniformity constraint, namely that

each leg of the spider has uniform and even admissible color multiplicity, but

the multiplicity may vary among different legs. Therefore, Min-PMC can

1A spider is a tree with at most one node of degree 3 or more.
2A caterpillar is a tree in which all nodes are within distance 1 of a central path.
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also be solved exactly in stars where the admissible color multiplicity is even

(not necessarily uniform). However, it is known that Min-PMC is NP-hard

when G is a star and µ(e) = 1 for all edges [8, 11]. Bian and Gu also prove

that, for every odd k, Min-PMC is NP-hard when G is a star and µ(e) = k

for all edges.

Results for Max-PMC appear in [9], where a 2.54-approximation for

trees is proposed, in [21], where the author gives an exact algorithm for

chains and 2-approximation algorithms for rings and stars, and in [5], where

they provide a 1.58-approximation algorithm for the problem in spiders and

an exact algorithm for spiders with uniform and even admissible color mul-

tiplicity. The NP-hardness of Max-PMC in rings and stars follows from

the NP-hardness of Max-PC in rings [19] and stars [7]. With regard to

inapproximability, it is known that for some constant c > 0, Max-PC in

grids does not admit a |P|ε-approximation algorithm for any ε < c, unless

P = NP [15, Theorem 7.8], and that Max-PC in general graphs does not

admit a |E| 12−ε-approximation algorithm for any ε > 0, unless NP ⊆ ZPP [1].

We summarize the known positive results for Min-PMC and Max-PMC

in various topologies in Table 1.

Our contributions. We show in Section 2 that Min-PMC can be solved ex-

actly in spiders with non-uniform even admissible color multiplicity on each

edge. This improves the result of Bian and Gu [5], by completely removing

the uniformity requirement. Moreover, our result complements the com-

plexity result in [5], where it was shown that allowing odd admissible color

multiplicities in a star leads to NP-hardness of the problem.

As a corollary, we obtain in Section 3 an exact algorithm for Max-PMC
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Table 1: Known positive results for Min-PMC and Max-PMC in various topologies.

Topology
Best known approximation ratio for:

Min-PMC Max-PMC

rings 2 (cf. [16]) 2 (cf. [21])

trees 4 (cf. [6]) 2.54 (cf. [9])

caterpillars 3 (cf. [20]) 2.54 (cf. [9])

spiders 2 (cf. [20]) 1.58 (cf. [5])

spiders with µ(e) even

and uniform over each leg
exact (cf. [5]) exact (cf. [5])

3/2 (cf. [16])
stars

9/8 asympt. (cf. [14])
1.58 (cf. [5])

chains exact (cf. [16]) exact (cf. [21])

in spiders with non-uniform even admissible color multiplicity. This result

holds for any number of available colors.

Notation. Given an instance of Min-PMC or Max-PMC, we will use the

notation Le for the load of edge e with respect to the given path set, i.e., Le

is the number of paths that contain edge e.

2. Minimizing the number of colors

We solve Min-PMC in spiders with (non-uniform) even maximum color

multiplicities. Let 〈G,P , µ〉 be an instance of Min-PMC, with G = (V,E).

Fact 1. Every Min-PMC instance requires at least wlb = maxe

⌈
Le
µ(e)

⌉
colors.
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We reduce the problem to the directed version of Min-PMC, which is

known to be polynomial-time solvable in spiders [20]. Formally, the directed

version of the problem is defined as follows: (the problem was called di-

rected Min-Colors-PMC in [20])

Problem 3 (Directed Minimum Path MultiColoring, Dir-Min-PMC).

Instance: 〈~G, ~P , µ〉, where ~G = (V, ~E) is a directed graph, ~P is a set of di-

rected simple paths on ~G, and µ : ~E → N is a function that maps each arc to

its admissible color multiplicity.

Feasible solution: a coloring of ~P so that on every arc e, each color is used

by at most µ(e) paths.

Goal: minimize the number of colors.

In order to perform the reduction, we construct a symmetric directed

graph ~G = (V, ~E), whose arc set ~E contains both arcs (u, v) and (v, u),

for each edge {u, v} ∈ E. We further need to decide a direction for each

undirected path in the original Min-PMC instance 〈G,P , µ〉. We accomplish

this by adding one unit-length dummy path on each edge with odd load,

and then considering the multigraph H which has the same node set as G

and contains one edge {u, v} for each path with endpoints u and v. The

addition of dummy paths ensures that all nodes of H have even degree (see

proof of Theorem 1). Therefore, the Euler partition algorithm of [10] will

partition the edges of H into closed paths. We then perform an arbitrary

orientation of each closed path in the Euler partition. This assigns a direction

to each edge of H, which in turn corresponds to a direction for each path

in P and for each dummy path. Finally, we solve the constructed Dir-Min-

PMC instance with a suitably modified arc color multiplicity function µ′.
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Figures 1–3 illustrate the process of the path set orientation.

Figure 1: Left: The original Min-PMC instance. Right: The instance with added dummy

paths (dotted lines).

Figure 2: Left: The corresponding multigraph H. Right: An orientation of the closed

paths in the Euler partition of H.

