
Network Verification via Routing Table Queries⋆

Evangelos Bampas1, Davide Bilò2, Guido Drovandi3, Luciano Gualà4,
Ralf Klasing1, and Guido Proietti3,5

1 LaBRI, CNRS / University of Bordeaux, Bordeaux, France⋆⋆
2 Dipartimento di Teorie e Ricerche dei Sistemi Culturali, University of Sassari, Italy

3 Istituto di Analisi dei Sistemi ed Informatica, CNR, 00185 Rome, Italy
4 Dipartimento di Matematica, University of Tor Vergata, Rome, Italy

5 Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica, University of
L’Aquila, Italy

Abstract. We address the problem of verifying a network, namely that
of establishing the accuracy of a high-level description of its physical
topology, by making as few measurements as possible on its nodes. This
task can be formalized as an optimization problem that, given a graph
G = (V,E), and a query model specifying the information returned by
a query at a node, asks for finding a minimum-size subset of nodes of
G to be queried so as to univocally identify G. This problem has been
studied w.r.t. different query models assuming that a node had some
global knowledge about the network. Here, we propose a new query model
based on the local knowledge a node instead usually has. Quite naturally,
we assume that a query at a given node returns the associated routing
table, i.e., a set of entries which provides, for each destination node,
a corresponding (set of) first-hop node(s) along an underlying shortest
path. First, we show that any network of n nodes needs Ω(log log n)
queries to be verified, and, even worse, that if the network has a constant
diameter, then Ω(log n) queries are needed. Then, we prove that there is
no o(log n)-approximation algorithm for the problem in the class of all
networks of diameter 2, unless P = NP, and we show this is tight. On the
positive side, we give exact linear-time algorithms for the basic network
topologies of paths, trees, and cycles of even length. Interestingly, for a
path and a cycle of even length, the size of the optimal query set is about

⋆ A preliminary version of this work was presented at the 18th International Collo-
quium on Structural Information and Communication Complexity (SIROCCO’11),
June 26-29, 2011, Gdansk, Poland, Lecture Notes in Computer Science, vol. 6796,
Springer 2011, pp. 270–281. This work was partially supported by research projects
PRIN 2008 “COGENT” (COmputational and GamE-theoretic aspects of uncoor-
dinated NeTworks) and PRIN 2010 “ARS TechnoMedia” (Algorithms for Techno-
Mediated Social Networks), funded by the Italian Ministry of Education, University,
and Research. Part of this work was done while the second author was visiting
LaBRI-Bordeaux.

⋆⋆ Additional support by the ANR projects ALADDIN, DISPLEXITY and IDEA and
the INRIA project CEPAGE.

a half and a third of n, respectively, while for a tree we show that such
a size eventually depends on its structure, but is at least ⌈n

3
⌉.

Keywords: Network verification, Graph/Network topology, Computa-
tional complexity, Approximation algorithms.

1 Introduction

There is a growing interest in networks which are built and maintained by de-
centralized processes. In such a setting, it is natural to consider the problem of
discovering the map of an unknown (in terms of edges) network, or to verify
whether a given map is accurate, i.e., to check whether the edges of the map
are exactly those of the underlying network. A common approach to discover
or to verify a map is to make some local measurement on a selected subset of
nodes that – once collected – can be used to derive information about the whole
network (see for instance [6, 9]). A measurement on a node is usually costly, so
it is natural to try to make as few measurements as possible.

These two tasks – that of discovering a map and that of verifying a given
map – have been formalized as optimization problems and have been studied in
several papers. The idea is to model the network as a graph G = (V,E), while
a measurement at a given node can be seen as a unit-cost query returning some
piece of information about G. In the network discovery problem, we know V but
not E, and so we want to design an on-line algorithm that selects a minimum-
size subset of nodes Q ⊆ V to be queried that allows to precisely map the entire
graph, i.e., to settle all the edges and all the non-edges of G. The quality of
the algorithm is measured by its competitive ratio, i.e., the ratio between the
number of queries made by the algorithm and the minimum number of queries
which would be sufficient to discover the graph. On the other hand, the network
verification problem, which is of interest for our paper, is the off-line version of
the problem, and so we are given a graph G = (V,E), and we want to compute
a minimum number of queries sufficient to discover G (if E was unknown). This
latter problem has an interesting application counterpart, since it models the
activity of verifying the accuracy of a given map associated with an underlying
real network (on which the queries are actually done).

In the literature, two main query models have been studied. In the all-
shortest-paths query model, a query of a node q returns the subgraph of G con-
sisting of the union of all shortest paths between q and every other node v ∈ V .
A weaker notion of query is used in the all-distances query model, in which a
query to a node q returns all the distances in G from q to every other node v ∈ V .
Notice that both models inherently require global knowledge/information about
the network, hence a central problem for these query models is whether/how the
information can be obtained locally (without preprocessing of the network). In
this paper, we propose a query model that uses only local knowledge/information
about the network. Quite naturally, we assume that a query at a given node q
returns the associated routing table, namely a set of entries which provides, for

2

each destination node, a corresponding (set of) first-hop node(s) along an un-
derlying shortest path. In the rest of the paper, this will be referred to as the
routing-table query model.

Previous work. It turns out that the verification problem with the all-shortest-
paths query model is equivalent to the problem of placing landmarks on a graph
[17]. In this problem, we want to place landmarks on a subset of the nodes in
such a way that every node is uniquely identified by the distance vector to the
landmarks, and the minimum number of landmarks to be placed is called the
metric dimension of a graph [14]. The problem has been shown to be NP-hard
in [8]. An explicit reduction from 3-SAT is given in [17] which also provides
an O(log n)-approximation algorithm (n is the number of nodes) and an exact
polynomial-time algorithm for trees. Subsequently, in [1], the authors prove that
the problem is not o(log n) approximable, unless P=NP, showing thus that the
algorithm in [17] is the best possible in an asymptotic sense. We finally mention
that in [2] the authors studied the related problem of monitoring link failures
(i.e., verifying only the graph edges) in a very similar query model.

As far as the all-distances query model is concerned, the verification problem
has been studied in [1], where the NP-hardness is proved and an algorithm with
O(log n)-approximation guarantee is provided. Other results in [1] include exact
polynomial-time algorithms for trees, cycles and hypercubes.

Concerning the network discovery problem, this received attention in sev-
eral papers and in both query models. More precisely, for the all-distances query
model, in [1] the authors have shown an Ω(logn) lower bound on the competitive
ratio of any randomized algorithm, and an Ω(

√
n) lower bound on the competi-

tive ratio of any deterministic online algorithm. Moreover, they also provided a
randomized O(

√
n logn) competitive algorithm. On the other hand, in the all-

shortest-paths query model, in [1] the authors have shown a 3− ǫ lower bound on
the competitive ratio of any deterministic online algorithm, for any ǫ > 0, and
they provided a randomized O(

√
n logn) competitive algorithm. This was then

improved in [20], where the authors provided an O(log2 n)-competitive Monte
Carlo randomized algorithm. Still for the same query model, we finally mention
that in [3] the authors studied how to discover several graph properties, while
in [7] the authors focused on the approximate discovery of Erdös-Rényi random
graphs.

