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Abstract. We study path multicoloring games that describe situations
in which selfish entities possess communication requests in a multifiber
all-optical network. Each player is charged according to the maximum
fiber multiplicity that her color (wavelength) choice incurs and the social
cost is the maximum player cost. We investigate the price of anarchy of
such games and provide two different upper bounds for general graphs—
namely the number of wavelengths and the minimum length of a path
of maximum disutility, over all worst-case Nash Equilibria—as well as
matching lower bounds which hold even for trees; as a corollary we obtain
that the price of anarchy in stars is exactly 2. We also prove constant
bounds for the price of anarchy in chains and rings in which the number
of wavelengths is relatively small compared to the load of the network;
in the opposite case we show that the price of anarchy is unbounded.

Key words: selfish wavelength assignment, non-cooperative games, price
of anarchy, multifiber optical networks, path multicoloring

1 Introduction

The need for efficient access to the optical bandwidth in all-optical networks has
given rise to the study of several optimization problems in the past years. The
most well-studied among them is the problem of assigning a path and a color
(wavelength) to each communication request in such a way that paths of the same
color are edge-disjoint and the number of colors used is minimized. Nonetheless,
it has become clear that the number of wavelengths in commercially available
fibers is rather limited—and will probably remain such in the foreseeable future.
Fortunately, the use of multiple fibers has come to the rescue. However, fibers
are not unlimited either, therefore it makes sense to minimize their usage. This
is particularly interesting from the customer’s point of view, for example in
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situations where one can hire a number of parallel fibers for a certain period and
the cost depends on that number.

To this end, several optimization problems have been defined and studied,
the objective being to minimize either the maximum fiber multiplicity per edge
[1–3] or the sum of these maximum multiplicities over all edges of the graph
[4–6]; in another scenario the allowed fiber multiplicity per edge is given and the
goal is to minimize the number of wavelengths needed [7, 8, 5].

In this work we consider a non-cooperative model, where each request is is-
sued by a user who tries to optimize her own fiber usage by selecting the most
appropriate wavelength, taking into account other users’ choice. This model is
mainly motivated by the lack of centralized control in large scale networks. We
assume that each user is charged according to the maximum fiber multiplicity
that the user’s choice incurs. More specifically, a user will be charged accord-
ing to the maximum number of paths that share an edge with her and use the
same wavelength. We consider as social cost the maximum fiber multiplicity that
appears on any edge of the network. Minimizing this quantity is particularly im-
portant in cases where fibers are hired or sold as a whole, hence the maximum
number of fibers needed on an edge determines the total cost; further motivation
can be found in papers that address the corresponding optimization problem (see
e.g. [1–3]). Here we focus on situations where routing is unique (acyclic topolo-
gies) or pre-determined—as happens in many practical settings, for example in
cases where there are specific routing constraints such as a requirement to use
lightpaths that have been set in advance, or shortest path routing.

We formulate the above model by defining the class of Selfish Path Mul-
tiColoring (S-PMC) games: the input is a graph, a set of paths, and the
number of colors w. Each player controls a path in the graph and has to choose
a color for that path from {α1, . . . , αw}. A player is charged according to the
maximum multiplicity of her color along her path. We consider as social cost
the maximum color multiplicity per edge, i.e., the maximum number of paths of
same color that use an edge.

Related work. Arguably, the most important notion in the theory of non-cooper-
ative games is the Nash Equilibrium (NE) [9], a stable state of the game in which
no player has incentive to change strategy unilaterally. A fundamental question
in this theory concerns the existence of pure Nash Equilibria (PNE). For various
games [10–13] it has been shown that a PNE exists and can usually be found
with the use of potential functions. A standard measure of the worst-case quality
of Nash Equilibria relative to optimal solutions is the price of anarchy (PoA)
[14], which has been extensively studied for load balancing games [14, 15] and
other problems such as routing and facility location [10, 16]. A second known
measure related to NE is the price of stability (PoS), defined in [17].