Figure 3: The directed path set in the resulting Dir-Min-PMC instance. Here, the

underlying graph is symmetric directed and an edge between two nodes represents a pair

of arcs in opposite directions.

Theorem 1. Algorithm 1 is an exact polynomial-time algorithm for Min-

PMC in spiders with even admissible color multiplicity.
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Algorithm 1 An exact algorithm for Min-PMC in spiders with even ad-

missible color multiplicity

Input: an instance 〈G,P , µ〉 of Min-PMC, where G = (V,E) is a spider

and µ(e) is even for all e

Output: an optimal solution using wlb colors

1: For any edge with odd load, add one unit-length dummy path on that

edge. Let P ′ be the resulting set of paths.

2: Construct the multigraph H = (V,D), where D contains one edge {u, v}

for each path in P ′ with endpoints u and v.

3: Use the algorithm EP in [10] to find an Euler partition of H. Orient each

closed path of the Euler partition in an arbitrary manner, thus obtaining

a directed multigraph ~H. Assign a direction to each path in P ′ according

to the orientation of the corresponding edge in ~H, thus obtaining a set ~P ′

of directed paths.

4: Find an optimal coloring c of the Dir-Min-PMC instance 〈~G, ~P ′, µ′〉,

where ~G is the symmetric directed version of G and µ′(e) = µ(e)
2

for all e,

using the algorithm in [20, Theorem 6].

5: Return the coloring c restricted to the original paths in P .

Proof. We first show that the multigraph H contains only even-degree nodes.

For any node v in G other than the center, let u and w be its neighbors. If v is

the extremity of a leg of the spider, then we imagine that this leg is extended

by means of a new dummy edge that is not used by any path, so that v is no

longer the extremity of the leg and u and w are both well defined. Note that

this extension does not affect the degrees of the original nodes in H. Now,

let P ′ be the set of paths obtained in step 1 of Algorithm 1 and let x be the
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number of paths in P ′ that have v as an endpoint and contain u, let y be the

number of paths in P ′ that have v as an endpoint and contain w, and let z

be the number of paths in P ′ that have v as an internal node. With these

definitions, the degree of v in H is given by x+ y, while x+ z is the load of

edge {u, v} and y+z is the load of edge {v, w} with respect to P ′. Therefore,

since we added unit-length dummy paths on each edge with odd load during

step 1, it follows that x+ z and y+ z are both even, which implies that x+ y

must also be even. We thus proved that every node v apart from the center

of the spider has even degree in H. It follows that all nodes of H have even

degree, since there cannot be a single odd-degree node in a graph.

This guarantees that the Euler partition computed in Step 3 contains

only closed paths [10], thus at the end of Step 3 each path in P ′ has been

assigned a direction. For every edge e, let Le be its load with respect to P

and let L′e be its load with respect to P ′. It is not hard to see that after

Step 3, the paths that use that edge are equipartitioned into L′
e

2
paths in

each direction. Indeed, each closed path in the Euler partition contributes,

for every edge e, an equal number of paths using it in either direction. To see

why, consider an edge e in G and the cut (V1, V2) obtained by removing e.

The corresponding cut in H is crossed by any closed path an equal number of

times in each direction. Each crossing of the cut in H in the direction V1 → V2

(resp. V2 → V1) corresponds to a distinct path that traverses e in G in

the direction V1 → V2 (resp. V2 → V1). Therefore, e is traversed by an

equal number of paths in each direction. By the properties of the algorithm

for Dir-Min-PMC presented in [20], the coloring computed in Step 4 uses

maxe

⌈
L′
e
2

µ(e)
2

⌉
= maxe

⌈
L′
e

µ(e)

⌉
colors.
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Finally, note that, for every edge e, we have either L′e = Le or L′e = Le+1.

In the latter case, Le must be odd and we can write it as Le = q · µ(e) + r,

where 0 < r < µ(e) and r is odd, since µ(e) is even by assumption. Thus,⌈
L′
e

µ(e)

⌉
=
⌈
Le
µ(e)

⌉
= q + 1. We conclude that, for all e ∈ E,

⌈
L′
e

µ(e)

⌉
=
⌈
Le
µ(e)

⌉
.

Therefore, the solution produced by Algorithm 1 uses maxe

⌈
Le
µ(e)

⌉
colors,

which is optimal by Fact 1.

3. Maximizing the number of satisfied requests

We obtain as a corollary of Theorem 1 that the Max-PMC problem is

also exactly solvable in polynomial time in spiders with (non-uniform) even

admissible color multiplicity.

In [5], Bian and Gu propose a deterministic polynomial-time algorithm

for Max-PMC in spiders with uniform even admissible color multiplicity,

which works as follows:

1. First, it computes a maximum-size subsetQ of P such that every edge e

of the spider is used by at most wµ(e) paths in Q. This is accomplished

by solving exactly an instance of the Call Control problem on spiders,

via an algorithm developed in [5].

2. Then, Q is colored with w colors using the algorithm for Min-PMC in

spiders with uniform even admissible color multiplicity that is proposed

in [5].