Besides the two traditional query models we widely discussed above, it is
worth mentioning that the network discovery and verification problems were
also analyzed in the edge-counting query model, where a query at a set of ver-
tices returns the number of edges in the corresponding induced subgraph. In
this model, the information theoretic lower bound for the query complexity of

discovering a graph is Ω
(

m logn2/m
logm

)
, and in [4, 18] a polynomial time algorithm

was provided with a query complexity matching such a lower bound (which im-
proved a previous result in [5]). Finally, concerning the graph verification, in
[19] the authors gave a Monte Carlo randomized algorithm with error ǫ for using
O(log 1/ǫ) queries.

3

Our results. Throughout the paper, we focus on the verification problem w.r.t
the routing-table query model. We first show a lower bound of Ω(log logn) on
the minimum number of queries needed to verify any graph with n nodes. This is
in contrast to the previous two query models for which certain classes of graphs
can be verified with a constant number of queries, like paths and cycles. Our
proof also implies a lower bound of Ω(n) on the number of queries needed to
verify a path or a cycle. So, one may wonder whether every graph needs a linear
number of queries to be verified. We provide a negative answer to this question
by exhibiting a class of graphs (of diameter 2) that can be verified with O(log n)
queries. On the other hand, we show that this number of queries is asymptotically
optimal, since we prove that for graphs of constant diameter Ω(log n) queries
are actually needed.

We then analyze the computational complexity of the problem. In this re-
spect, although it remains open for general input graphs to establish whether
the problem is in NPO, we are able to provide an O(log n)-approximation algo-
rithm to verify graphs of diameter 2. Moreover, we also show that this bound
is asymptotically tight, unless P = NP. On the positive side, we provide exact
linear-time algorithms to verify paths, trees and cycles of even length. In terms
of number of queries, these algorithms show that for paths and cycles of even
length, the size of the optimal query set is about a half and a third of n, respec-
tively. On the other hand, for trees such a size eventually depends on the tree
structure, but we show that it is at least ⌈n

3 ⌉ (and we also show this is tight).
Our result for trees is based on a characterization of a solution that can be used
to reduce the problem to that of computing a minimum vertex cover of a cer-
tain class of graphs (for which a vertex cover can be found in polynomial time).
The algorithm for cycles of even length shows a counterintuitive fact about the
routing-table query model. Indeed, while a query in our model seems to obtain
only local information about the graph, we show in the case of the cycle that
the symmetry can be used to infer some knowledge about edges and non-edges
that are far from queried nodes.

The paper is organized as follows. After giving some basic definitions in Sec-
tion 2, we formally introduce our query model in Section 3. Section 4 is devoted
to the lower bound of Ω(log logn) for any graph with n nodes, and of Ω(log n)
for graphs of constant diameter. The verification of graphs of diameter 2 is
presented in Section 5, while in Section 6, we describe the exact linear-time al-
gorithms for certain classical topologies (paths, trees, and cycles of even length),
and we characterize the size of the corresponding optimal query sets. Finally,
Section 7 concludes the paper, by providing a discussion about an extension
of our query model in which the routing tables also contain information about
distances to all the nodes, and by proposing open problems and directions for
future research.

4

2 Basic Definitions

Let G = (V,E) be an undirected (simple, connected) graph with n vertices.
We assume that vertices are distinguishable, i.e., they have different identifiers.
Given two distinct vertices u, v ∈ V , we say that (u, v) is an edge (resp., a non-
edge) of G if (u, v) ∈ E (resp., (u, v) 6∈ E).1 For a graph G, we will also denote
by V (G) and E(G) its set of vertices and its set of edges, respectively.

For every vertex v ∈ V , let NG(v) = {u | u ∈ V \ {v}, (u, v) ∈ E} and let
NG[v] = NG(v) ∪ {v}. The maximum degree of G is equal to maxv∈V |NG(v)|.
Let U ⊆ V be a set of vertices. We denote by G[U] the graph with V (G[U]) = U
and E(G[U]) = {(u, v) | u, v ∈ U, (u, v) ∈ E}. Let F ⊆ {(u, v) | u, v ∈ V, u 6= v}.
We denote by G+ F (resp., G− F) the graph on V with edge set E ∪ F (resp.,
E \ F). When F = {e} we will denote G + {e} (resp., G − {e}) by G + e
(resp., G − e). For two graphs G1 and G2, we denote by G1 ∪ G2 the graph
with V (G1 ∪ G2) = V (G1) ∪ V (G2) and E(G1 ∪ G2) = E(G1) ∪ E(G2). We
denote by dG(u, v) the distance in G from u to v. The diameter of G is equal to
maxu,v∈V dG(u, v).

Let queryG be a query model, that is, a function which associates with each
vertex of G a set of information about G. For a set Q ⊆ V , we denote by
queryG(Q) = {queryG(q) | q ∈ Q}. We say that Q verifies edge (resp., non-
edge) (u, v) of G iff for every graph G′ = (V,E′) with queryG(Q) = queryG′(Q),
we have that (u, v) ∈ E′ (resp., (u, v) 6∈ E′). Finally, we say that Q verifies G
iff for every G′ = (V,E′) with E 6= E′, we have that queryG(Q) 6= queryG′(Q).
This implies that Q verifies G iff Q verifies every edge and every non-edge of G.
Clearly, we have that if Q ⊆ V verifies G, then for every q ∈ V , Q ∪ {q} verifies
G. As a consequence of the definitions, we therefore have two ways of actually
proving that a set of queries Q verifies a graph G: On the one hand, we can
prove it directly by applying the definition (i.e., by showing that for any graph
G′ = (V,E′) with E′ 6= E, we have that queryG(Q) 6= queryG′(Q)). On the
other hand, we can prove it by showing that for any pair of vertices u, v ∈ V ,
the set of information returned by querying Q in G is sufficient to logically infer
the existence (resp., non existence) of (u, v) in G (this is equivalent to saying
that by querying Q on any graph G′ = (V,E′) with E′ 6= E, we would get a
different set of information, and thus Q verifies G).

Given an undirected graph G = (V,E), the Network Verification Problem
w.r.t. query model queryG is the optimization problem of finding a minimum-
size subset Q ⊆ V that verifies G w.r.t. query model queryG.