S-PMC games are closely related to a variation of congestion games [18, 19]
where a player’s cost is determined by her maximum latency instead of the usual
cost which is the sum of her latencies. Next, we briefly explain the relation of
those models to ours.
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In [18] the authors study atomic routing games on networks, where each
player chooses a path to route her traffic from an origin to a destination node,
with the objective of minimizing the maximum congestion on any edge of her
path. They show that these games always possess at least one optimal PNE
(hence the PoS is 1) and that the PoA of the game is determined by topological
properties of the network; in particular they show that the PoA is upper bounded
by the length of the longest path in the player strategy sets and lower bounded
by the length of the longest cycle. Some of our results extend to their model,
since our model mimics traffic routing in the following sense: we may consider
a multigraph, where we replace each edge with w parallel edges, one for each
color. Each player’s strategy set then consists of w different source-destination
paths, corresponding to the w available colors in the original model. A further
generalization is the model of Banner and Orda [19], where they introduce the
notion of bottleneck games. In this model they allow arbitrary latency functions
on the edges and consider both the case of splittable and unsplittable flows. They
show existence, convergence and non-uniqueness of equilibria and they prove
that the PoA for these games is unbounded. Both models are more general than
ours; however our model fits better into the framework of all-optical networks
for which we manage to provide, among others, smaller upper bounds on the
PoA compared to the ones obtained by [18, 19], as well as a better convergence
rate to Nash equilibria. In [20] they study similar games and give results for
restricted cases, e.g. single-commodity networks.

To the best of our knowledge selfish path multicoloring games have not been
studied before. Selfish path coloring in single fiber all-optical networks have
been studied in [21–24]. Bilò and Moscardelli [21] consider the convergence to
Nash Equilibria of selfish routing and path coloring games. Later, Bilò et al.
[22] considered different information levels of local knowledge that players may
have for computing their payments in the same games and give bounds for
the PoA in chains, rings and trees. The existence of Nash Equilibria and the
complexity of recognizing and computing a Nash Equilibrium for selfish routing
and path colorings games under several payment functions are considered by
Georgakopoulos et al. [23]. In [24] upper and lower bounds of the PoA for selfish
path coloring with and without routing are presented under functions that charge
a player only according to her own strategy.

Our results. We first give an upper bound on the convergence rate of Nash
dynamics for S-PMC games, and observe that the price of stability is always
equal to 1. We also show how to efficiently compute a Nash Equilibrium of
minimum social cost for S-PMC games in rooted trees, i.e. trees in which each
path lies entirely on a simple path from some fixed root node to a leaf. For
S-PMC games in stars, we prove that a known approximation algorithm for a
related optimization problem actually gives an 1

2 -approximate Nash Equilibrium.
For general graphs, we obtain two upper bounds on the PoA: the first, which

is not hard to show, is equal to the number of available colors. The second, which
requires more involved arguments, is equal to the length of a shortest path with
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maximum disutility in any worst-case NE. For both bounds we provide matching
lower bounds. In fact, we prove that these bounds hold even in trees.

Then, we move on to specific network topologies and show that for S-PMC
games in stars PoA = 2. We also provide constant bounds on the PoA in a
broad class of S-PMC games in chains and rings, namely for all games with
L = Ω(w2), where w is the number of available colors and L is the maximum
load among all edges of the network. On the other hand, for any ε > 0 we exhibit
a class of S-PMC games in chains (and rings) with L = Θ(w2−ε) for which the
PoA is unbounded.

In order to show our upper bounds, we demonstrate path patterns that must
be present in any Nash Equilibrium, while for the lower bounds we employ
recursive construction techniques.

2 Definitions and Model

Given an undirected graph G(V, E), a set P of simple paths defined on G, and
a set W = {α1, ..., αw} of available colors, L(e) will denote the load of edge e,
i.e. the number of paths that use edge e. The maximum of these loads will be
denoted by L, i.e. L = maxe∈E L(e).

Given, additionally, an assignment of a color to each path we define the
following:

Definition 1. 1. µ(e, c) will denote the multiplicity of color c on edge e, i.e.
the number of paths that use edge e and are colored with color c.

2. µe will denote the maximum multiplicity of any color on edge e, i.e. µe =
maxc∈W µ(e, c).

3. µmax will denote the maximum multiplicity of any color over all edges: µmax =
maxe∈E µe.

4. µ(p, c) will denote the maximum multiplicity of color c over the edges of
path p: µ(p, c) = maxe∈p µ(e, c).

It will be clear from the context which specific coloring we are referring to when
we use the above notation.