By plugging Algorithm 1 instead of the one in [5] in the above Step 2, we can

solve Max-PMC in spiders with non-uniform even admissible color multi-

plicity. Indeed, if Le is the load of edge e with respect to path set Q, then
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Algorithm 1 will use maxe

⌈
Le
µ(e)

⌉
≤ maxe

⌈
wµ(e)
µ(e)

⌉
= w colors. Thus, we have

the following:

Theorem 2. There exists an exact polynomial-time algorithm for Max-

PMC in spiders with even admissible color multiplicity.

Acknowledgment

We wish to thank two anonymous referees for their careful reading of

the manuscript and for their suggestions to improve the presentation of our

results.

References

[1] Andrews, M., Zhang, L.: Complexity of wavelength assignment in op-

tical network optimization. IEEE/ACM Trans. Netw. 17(2), 646–657

(2009)

[2] Andrews, M., Zhang, L.: Minimizing maximum fiber requirement in

optical networks. J. Comput. Syst. Sci. 72(1), 118–131 (2006)

[3] Bampas, E., Pagourtzis, A., Pierrakos, G., Potika, K.: On a noncoop-

erative model for wavelength assignment in multifiber optical networks.

IEEE/ACM Trans. Netw. 20(4), 1125–1137 (2012)

[4] Bampas, E., Pagourtzis, A., Pierrakos, G., Syrgkanis, V.: Selfish re-

source allocation in optical networks. In CIAC 2013 Proc., LNCS, vol.

7878, pp. 25–36. Springer (2013)

12



[5] Bian, Z., Gu, Q.P.: Wavelength assignment in multifiber star networks.

Networks 56(1), 30–38 (2010)

[6] Chekuri, C., Mydlarz, M., Shepherd, F.B.: Multicommodity demand

flow in a tree. In: ICALP 2003 Proc., LNCS, vol. 2719, pp. 410–425.

Springer (2003)

[7] Erlebach, T., Jansen, K.: Maximizing the number of connections in

optical tree networks. In ISAAC 1998 Proc., LNCS, vol. 1533, pp. 179–

188. Springer (1998)

[8] Erlebach, T., Jansen, K.: The complexity of path coloring and call

scheduling. Theor. Comput. Sci. 255(1-2), 33–50 (2001)

[9] Erlebach, T., Pagourtzis, A., Potika, K., Stefanakos, S.: Resource allo-

cation problems in multifiber WDM tree networks. In WG 2003 Proc.,

LNCS, vol. 2880, pp. 218–229. Springer (2003)

[10] Gabow, H.N.: Using Euler partitions to edge color bipartite multigraphs.

Int. J. Parallel Prog. 5(4), 345–355 (1976)

[11] Golumbic, M.C., Jamison, R.E.: The edge intersection graphs of paths

in a tree. J. Combin. Theory Ser. B 38(1), 8–22 (1985)

[12] Li, G., Simha, R.: On the wavelength assignment problem in multifiber

WDM star and ring networks. IEEE/ACM Trans. Netw. 9(1), 60–68

(2001)

[13] Margara, L., Simon, J.: Wavelength assignment problem on all-optical

13



networks with k fibres per link. In ICALP 2000 Proc., LNCS, vol. 1853,

pp. 768–779. Springer (2000)

[14] Nakano, S., Nishizeki, T., Saito, N.: On the f-coloring of multigraphs.

IEEE T. Circuits Syst. 35(3), 345–353 (1988)

[15] Nomikos, C.: Path coloring in graphs. Ph.D. dissertation, Na-

tional Technical University of Athens, Greece (1997, in Greek).

doi:10.12681/eadd/11249

[16] Nomikos, C., Pagourtzis, A., Potika, K., Zachos, S.: Fiber cost reduction

and wavelength minimization in multifiber WDM networks. In NET-

WORKING 2004 Proc., LNCS, vol. 3042, pp. 150–161. Springer (2004)

[17] Nomikos, C., Pagourtzis, A., Potika, K., Zachos, S.: Routing and wave-

length assignment in multifiber WDM networks with non-uniform fiber

cost. Comput. Netw. 50(1), 1–14 (2006)

[18] Nomikos, C., Pagourtzis, A., Zachos, S.: Routing and path multicolor-

ing. Inf. Process. Lett. 80(5), 249–256 (2001)

[19] Nomikos, C., Pagourtzis, A., Zachos, S.: Satisfying a maximum number

of pre-routed requests in all-optical rings. Comput. Netw. 42(1), 55–63

(2003).

[20] Pagourtzis, A., Potika, K., Zachos, S.: Path multicoloring with fewer

colors in spiders and caterpillars. Computing 80(3), 255–274 (2007)

[21] Potika, K.: Maximizing the number of connections in multifiber WDM

14



chain, ring and star networks. In NETWORKING 2005 Proc., LNCS,

vol. 3462, pp. 1465–1470. Springer (2005)

[22] Raghavan, P., Upfal, E.: Efficient routing in all-optical networks. In

STOC 1994 Proc., pp. 134–143. ACM (1994)

15


	Introduction
	Minimizing the number of colors
	Maximizing the number of satisfied requests