3 The Routing-Table Query Model

For a given vertex q ∈ V , we denote by tableG(q) the routing table of q in G,
i.e.,

tableG(q) =
{
〈v, u〉 | v, u ∈ V \ {q} ∧ (q, u) ∈ E ∧ dG(q, v) = dG(v, u) + 1

}
.

1 Notice that, in contrast to standard notation, (u, v) is used to denote an undirected
edge since {u, v} will instead be used to denote the set containing nodes u and v.

5

A pair 〈v, u〉 ∈ tableG(q) means that there exists a shortest path from q to v
whose first hop is vertex u. The routing-table query model is the model in which
queryG(q) = tableG(q), for every q ∈ V . In the rest of the paper, we will denote
by T

q
G(u) =

{
v ∈ V | 〈v, u〉 ∈ tableG(q)

}
. Clearly, for every v ∈ V we have that

Q = V \{v} verifies G w.r.t. the routing table query model, as any q ∈ Q verifies
all edges and non-edges of G of the form (q, u), for any u ∈ V \ {q}. Notice also
that if G is a clique, then this is optimal.

The following fact is easy to prove:

Proposition 1. Let q, u, v be such that v ∈ T
q
G(u) and for every other u′ 6= u,

v 6∈ T
q
G(u

′). Then, (q, u) ∈ E and the shortest paths between q and v in G all
pass through edge (q, u) and use only vertices in T

q
G(u).

As a consequence of the above fact, we are now able to give some easy-to-check
conditions which are sufficient to verify a given edge (respectively, non-edge)
w.r.t. the routing-table query model. Unfortunately, these conditions are not
necessary, and so it remains open to establish whether the problem is in NPO.

For any distinct vertices u, v ∈ V , the following hold:

Proposition 2. Let q be such that TqG(u) = {u, v}. Then, (u, v) ∈ E and {q}
verifies the edge (u, v).

Proposition 3. Let q be a neighbor of u and let q′ be a neighbor of v, respec-

tively. If Tq
′

G(v) ∩ T
q
G(u) = {u, v}, then (u, v) ∈ E and {q, q′} verifies the edge

(u, v).

Proposition 4. Let q ∈ V \ {u, v} be such that (q, u) ∈ E, (q, v) 6∈ E. If
v 6∈ T

q
G(u), then (u, v) 6∈ E and {q} verifies the non-edge (u, v).

Proposition 5. Let q, q′ ∈ V \ {u, v} be two distinct vertices such that (q, q′) ∈
E. If there exists w ∈ V such that v 6∈ T

q
G(w), u ∈ T

q
G(w), v ∈ T

q
G(q

′), and

u ∈ T
q′

G(q), then (u, v) 6∈ E and {q, q′} verifies the non-edge (u, v).

Proof. For the sake of contradiction, assume there exists a graph G′ = (V,E′)
satisfying the hypothesis of the claim such that (u, v) ∈ E′. This implies that
|dG′(z, u)−dG′(z, v)| ≤ 1 for every vertex z ∈ V . As v 6∈ T

q
G′(w) and u ∈ T

q
G′(w),

we have that dG′(q, v) ≤ dG′(q, u). Moreover, as u ∈ T
q′

G′(q) and v ∈ T
q
G′(q′),

we have that dG′(q′, u) = dG′(q, u) + 1 and dG′(q′, v) = dG′(q, v) − 1. As a
consequence, dG′(q′, v) = dG′(q, v) − 1 ≤ dG′(q, u) − 1 = dG′(q′, u) − 2, which
implies |dG′(q′, u) − dG′(q′, v)| ≥ 2, contradicting the fact that |dG′(q′, u) −
dG′(q′, v)| ≤ 1 and thus the assumption. This completes the proof. ⊓⊔

Before ending this section, we provide some connections between the routing-
table query model and the all-shortest-paths query model, which will be useful
in the following sections. First, we recall the formal definition of the all-shortest-
paths query model. For two given vertices u, v ∈ V , letΠG(u, v) denote the graph
obtained by the union of all shortest paths in G between u and v. For a given
vertex q ∈ V , we denote by aspG(q) =

⋃
u∈V ΠG(q, u). The all-shortest-paths

query model is the model in which queryG(q) = aspG(q), for every q ∈ V .

6

Lemma 1 ([1]). A set Q ⊆ V verifies a graph G = (V,E) w.r.t. the all-shortest-
paths query model iff, for every u, v ∈ V , with u 6= v, there exists a vertex q ∈ Q
such that |dG(q, u)− dG(q, v)| ≥ 1.

As from aspG(q) we can easily construct tableG(q), the routing-table query
model is weaker than the all-shortest-paths query model. More formally:

Proposition 6. If Q ⊆ V verifies G = (V,E) w.r.t. the routing-table query
model, then Q verifies G w.r.t. the all-shortest-paths query model.

In Section 6 we will prove that on several basic network topologies, the
routing-table query model is actually much weaker than the all-shortest-paths
query model (for instance, on paths it will require a query set of linear size,
while in the all-shortest-paths query model one query is clearly enough). One
may then wonder whether the routing-table query model always incurs a con-
siderably larger cost in terms of query set size. The following proposition, which
we will use also in the rest of the paper, shows that this is not the case for some
class of graphs.

Proposition 7. Let G = (V,E) be a graph containing a vertex s which is adja-
cent to all other vertices of G. Let Q ⊆ V . If Q verifies G w.r.t. the all-shortest-
paths query model, then Q ∪ {s} verifies G w.r.t. the routing-table query model.

Proof. Let u, v ∈ V, u 6= v and u, v 6∈ Q. As Q verifies G w.r.t. the all-shortest-
paths query model, then Lemma 1 implies that |dG(q, u) − dG(q, v)| ≥ 1, for
some q ∈ Q. W.l.o.g., let dG(q, u) < dG(q, v). Now, consider the routing-table
query model.

After making the query at s, we discover that every vertex of G is at distance
1 from s (i.e., we are able to certify that the distance in G between any vertex
v 6= s and s is equal to 1 by using the information returned by the query at s,
namely its adjacency to all vertices of G). Thus, the distance between any pair
of distinct vertices of G can be either 1 or 2. Since 〈u, u〉 ∈ tableG(q) whilst
〈v, v〉 6∈ tableG(q), we discover that dG(q, u) = 1 whilst dG(q, v) = 2. Therefore,
(u, v) is an edge of G iff 〈v, u〉 ∈ tableG(q) (and thus, (u, v) is a non-edge of
G iff 〈v, u〉 6∈ tableG(q)). Hence, Q ∪ {s} discovers (i.e., verifies) G w.r.t. the
routing-table query model. ⊓⊔

4 Lower Bounds on the Size of Feasible Solutions

In this section, we show lower bounds on the minimum number of queries needed
to verify any graph G of n vertices w.r.t. the routing-table query model, as well
as improved (linear) lower bounds for paths and cycles. We also exhibit a class
of graphs (of diameter 2) that can be verified with O(log n) queries, and show
that this number of queries is asymptotically optimal in the class of all graphs
of constant diameter.