The minimum µmax that can be attained by some coloring of the paths in P

will be denoted by µOPT, i.e. µOPT = minc µmax where c ranges over all possible
colorings. We note immediately the following:

Fact. No coloring can achieve a µmax smaller than
⌈

L
w

⌉

. Thus, µOPT ≥
⌈

L
w

⌉

.

We now proceed to define the class of selfish path multicoloring games and
subclasses thereof.

Definition 2 (Selfish path multicoloring games). A selfish path multicol-
oring game is the following strategic game defined in terms of an undirected
graph G, a set P of simple paths defined on G, and an integer w > 0:

– Players: there is one player for each path in P . For simplicity, we identify a
player i with the corresponding path pi.



Non-cooperative Wavelength Assignment in Multifiber Optical Networks 5

– Strategies: a strategy for player i is a color ci chosen from the set W =
{α1, . . . , αw} of available colors. We say that color ci is assigned to path pi

or that path pi is colored with color ci. All players share the common set of
strategies W .

– Disutility: given a strategy profile c = (c1, . . . , c|P |), the disutility fi : W |P | →
IN of each player i is defined as follows:

fi(c) = µ(pi, ci) .

We denote this game by 〈G, P, w〉. The class of all selfish path multicoloring
games will be denoted by S-PMC.

We will use the notation S-PMC(G) to denote a subclass of S-PMC that con-
tains only games satisfying a property G (for example G may constrain the graph
on which the game is defined to belong to a specific graph class, etc.).

Following the standard definition, a strategy profile c = (c1, . . . , c|P |) is said
to be a pure Nash Equilibrium (PNE), or simply Nash Equilibrium (NE), if for
each player i it holds that: fi(c1, . . . , c

′
i, . . . , c|P |) ≥ fi(c1, . . . , ci, . . . , c|P |), for

any strategy c′i ∈ W . Moreover, following the definition of [25], we say that
a strategy profile c = (c1, . . . , c|P |) is an ε-approximate Nash Equilibrium if for
each player i it holds that: fi(c1, . . . , c

′
i, . . . , c|P |) ≥ (1−ε)·fi(c1, . . . , ci, . . . , c|P |),

for any strategy c′i ∈ W .

Definition 3 (Blocking edges). If c is a strategy profile for a game 〈G, P, w〉
and pi ∈ P , we say that edge e is an αj-blocking edge for pi, or that it blocks
αj for pi, if e ∈ pi and µ(e, αj) ≥ fi(c)− 1. Furthermore, the µ(e, αj) paths that
are colored with αj and use edge e are called αj -blocking paths for pi.

Intuitively, an αj-blocking edge for pi “blocks” pi from switching to color αj

because if it did, the new disutility of path pi would be at least µ(e, αj) + 1 ≥
fi(c), no better than its current choice. It is immediate from the definitions that
the following property holds in any Nash Equilibrium of any S-PMC game:

Property 1 (Structural property of S-PMC Nash Equilibria). In a Nash Equi-
librium, every path p must contain at least one αj-blocking edge for p, for every
color αj .

Definition 4 (Social cost). The social cost of a strategy profile c for an S-
PMC game is defined as follows: sc(c) = maxe∈E µe = µmax.

It is straightforward to verify that the social cost of a strategy profile coincides
with the maximum player disutility in that profile:

sc(c) = max
e∈E

µe = max
pi∈P

fi(c)

We define µ̂ to be the maximum social cost over all strategy profiles that are
Nash Equilibria: µ̂ = max

c is NE sc(c). Following the standard definitions, the
price of anarchy (PoA) of a game 〈G, P, w〉 is the worst-case social cost in a Nash
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Equilibrium divided by µOPT, i.e.: PoA(〈G, P, w〉) = maxc is NE sc(c)
µOPT

= µ̂
µOPT

. The

price of stability (PoS) of a game is the best-case social cost in a NE divided by

µOPT: PoS(〈G, P, w〉) = minc is NE sc(c)
µOPT

. The price of anarchy (resp. stability) of

a class of games S-PMC(G) is the maximum price of anarchy (resp. stability)
among all games in S-PMC(G).

3 Existence and Computation of Nash Equilibria

We use lexicographic-order arguments similar to those in [18, 19] to show that
in any S-PMC game the following holds: starting from an arbitrary strategy
profile any Nash dynamics converges to a Nash Equilibrium of smaller or equal
social cost. The proof is omitted.

Theorem 1. For any game 〈G, P, w〉 in S-PMC:

a. the price of stability is 1, and
b. any Nash dynamics converges to a Nash Equilibrium in at most 4|P | steps.

Due to Theorem 1, computing a Nash Equilibrium of minimum social cost is
at least as hard as the corresponding optimization problem. As noticed in [4] this
problem is NP-hard in general graphs, in fact even in rings and stars. Therefore,
it is also NP-hard to compute an optimal Nash Equilibrium even in the case of
rings and stars. However, we show that there exists an efficient algorithm that
computes optimal Nash Equilibria for a subclass of S-PMC(Tree). Further-
more, we show that we can use a known algorithm for Path MultiColoring
in stars [4] to compute approximate Nash Equilibria for S-PMC(Star) games.
We will only state the theorems and omit the proofs.

Definition 5. We define S-PMC(Rooted-Tree) to be the subclass of S-
PMC that contains games 〈G, P, w〉 with the following property: “G is a tree
and there is a node r such that each path in P lies entirely on some simple path
from r to a leaf.”

Consider the greedy algorithm that colors paths in order of non-decreasing
distance from the root in such a way that the color multiplicity is the lowest
possible with respect to the current partial coloring.

Theorem 2. Given an S-PMC(Rooted-Tree) game 〈G(V, E), P, w〉 with max-
imum load L as input, the greedy algorithm computes an optimal Nash Equilib-
rium of cost exactly

⌈

L
w

⌉

.

Theorem 3. There is a polynomial-time algorithm that computes a 1
2 -approxi-

mate Nash Equilibrium for any S-PMC(Star) game.
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4 Tight Upper Bounds for the PoA of S-PMC Games

In this section we provide two upper bounds on the PoA of any S-PMC game and
we show that both of them are tight. The first bound is determined by a property
of the network, namely the number of available wavelengths. The second bound
is more subtle, as it depends on the length of paths with the highest disutility
in worst-case Nash Equilibria. We prove that these bounds are tight even for
the class S-PMC(Rooted-Tree), and asymptotically tight for the class S-
PMC(Rooted-Tree: ∆ = 3), i.e. the subclass of S-PMC(Rooted-Tree)
that contains games defined on graphs with maximum degree 3.

Lemma 1. The price of anarchy of any S-PMC game 〈G, P, w〉 is at most w.

Proof. Let c be a worst-case Nash Equilibrium of 〈G, P, w〉, hence sc(c) = µ̂.
Clearly, µ̂ ≤ L and since the minimum social cost over all strategy profiles is
µOPT ≥

⌈

L
w

⌉

, it turns out that µOPT ≥ µ̂
w

. This implies that µ̂
µOPT

≤ w. ⊓⊔

Lemma 2. For any worst-case Nash Equilibrium c of an S-PMC game 〈G, P, w〉
and for any pi ∈ P with fi(c) = sc(c) = µ̂, the price of anarchy of 〈G, P, w〉 is
at most equal to the length of pi.

Proof. Let ẽ be an edge of pi where the color ci chosen by pi appears with
maximum multiplicity µ̂: µ(ẽ, ci) = µ̂. Let z denote the length of path pi and
let e1, . . . , ez−1 be the edges that p uses, apart from ẽ. For 1 ≤ j ≤ z − 1, let xj

be the number of colors that are blocked for pi on ej and let y be the number
of colors that are blocked for pi on ẽ (since c is a Nash Equilibrium, it must be
that x1 + . . . + xz−1 + y ≥ w − 1).