We begin by showing that Ω(log logn) queries are necessary to verify a graph
G of n vertices. First of all, notice that in [1], the authors proved that log3 ∆

7

queries are necessary to verify a graph G of maximum degree equal to ∆ w.r.t.
the all-shortest-paths query model. Therefore, by Proposition 6, we have the
following:

Corollary 1. Let G = (V,E) be a graph of maximum degree equal to ∆ and
let Q be a query set that verifies G w.r.t. the routing-table query model. Then
|Q| ≥ log3 ∆.

Besides that, we now show a lower bound ofΩ
(
log n
∆

)
on the minimum number

of queries needed to verify a graph G with n vertices and maximum degree
equal to ∆ w.r.t. the routing-table query model, thus obtaining a lower bound
of max{log3 ∆,Ω

(
log n
∆

)
} = Ω(log log n). For any q, v ∈ V , let

group
q
G(v) :=

{{
w ∈ V | v ∈ T

q
G(w)

}
if v 6∈ NG[q];

∅ otherwise.

The lower bound of Ω
(
logn
∆

)
hinges on the following necessary condition:

Proposition 8. If Q ⊆ V verifies G = (V,E), then, for every u, v ∈ V, u 6= v,
one of the following conditions is satisfied:

(i) u ∈ NG[q] or v ∈ NG[q], for some q ∈ Q;
(ii) ∃ q ∈ Q such that groupqG(u) 6= group

q
G(v).

Proof. We prove the claim by contraposition. We assume that there exists a pair
of vertices u, v which satisfies neither (i) nor (ii). We divide the proof into two
cases.

In the first case, we assume that u and v are twin vertices, i.e., NG(u) =
NG(v). Then it follows from the fact that (i) is not satisfied that u, v 6∈ Q.
Therefore, dG(q, u) = dG(q, v) for every q ∈ Q. Thus, Proposition 6 and Lemma 1
imply that Q cannot verify G.

In the second case, we assume that u and v are not twin vertices. Consider
the graph G′ obtained from G by swapping the labels of u and v. Clearly, for
every q ∈ Q, and for every vertex x ∈ V, x 6= u, v, 〈x,w〉 ∈ tableG(q) iff 〈x,w〉 ∈
tableG′(q), since w 6= u, v as condition (i) does not hold. Moreover, by definition
of G′ and because (i) does not hold, u ∈ T

q
G(w) iff v ∈ T

q
G′(w) and v ∈ T

q
G(w)

iff u ∈ T
q
G′(w), for every q ∈ Q. Since (ii) does not hold, then for every q ∈ Q,

u ∈ T
q
G(w) iff v ∈ T

q
G(w). As a consequence, for every q ∈ Q, u ∈ T

q
G(w) iff

u ∈ T
q
G′(w) and v ∈ T

q
G(w) iff v ∈ T

q
G′(w). Therefore, tableG(q) = tableG′(q)

for every q ∈ Q. Thus, Q cannot verify G. ⊓⊔

Moreover, we can prove the following:

Lemma 2. Let G = (V,E) be a graph with n vertices of maximum degree equal
to ∆, and let Q be a query set that verifies G w.r.t. the routing-table query model.
Then |Q| ≥ Ω

(
logn
∆

)
.

8

Proof. Let Q = {q1, . . . , qh} be a minimum cardinality set of queries that veri-
fies G w.r.t. the routing-table query model and let V ′ = V \⋃q∈Q NG[q]. Since
G has maximum degree equal to ∆, we have that |V ′| ≥ n − |Q|(∆ + 1).
Moreover, as group

q
G(v) ⊆ NG(q), for every v ∈ V ′ and for every q ∈ Q, we

have that groupqG(v) is an element of the power set 2NG(q). As a consequence,〈
group

q1
G (v), . . . , groupqhG (v)

〉
is an element of the power set 2NG(q1) × . . . ×

2NG(qh). As the size of 2NG(qi) is upper bounded by 2∆ we have that the size of
2NG(q1)×. . .×2NG(qh) is upper bounded by 2|Q|∆. Since condition (ii) of Proposi-
tion 8 implies that

〈
group

q1
G (v), . . . , groupqhG (v)

〉
6=

〈
group

q1
G (u), . . . , groupqhG (u)

〉

for every two distinct vertices u, v ∈ V ′, we have that

2|Q|∆ ≥ |V ′| ≥ n− |Q|(∆+ 1)

holds. Hence, |Q| = Ω
(
logn
∆

)
. ⊓⊔

By combining the lower bound in Corollary 1 with the one in Lemma 2 we
obtain:

Theorem 1. Let G = (V,E) be a graph of n vertices and let Q be a query set
that verifies G w.r.t. the routing-table query model. Then |Q| = Ω(log logn).

We point out that a direct application of Proposition 8 implies linear lower
bounds for paths and cycles (unlike in the all-shortest-paths query model, where
a constant number of queries suffices). More formally:

Corollary 2. Let G = (V,E) be a graph of n vertices and let Q be a minimum
cardinality set of queries that verifies G w.r.t. the routing-table query model. We
have that

1. |Q| ≥
⌊
n
4

⌋
if G is a path;

2. |Q| ≥
⌊
n
8

⌋
if G is a cycle.

Proof. For paths, by Proposition 8, at least one vertex of every subpath of four
consecutive vertices has to be contained in Q. The proof for cycles can be found
in Section 6 (see Proposition 13 for cycles of even length and Proposition 15 for
cycles of odd length, respectively). ⊓⊔

In Section 6, we actually provide an improved (tight) lower bound for paths and
cycles of even length.

In view of Corollary 2, one may wonder whether every graph needs a linear
number of queries to be verified. We provide a negative answer to this question by
exhibiting a class of graphs that can be verified with O(log n) queries. Consider
any graph G′ of n′ vertices u0, . . . , un′−1. We build G as follows: G contains
a copy of G′ plus 1 + ⌈logn′⌉ vertices s, q1, . . . , q⌈logn′⌉, with ui adjacent to
qj iff the j-th bit of the binary representation of i is equal to 1, and with s
adjacent to all vertices of G (but s). Let Q = {s, q1, . . . , q⌈logn′⌉}. We now argue
that Q verifies G w.r.t. the all-shortest-path query model. Indeed, Q verifies all
edges and non-edges incident to the vertices in Q. Moreover, for every ui, ui′

with i 6= i′, there exists at least one bit, say the j-th, in which the binary

9

representation of i differs from the binary representation of i′. This implies that
|dG(qj , ui) − dG(qj , ui′)| ≥ 1. Thus, Lemma 1 implies that Q verifies G w.r.t.
the all-shortest-paths query model. Finally, as s is adjacent to all vertices of the
graph, by Proposition 7 we have that Q verifies G w.r.t the routing-table query
model.

We now show that the above example is asymptotically optimal in the class
of all graphs of constant diameter, thanks to the following:

Corollary 3. Let G = (V,E) be a graph with n vertices of constant diameter,
and let Q be a query set that verifies G w.r.t. the routing-table query model.
Then |Q| = Ω(log n).

Proof. Let∆ be the maximum degree ofG and letD be the diameter ofG. By the
well-known Moore bound [15], we have that n ≤ 1+∆ ·∑D−1

i=0 (∆− 1)i ≤ ∆D+1.

Therefore, ∆ ≥ n
1

D+1 . From Corollary 1, we have that |Q| = Ω(log∆). As a

consequence, |Q| = Ω(log n
1

D+1), i.e., |Q| = Ω(log n) for D = O(1). ⊓⊔

5 Verifying Graphs of Diameter 2

Even though the problem of determining whether the Network Verification Prob-
lem w.r.t. the routing-table query model is in NPO is open, in this section we
show the existence of a polynomial-time approximation algorithm for graphs of
diameter equal to 2. More precisely, we first show that the size of the query
set returned by this algorithm is within an O(log n) (multiplicative) factor from
the size of any optimal solution. Furthermore, we also show that this result is
asymptotically best possible. Indeed, for graphs of diameter equal to 2, we prove
that unless P = NP, no polynomial time algorithm can compute a set of queries
that verifies the graph w.r.t. the routing-table query model whose size is within
an o(log n) (multiplicative) factor from the size of any optimal solution.

To describe our algorithm, we need to introduce some definitions. Let G =
(V,E) be a graph. A set U ⊆ V is a locating-dominating code of G iff (i) NG[v]∩
U 6= ∅ for every v ∈ V and (ii) NG(v) ∩ U 6= NG(u) ∩ U for every u, v ∈
V \ U, u 6= v. The optimization problem of computing a minimum cardinality
locating-dominating code of a graph G of n vertices can be approximated within
a factor of O(log n) and this ratio is asymptotically tight [10, 21]. We start by
proving the following:

Lemma 3. Let G = (V,E) be a graph of diameter equal to 2, let U∗ be a
minimum cardinality locating-dominating code of G, and let Q ⊆ V be a set of
vertices that verifies G w.r.t. the routing-table query model. Then |Q| ≥ |U∗|−1.

Proof. Let u, v ∈ V \Q, with u 6= v. By Proposition 6 we have that if Q verifies
G, then |dG(q, u) − dG(q, v)| ≥ 1, for some q ∈ Q. As G has diameter equal
to 2, we either have that dG(q, u) = 1 and dG(q, v) = 2, or dG(q, u) = 2 and
dG(q, v) = 1. As this has to be true for every two distinct vertices u, v ∈ V \Q,
it follows that there exists at most one vertex, say v̄, such that dG(q, v̄) = 2

10

for every q ∈ Q. As a consequence, Q ∪ {v̄} is a locating-dominating code of G.
Thus, |Q|+ 1 ≥ |U∗|. ⊓⊔

A locating-dominating code U of G is said to be connected iff G[U] is a
connected graph. We now prove the following:

Lemma 4. Any connected locating-dominating code (CLDC) of a graph G =
(V,E) verifies G w.r.t. the routing-table query model.

Proof. Let Q be a CLDC of G. We will show how to use the information returned
by querying Q to infer the existence/non-existence of (u, v) in G.

Let us fix any two distinct vertices u and v of G such that u, v 6∈ Q (otherwise
edge/non-edge (u, v) is trivially discovered). As Q is a CDLC of G, there exist
(i) a vertex q ∈ Q such that, w.l.o.g., q ∈ NG(u) and q 6∈ NG(v), (ii) a vertex
q′ ∈ Q such that q′ ∈ NG(v), and (iii) a path P between q and q′ in G[Q].

Let then q1, . . . , qℓ be the vertices of P in the order from q′ to q. Thus,
q1 = q′ and qℓ = q. We show that {q1, . . . , qℓ} discovers the edge/non-edge (u, v)
of G by first showing that {q1, . . . , qℓ} discovers dG(q, v) (i.e., we are able to
certify the distance in G between q and v by using the information returned
by the queries at {q1, . . . , qℓ}). We use induction to this aim, by showing that
{q1, . . . , qi} discovers dG(qi, v), for i = 1, . . . , ℓ. The base case i = 1 is clearly
true as 〈v, v〉 ∈ tableG(q1) means to discover that the distance in G between q1
and v is equal to 1. Now, assume that {q1, . . . , qi} discovers dG(qi−1, v). Observe
that |dG(qi−1, v)−dG(qi, v)| ≤ 1, since (qi, qi+1) is an edge of G. Therefore, using
induction, we have that {q1, . . . , qi} discovers dG(qi, v) by observing that:

– dG(qi, v) = dG(qi−1, v) + 1 iff 〈v, qi−1〉 ∈ tableG(qi);

– dG(qi, v) = dG(qi−1, v)− 1 iff 〈v, qi〉 ∈ tableG(qi−1);

– dG(qi, v) = dG(qi−1, v) iff 〈v, qi−1〉 6∈ tableG(qi) and 〈v, qi〉 6∈ tableG(qi−1).

Then, once we have discovered dG(q, v), we can deduce that (u, v) is either an
edge or not of G as follows (observe we discovered that dG(q, v) > 1 since after
querying q we discovered the non-edge (q, v)):

– if dG(q, v) = 2, then (u, v) is either an edge or not of G depending on whether
〈v, u〉 ∈ tableG(q) or not;

– if dG(q, v) > 2, then (u, v) is a non-edge of G, since we discovered that
dG(q, u) = 1 (i.e., we discovered the edge (q, u)).

⊓⊔
We are now ready to prove the following:

Theorem 2. Let G = (V,E) be a graph of diameter equal to 2 and let Q∗

be a minimum cardinality set of queries that verifies G w.r.t. the routing-table
query model. There exists a polynomial-time algorithm that computes a set Q

that verifies G w.r.t. the routing-table query model such that |Q|
|Q∗| = O(log n).

11

Proof. Let U∗ be a minimum cardinality locating-dominating code of G. As
U∗ is also a dominating set of G, it is easy to construct a CLDC U of G
such that U∗ ⊆ U and |U | = O(|U∗|) (see also [11]). Therefore, thanks to the
O(log n)-approximation algorithm for computing a locating-dominating code of

G (see [10]), we can also compute a CLDC Q of G such that |Q|
|U∗| = O(log n).