If it is the case that z = 1, i.e. pi uses only edge ẽ, then ẽ must block all colors
for pi except ci. This implies that the load of edge ẽ is: L(ẽ) ≥ µ̂+(w−1)(µ̂−1) =
wµ̂−w+1. Therefore, the minimum social cost over all strategy profiles satisfies:

µOPT ≥
⌈

L(ẽ)
w

⌉

≥
⌈

µ̂ − w−1
w

⌉

= µ̂. We conclude that the price of anarchy in this

case is equal to 1.
Now, assume that z ≥ 2. We will prove that L ≥ 1 +

⌈

w
z

⌉

(µ̂ − 1). First,
observe that L(ẽ) ≥ µ̂ + y(µ̂ − 1) and, for 1 ≤ j ≤ z − 1, L(ej) ≥ 1 + xj(µ̂ − 1).
If y ≥

⌈

w
z

⌉

− 1, then L(ẽ) ≥ µ̂ +
(⌈

w
z

⌉

− 1
)

(µ̂ − 1) = 1 +
⌈

w
z

⌉

(µ̂ − 1), therefore

L ≥ 1 +
⌈

w
z

⌉

(µ̂ − 1). If, on the other hand, y <
⌈

w
z

⌉

− 1, then x1 + . . . +

xz−1 ≥ w − 1 − y ≥ w −
⌈

w
z

⌉

+ 1. This implies that there is some xk such

that xk ≥
w−⌈w

z ⌉+1

z−1 >
w−w

z
−1+1

z−1 = w
z
. Since xk is an integer, it must be that

xk ≥
⌈

w
z

⌉

. Therefore, L ≥ L(ek) ≥ 1 +
⌈

w
z

⌉

(µ̂ − 1).

We conclude that in any case L ≥ 1 +
⌈

w
z

⌉

(µ̂ − 1). So, the price of anarchy
is bounded as follows:

PoA(〈G, P, w〉) =
µ̂

µOPT
≤

µ̂
⌈

L
w

⌉ ≤
µ̂

⌈

1+⌈w
z ⌉(µ̂−1)

w

⌉ ≤ z .

We omit the proof of the last inequality, which holds for all µ̂ ≥ 2, w ≥ 1, and
z ≥ 2. ⊓⊔
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α2

αz

α2

α3

λ − 1
λ − 1 λ − 1

λ − 1
λ − 1 λ − 1

α3

αz

α1

u0

u1,3 u1,z−1u1,2

u1

λ uλ,2 uλ,3 uλ,z−1

Fig. 1. The construction Az(λ) for the proof of Lemma 3. The thick lines represent the
edges of the underlying graph, and the thin lines represent the paths defined on the
graph. The color and multiplicity of each group of paths is written next to that group.
Each shaded box represents a recursive copy of Az(λ − 1).

As an immediate corollary of Lemma 2, we derive the following upper bound
on the price of anarchy:

Corollary 1. The price of anarchy of any S-PMC game 〈G, P, w〉 is bounded
as follows:

PoA ≤ min
c:NE∧sc(c)=µ̂

min
i:fi(c)=µ̂

length(pi)

Lemma 3. The upper bounds of Lemma 1 and Corollary 1 are tight even for
the class of S-PMC(Rooted-Tree) games.

Proof. We first define a recursive construction of an S-PMC game and a Nash
Equilibrium for this game. The construction is illustrated in Figure 1. For any z ≥
1 and λ ≥ 1, let Az(λ) be the following S-PMC game with z available colors:
there are λ paths of color α1 and length z, starting at the “root node” u0, which
branch out into λ branches, one on each branch. Let us call these the “primary”
paths for Az(λ). On any of the z − 1 edges of each such branch, one color is
blocked for the primary path. The λ− 1 blocking paths of each edge branch out
into an Az(λ− 1) game. They become primary paths for this copy of Az(λ− 1).
The root node for the j-th recursive copy of Az(λ − 1) on the k-th branch is
node uk,j (node uk,1 is common for all branches). The base case of this recursive
construction is Az(0), which is a degenerate game with no paths and no available
colors, defined on a graph consisting of a single node.

Observe that for any z ≥ 1, the construction Az(z) is an S-PMC(Rooted-
Tree) game in NE, in which all of the following are equal to z: w, L, µmax,
and all path lengths. By Theorem 2, the optimal strategy profile for Az(z) has
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social cost µOPT =
⌈

L
w

⌉

= 1. Therefore, the ratio µmax

µOPT
is equal to z for this

Nash Equilibrium, hence the price of anarchy is at least z. ⊓⊔

By appropriate modification of the construction presented in Figure 1, we
obtain the following:

Lemma 4. The upper bounds of Lemma 1 and Corollary 1 are asymptotically
tight even for the class of S-PMC(Rooted-Tree) games with maximum de-
gree 3.