Thus, from Lemma 4 we know that Q verifies G, and from Lemma 3 we have

that if G has diameter 2, then |Q|
|Q∗| ≤

|Q|
|U∗|−1 = O(log n). ⊓⊔

We observe that the result of Theorem 2 is asymptotically tight due to the
following:

Theorem 3. The Network Verification Problem w.r.t. the routing-table query
model cannot be approximated within a ratio of o(log n) in the class of all graphs
of diameter 2, unless P = NP.

Proof. In [1], the authors proved that the Network Verification Problem w.r.t.
the all-shortest-paths query model has a lower bound of Ω(log n) on its approx-
imability ratio, unless P = NP. Their reduction consists of a graph G having a
vertex which is adjacent to all other vertices of G. The claim now follows as a
consequence of Proposition 6 and Proposition 7. ⊓⊔

6 Optimal Algorithms for Classical Network Topologies

In what follows, we prove that the Network Verification Problem w.r.t. the
routing-table query model can be solved in linear time for paths, trees, and cy-
cles of even length. We first provide a general algorithm for trees, which clearly
applies to paths as well. Then, we try to characterize the size of an optimal query
set for them, as a function of the corresponding number of nodes. While this can
be explicitly done for paths, we will see that for a tree such a characterization
is depending on its structure. Finally, we turn our attention to cycles, and for
those of even length, we compute an optimal query set of size 2⌊n

6 ⌋+ n
2 mod 3.

Our approach heavily relies on the existence of antipodal nodes in the cycle, and
so it is not easily extendible to cycles of odd length (for which however we are
able to provide a lower bound of ⌊n

8 ⌋).

6.1 Paths and trees

In this section, we first provide the linear time algorithm for trees (and paths),
and then we try to characterize the size of an optimal query set, as a function
of the corresponding number of nodes. While this can be explicitly done for
paths, for trees we will see that such a characterization is depending on the tree
structure.

We start by observing that a tree of 2 vertices can be easily verified by
querying any of the two vertices. For trees of larger order, we need to provide a
sufficient condition for verifying edges first.

12

Proposition 9. Let (u, v) be an edge of a tree T and let Q =
(
NT (u) \ {v}

)
∪(

NT (v) \ {u}
)
. Then Q verifies the edge (u, v) of T .

Proof. Let G be any graph such that tableT (q) = tableG(q) for every q ∈ Q.
Let P be any shortest path between u and v in G. We show that V (P) = {u, v},
thus proving that (u, v) is an edge of G.

First of all, observe that for every q ∈ NT (u)\{v}, 〈u, u〉, 〈v, u〉 ∈ tableG(q).
Similarly, for every q ∈ NT (v) \ {u}, 〈v, v〉, 〈u, v〉 ∈ tableG(q). Thus, for every
q ∈ NT (u) \ {v}, V (P) ⊆ T

q
G(u) = T

q
T (u). Similarly, for every q ∈ NT (v) \ {u},

V (P) ⊆ T
q
G(v) = T

q
T (v). Therefore, if Tu and Tv denote the two trees of T−(u, v)

rooted at u and v, respectively, then

V (P) ⊆
⋂

q∈NT (u)\{v}

T
q
T (u) = V (Tv) ∪ {u}

and
V (P) ⊆

⋂

q∈NT (v)\{u}

T
q
T (v) = V (Tu) ∪ {v}

imply
V (P) ⊆

(
V (Tv) ∪ {u}

)
∩
(
V (Tu) ∪ {v}

)
= {u, v}.

⊓⊔

Now, we provide a necessary and sufficient condition a set of queries must
satisfy to verify a tree of order greater than or equal to 3.

Lemma 5. Let T be a tree of order n ≥ 3 and let Q ⊆ V (T). Q verifies T iff
for every two vertices u, v ∈ V (T) with dT (u, v) = 2, Q ∩ {u, v} 6= ∅.

Proof. Let u, v ∈ V (T) be two vertices with dT (u, v) = 2. Observe that (u, v) is a
non-edge. First we show that if Q verifies the non-edge (u, v), then Q∩{u, v} 6= ∅.
To this end, it is enough to show that for every vertex u′ ∈ V (T) \ {u, v}
tableT (u

′) = tableT+(u,v)(u
′), i.e., the routing tables of vertices other than u

and v would not change if we added edge (u, v) to T , and so we need to query
at least one of u, v in order to distinguish between the existence or not of edge
(u, v).

Let x be the (unique) vertex in the (unique) shortest path between u and
v in T . Root T at x and let Tu, Tv be the subtrees of T rooted at u and v,
respectively. Let Tx be the subtree induced by V (T) \ (V (Tu) ∪ V (Tv)). Fix a
vertex u′ ∈ V (Tx) and observe that dT (u

′, u) = dT (u
′, v). As a consequence, for

every v′ ∈ V (T), P is a shortest path from u′ to v′ in T iff P is a shortest path
from u′ to v′ in T + (u, v). Therefore, tableT (u

′) = tableT+(u,v)(u
′), for every

u′ ∈ V (Tx).
Now, fix a vertex u′ ∈ V (Tu) \ {u} (the proof for the case u′ ∈ V (Tv) \ {v}

is analogous). For any vertex v′ ∈ V (T), let P and P ′ be the (unique) shortest
path from u′ to v′ in T and T + (u, v), respectively. First of all, observe that
if v′ ∈ V (Tu), then P = P ′ and therefore, 〈v′, v′′〉 ∈ tableT (u

′) iff 〈v′, v′′〉 ∈

13

tableT+(u,v)(u
′). Next, if v′ ∈ V (Tx)∪V (Tv), then both P and P ′ contain vertex

u. Moreover, the subpath of P from u′ to u coincides with the subpath of P ′ from
u′ to u and has length greater than or equal to 1. Therefore 〈v′, v′′〉 ∈ tableT (u

′)
iff 〈v′, v′′〉 ∈ tableT+(u,v)(u

′). Hence, tableT (u
′) = tableT+(u,v)(u

′) for every
u′ ∈ V (Tu) \ {u}.

To complete the proof, we have to show that if Q ∩ {u, v} 6= ∅ for every
u, v ∈ V (T) with dT (u, v) = 2, then Q verifies T . Let u and v be two distinct
vertices of T . We show that Q verifies whether (u, v) is an edge or a non-edge
of T . Clearly, if Q ∩ {u, v} 6= ∅, then Q verifies whether (u, v) is an edge or
a non-edge of T . Therefore, assume that u, v 6∈ Q. As a consequence, either
dT (u, v) = 1 (in this case (u, v) is an edge of T) or dT (u, v) ≥ 3 (in this case
(u, v) is a non-edge of T).