We summarize the results of Lemmata 1, 2, 3, and 4 in the following theorem:

Theorem 4. The price of anarchy of any S-PMC game 〈G, P, w〉 is upper-
bounded both by w and by

min
c:NE∧sc(c)=µ̂

min
i:fi(c)=µ̂

length(pi) .

These bounds are tight for the class S-PMC(Rooted-Tree) and asymptotically
tight for the class S-PMC(Rooted-Tree: ∆ = 3).

Theorem 5. The price of anarchy of the class S-PMC(Star) is 2.

Proof. Lemma 2 implies an upper bound of 2 on the price of anarchy since the
length of any path in a star cannot be larger than 2.

For the lower bound, it can be shown that the construction of Lemma 3 can be
modified to yield a family of S-PMC(Star) games with price of anarchy 2. More
specifically every game A2(λ) can be embedded in a star, by using additional
star rays for branching. The detailed construction is omitted. ⊓⊔

5 The Price of Anarchy on Graphs of Maximum Degree 2

In this section we study the price of anarchy of path multicoloring games on
chains and rings, and we prove a constant upper bound for a broad class of
S-PMC(Ring) games with L = Ω(w2). Notice that this class essentially en-
compasses all S-PMC(Ring) games of practical importance, as the number of
wavelengths is limited in practice due to technological constraints, whereas L

can grow large depending on network traffic. For the sake of completeness, we
show that the PoA becomes quickly unbounded if we allow the network designer
to provide ample wavelengths to the users, i.e. when L = o(w2).

We begin by strengthening Property 1 to prove a more involved structural
property of Nash Equilibria in S-PMC(Ring) games. Let 〈G, P, w〉 be an S-
PMC(Ring) game. Given a coloring c = (c1, . . . , c|P |), let P (e, αi)(c) ⊆ P

denote the set of paths colored with color αi that use edge e ∈ E; by definition
|P (e, αi)(c)| = µ(e, αi). For the sake of simplicity, in the rest of the section
we will write P (e, αi) instead of P (e, αi)(c). Furthermore, let [el, er] denote the
clockwise arc starting at edge el and ending at edge er.
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Lemma 5 (Structural property of S-PMC(Ring) NE). Given a game
in S-PMC(Ring) and a coloring c thereof which is a Nash Equilibrium, for
every edge e and color αi there is an edge-simple arc [el, er] with the following
properties:

a. for every color αj 6= αi, arc [el, er] contains an edge which is an αj-blocking
edge for at least half of the paths in P (e, αi), and

b. for every edge e′ of the arc [el, er] it holds that |P (e′, αi) ∩ P (e, αi)| ≥
⌈

|P (e,αi)|
2

⌉

.

Proof. Since the game is in NE, by Property 1 every path p ∈ P (e, αi) must have
at least one αj -blocking edge, for every color αj 6= αi. For a fixed color αj 6= αi,
consider the two αj -blocking edges for some path in P (e, αi) that are closest to
edge e clockwise and counter-clockwise. It is not hard to see that for at least one
of these two edges, call it b(αj), the following property holds: the arc [e, b(αj)]

or the arc [b(αj), e] is contained in at least
⌈

|P (e,αi)|
2

⌉

of the paths in P (e, αi).

In case that there is only one αj-blocking edge for all paths in P (e, αi), then the
property holds a fortiori for this edge.

For every color αj we pick one such edge b(αj). If the above property holds
for arc [e, b(αj)], we add b(αj) to set B+, otherwise we add it to set B−. We now
claim that a clockwise traversal of the ring starting at edge e will first encounter
all edges of B+ and then all edges of B−. Indeed, if one edge b− of B− lies
before one edge b+ of B+ on this clockwise traversal, this would imply that b− is

traversed by the
⌈

|P (e,αi)|
2

⌉

paths that contain the arc [e, b+] and thus b− should

also belong to B+.
The above discussion implies that if we define er to be the last edge of B+

and el to be the first edge of B− encountered in this clockwise traversal, then
the edge-simple arc [el, er] satisfies the conditions of the Lemma. ⊓⊔

We now prove a constant upper bound on the price of anarchy of S-PMC(Ring)
games with L = Ω(w2); denote this class by S-PMC(Ring: L = Ω(w2)). This
also provides an upper bound on the price of anarchy of any S-PMC(Chain:
L = Ω(w2)) game, as every game defined on a chain can be trivially embedded
in a ring topology.