In the latter case, let P be the shortest path in T between u and v. It is not
hard to see that either Q contains a vertex q ∈ V (P) which is also a neighbor of
either u or v, or Q contains two vertices q, q′ ∈ V (P) and (q, q′) ∈ E(T). In the
first case, from Proposition 4 we have that Q verifies the non-edge (u, v) while
in the second case, Proposition 5 implies that Q verifies the non-edge (u, v).

In the first case, i.e., dT (u, v) = 1 (or equivalently, (u, v) is an edge of T),
we have that NT (u) \ {v} ⊆ Q and NT (v) \ {u} ⊆ Q as dT (u

′, v) = 2 for every
u′ ∈ NT (u) \ {v} and dT (u, v

′) = 2 for every u′ ∈ NT (v) \ {u}. Therefore, from
Proposition 9 we have that Q verifies the edge (u, v) of T . ⊓⊔

Thanks to Lemma 5, we can prove the following:

Theorem 4. The Network Verification Problem w.r.t. the routing-table query
model on trees can be solved in linear time.

Proof. Let G′ be a graph with V (G′) = V (T) and E(G′) = {(u, v) | u, v ∈
V (T), dT (u, v) = 2}, and let Q ⊆ V (T). Observe that from Lemma 5, Q verifies
T iff Q is a vertex cover of G′, i.e., for every edge (u, v) ∈ E(G′), Q∩{u, v} 6= ∅.
Let r be any vertex of T and root T at r. Let X = {v | v ∈ V (T), dT (r, v) =
2k−1, k ∈ N}, and letX ′ = V (T)\X . Observe that G′ has exactly two connected
components: one containing all the vertices inX , and the other one containing all
the vertices in X ′. To understand the structure of G′[X] and G′[X ′] we need to
introduce the class of block graphs (a.k.a. clique trees) which was defined in [12],
as well as the notion of block cut vertex tree [13].

Given a graph G, let Vc be the set of cut vertices of G, and let B =
{B1, . . . , Bh} be the set of biconnected components of G.2 G is said to be a
block graph iff every biconnected component of G is a clique. The block cut ver-
tex tree TG of G is the tree with vertex set V (TG) = Vc∪Vb := {vi | Bi ∈ B}, and
edge set E(TG) = {(u, vi) | u ∈ Vc, u ∈ V (Bi)}. Notice that TG can be computed
in linear time [16]. Notice also that G′[X] and G′[X ′] are both block graphs (see
also Figure 1).

2 A cut vertex of a graph is a vertex v of the graph whose removal from G results in
a graph which is not connected. A graph G is said to be biconnected iff it has no
cut vertex. The biconnected components of a graph G are the maximal -w.r.t. vertex
addition- biconnected induced subgraphs of G.

14

TG′[X]

TG′[X′]

G′[X]

G′[X′]

T
r

G′

3

33

3 4 332

3 2 3

4 3 3 5

2

3

Fig. 1. An example of an optimal query set for a tree T depicted on top. On the bottom,
the graph G′ on V (T) containing an edge between two vertices iff their distance in T
is equal to 2. X is the set of vertices of T whose distance from r is an odd number
while X ′ = V (T)\X. Observe that both connected components of G′ are block graphs.
On the right side of G′[X] and G′[X ′] the corresponding block cut vertex trees TG′[X]

and TG′[X′] are depicted. Black vertices of TG′[X] (resp., TG′[X′]) are the cut vertices
of G′[X] (resp., G′[X ′]). White vertices of TG′[X] (resp., TG′[X′]) are the biconnected
components (i.e., maximal cliques) of G′[X] (resp., G′[X ′]). The number appearing
inside a white vertex denotes the size of the clique corresponding to that vertex. The
set of gray vertices is a minimum cardinality vertex cover of G′ as well as a minimum
cardinality set of queries that verifies T .

We now show that the minimum cardinality vertex cover problem on block
graphs can be solved in linear time by using the following greedy algorithm.
Let then G be a block graph, and let TG = Vc ∪ Vb be the corresponding block
cut vertex tree. Let s be a vertex of Vc, and root TG at s. Let φ be a function
assigning the number |V (Bi)| to the vertex vi ∈ Vb representing (clique) Bi. We
compute the size t of a minimum cardinality vertex cover of G by using function
φ in the following way. At the beginning, t = 0. As long as TG is not empty, let
u ∈ Vc be a vertex that is farthest from s in TG (ties are broken arbitrarily),
and, w.l.o.g., let vi1 , . . . , vik ∈ Vb be the k children of u (notice they are leaves

of TG). First, add
∑k

j=1 φ(vij) − 2k + 1 to t. Next, remove from TG vertices
u, vi1 , . . . , vik , and decrease φ(v) by 1, where v ∈ Vb is the parent of u in TG.
Finally, if φ(v) = 1, then remove v from TG, and if v has no siblings in TG, then
remove also its parent.

15

To see why this algorithm is correct, simply observe that every vertex cover of
G has to contain at least φ(vi)−1 vertices for every clique Bi of G. Furthermore,
it is easy to see that any vertex cover U of G can be transformed into a vertex
cover U ′ of G such that |U ′| ≤ |U |, u ∈ U ′, and |U ′ ∩ V (Bij)| = φ(vij) − 1

for every j = 1, . . . , k, thus including exactly
∑k

j=1 φ(vij) − 2k + 1 vertices of
⋃k

j=1 V (Bij) in a minimum cardinality vertex cover of G. From this, the claim
follows. ⊓⊔

6.2 Size of the optimal query set for paths and trees

We now turn our attention to the problem of providing a measure on the size of
the optimal query set for paths and trees. By a simple application of Lemma 5,
we can first prove the following exact bound on the minimum number of queries
needed to verify a path.

Theorem 5. A minimum cardinality set of queries that verifies a path Pn of
order n ≥ 3 has size equal to 2⌊n

4 ⌋+ ⌊n mod 4
3 ⌋.

Proof. Number the vertices of Pn from 1 to n by traversing the path from one
endvertex to the other one. First of all, observe that the graph G′ as defined
in the proof of Theorem 4 is a forest of two paths, one containing all the ⌈n

2 ⌉
odd vertices, and the other one containing all the ⌊n

2 ⌋ even vertices (see also
Figure 2). As the minimum cardinality vertex cover of a path of k vertices is
⌊k
2 ⌋,3 we have that a minimum cardinality set of queries that verifies Pn has size

equal to ⌊n
4 ⌋+ ⌊ ⌈n

2 ⌉

2 ⌋ = 2⌊n
4 ⌋+ ⌊n mod 4

3 ⌋ (see also Figure 2). ⊓⊔

P11

G′

Fig. 2. An example of an optimal query set for P11. Graph G′ on V (P11) contains an
edge between two vertices iff their distance in P11 is 2. The set of gray vertices is a
minimum vertex cover of G′ as well as a minimum-size set of queries that verifies P11.