We first employ the structural property of S-PMC(Ring) Nash Equilibria
(Lemma 5) in order to establish the existence of a heavily loaded edge in S-
PMC(Ring) games with µ̂ ≥ w.

Lemma 6. In every S-PMC(Ring) game 〈G, P, w〉 with µ̂ ≥ w there is an
edge with load at least µ̂w

4 .

Proof. Let [el, er]P (e,αi) be the arc that is obtained by applying Lemma 5 for
path set P (e, αi). We define P1 to be the set of paths P (ẽ, α1) which induce the
social cost µ̂. For i ≥ 2 we define Pi to be the set of αj-blocking paths for the
path set Pi−1, for some color αj not appearing at any of the path sets Pk, k < i,
with the following property:

[el, er]Pi
⊆ [el, er]Pi−1

, (1)
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if such a path set exists. If more than one path sets with the desired property
exist, we arbitrarily pick one of them.

Let ei be the αj-blocking edge for Pi−1; based on the inductive definition of Pi

as a set of blocking paths for path set Pi−1 we can easily show that µ(ei, αj) ≥ µ̂−
i+1. Applying Lemma 5(b) for color αj and edge ei yields the following: for every

edge e ∈ [el, er]Pi
we have that µ(e, αj) ≥

µ̂−i+1
2 . Furthermore, since Equation 1

holds for all k ≤ i, the load of all edges e ∈ [el, er]Pi
is at least

∑

αj
µ(e, αj),

where αj now ranges over the colors of all path sets Pk, k ≤ i. Hence, for every

edge e ∈ [el, er]Pi
we have that L(e) ≥

∑

αj
µ(e, αj) ≥

∑i

k=1
µ̂−k+1

2 .
Let now n be the first integer for which no such path set Pn exists and

consider the path set Pn−1. Since we are at Nash Equilibrium we know that
there exist α-blocking edges for paths in Pn−1, for every color α. We restrict our
attention to the w − n + 1 colors, which have not yet appeared at any Pk, for
k ≤ n − 1; let αj be one of these colors. Consider now an αj -blocking edge en

such that en ∈ [el, er]Pn−1
(by Lemma 5(a) such an edge must exist). We now

have that, at least half of the αj-blocking paths in P (en, αj), i.e. at least µ̂−n+1
2

paths, extend beyond one of the edges el(Pn−1), er(Pn−1) of the arc [el, er]Pn−1

(otherwise we would have picked P (en, αj) to be Pn). This means that for at
least half of these w − n + 1 blocking path sets, their paths leave the arc from
the same edge, incurring on it an additional load of w−n+1

2 · µ̂−n+1
2 .

Thus, the total load of this edge is at least
∑n−1

i=1
µ̂−i+1

2 + w−n+1
2 · µ̂−n+1

2 =
µ̂w
4 + (n − 1) · µ̂−w+1

4 . Since µ̂ ≥ w the above sum is at least µ̂w
4 . ⊓⊔

Theorem 6. The price of anarchy of any game in the class S-PMC(Ring:
L = Ω(w2)) is bounded by a constant.

Proof. We distinguish between two cases:

– If µ̂ ≥ w, then by Lemma 6 we get L ≥ µ̂w
4 . This implies L

w
≥ µ̂

4 ⇒ µOPT ≥
µ̂
4 ⇒ PoA ≤ 4.

– If µ̂ < w, then PoA = µ̂
µOPT

≤ µ̂w
L

< w2

L
, where we used successively the

facts that µOPT ≥ L
w

and µ̂ < w. The last inequality, combined with the fact
that L = Ω(w2), implies PoA = O(1). ⊓⊔

Finally, we show that the price of anarchy can get arbitrarily large when the
number of available colors increases; specifically, that it is unbounded for the
classes S-PMC(Chain: L = o(w2)) and S-PMC(Ring: L = o(w2)). The proof
is omitted.

Theorem 7. For any fixed ε > 0 there exists an infinite family of games in
S-PMC(Chain: L = Θ(w2−ε)) with PoA = Ω(w

ε
2 ).
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