Concerning trees, we start by proving the following two lower bounds on the
minimum number of queries needed to verify trees of small constant radius.

3 Let Pk be a path of order k. Number the vertices of Pk from 1 to k by traversing
the path from one endvertex to the other one. The set X =

{

i | 1 ≤ i ≤ k, i is even
}

of ⌊k/2⌋ vertices is a vertex cover of the path. To see that it is minimum, first of all
observe that |X| is equal to the size of

{

(i− 1, i) | 1 ≤ i ≤ k, i is even
}

, a maximum
matching of the path. Next, use the well-known König-Egerváry theorem stating
that the size of a minimum cardinality vertex cover of a bipartite graph G is equal
to the size of a maximum matching of G.

16

Proposition 10. Let T be a rooted tree of order n and height 1. Then, any set
of queries that verifies T has size greater than or equal to n− 2.

Proof. From Lemma 5, a set of queries that verifies T must contain at least all
the leaves of T but one. ⊓⊔
Proposition 11. Let T be a rooted tree of order n and height 2 and let ℓ be the
number of non-leaf vertices of T . Then any set of queries that verifies T has size
greater than or equal to n− ℓ.

Proof. Let ℓ1 be the number of non-leaf vertices of T at distance 1 from the
root. Clearly, ℓ = 1+ ℓ1. Let Xi be the set of vertices of T at distance i from the
root. Clearly n = |X0| + |X1| + |X2|. Let Q be a set of queries that verifies T .
From Lemma 5, |Q ∩X1| ≥ |X1| − 1 while |Q ∩ (X0 ∪X2)| ≥ |X0|+ |X2| − ℓ1.
As all the sets X0, X1, X2 are pairwise disjoint, it follows that

|Q| ≥ |Q ∩X1|+ |Q ∩ (X0 ∪X2)| ≥ |X1| − 1 + |X0|+ |X2| − ℓ1 = n− ℓ.

⊓⊔
Proposition 10 and Proposition 11 are useful to prove a lower bound on the

minimum number of queries needed to verify any tree. Let T be a rooted tree of
order n and let L be the set of leaves of T . For every v ∈ V (T)\L, let Cv be the

set of children of v in T . We define by δ̃(T) the average number of children of the

non-leaf vertices of T , i.e., δ̃(T) =
∑

v∈V (T)\L |Cv|

n−|L| . Observe that δ̃(T) = n−1
n−|L| .

Theorem 6. Let T be a rooted tree of order n ≥ 3. Then, any set of queries
that verifies T w.r.t. the routing-table query model has size greater than or equal

to δ̃(T)−2

δ̃(T)
(n− 1).

Proof. Root T at any vertex r of degree greater than or equal to 2 and let L be
the set of leaves of T . We decompose T into a collection F = {T1, . . . , Tn−|L|}
of edge-disjoint subtrees as follows. Let T ′ be a copy of the tree. Let i = 1 and
let F = ∅. Repeat the following procedure. While the height of T ′ is strictly
greater than 1, let v be a leaf vertex that has maximum distance from r. Let vi
be equal to the parent of v. Let Ti be the subtree of T ′ rooted at vi. Update
T ′ = T ′ −Cvi , F = F ∪ {Ti}, and increase i by 1. At the end of the while loop,
let Ti = T ′, add Ti to F , and set vi = r. Let Q be a set of queries that verifies
T and observe that for every i ≤ n − |L|, Ti is a rooted tree of height 1 and
order 1 + |Cvi |. As a consequence, from Proposition 10, |Q∩ V (Ti)| ≥ |Cvi | − 1.
Therefore, as each vertex in V (T) \L appears in at most two distinct trees of F
while each vertex in L appears in exactly one tree of F , we have that

|Q| ≥
n−|L|∑

i=1

|Q ∩ V (Ti)| − (n− |L|) ≥
n−|L|∑

i=1

(|Cvi | − 1)− (n− |L|)

=
∑

v∈V (T)\L

|Cv| − (n− |L|)− (n− |L|) ≥ (n− 1)− (n− |L|)− (n− |L|)

=
δ̃(T)− 2

δ̃(T)
(n− 1),

17

where the last inequality follows because
∑

v∈V (T)\L |Cv| = n− 1, while the last

equality follows by substituting (n− |L|) = n−1

δ̃(T)
. ⊓⊔

Using a similar technique, we can prove a linear lower bound for any tree of
order n ≥ 3.

Theorem 7. Any query set that verifies a tree T of order n ≥ 3 w.r.t. the
routing-table query model has size greater than or equal to ⌈n

3 ⌉.
Proof. We partition the vertices of T into a collection F = {T1, . . . , Tk} of vertex-
disjoint subtrees as follows. Let T ′ be a copy of the tree. Let i = 1 and let F = ∅.
Repeat the following procedure. While the radius of T ′ is strictly greater than
2, root T ′ at a center r of T ′. Let v be a leaf vertex that has maximum distance
from r. Let vi be equal to the grandparent of v. Let Ti be the subtree of T ′

rooted at vi. Update T
′ = T ′−V (Ti), F = F ∪{Ti}, and increase i by 1. At the

end of the while loop, let Ti = T ′, add Ti to F , and set vi = r.
First of all, observe that every Ti is a tree of radius equal to 1 or 2 such that

|V (Ti)| ≥ 3. Let Q be a set of queries that verifies T . For each i = 1, . . . , k, let
ni be the order of Ti and let ℓi be the number of non-leaf vertices of Ti. If Ti is
of radius 1, from Proposition 10, |Q∩ V (Ti)| ≥ ni − 2 ≥ ni

3 as ni ≥ 3. If Ti is of
radius 2, ni − ℓi ≥ ni

3 . Hence, from Proposition 11, |Q ∩ V (Ti)| ≥ ni − ℓi ≥ ni

3 .
Therefore, as all the trees T1, T2, . . . , Tk are vertex-disjoint,

|Q| ≥
k∑

i=1

|Q ∩ V (Ti)| ≥
k∑

i=1

ni

3
=

n

3
.

⊓⊔
The lower bound of Theorem 7 is tight for every n ≥ 3. Indeed, for n = 3k−i,

i ∈ {0, 1, 2}, consider the tree T of order n obtained by connecting the endvertices
v1, v2, . . . , vk of k vertex-disjoint paths, out of which k − 1 paths have length 2
and 1 path has length 2− i, as a path of k nodes. Observe that from Lemma 5,
{v1, v2, . . . , vk} is a query set that verifies T w.r.t. the routing-table query model.
Furthermore, |{v1, v2, . . . , vk}| = k = ⌈n

3 ⌉.

6.3 Cycles of Even Length

In this section we prove that the Network Verification Problem w.r.t. the routing-
table query model on cycles of even length can be solved in linear time. Let Cn

be a cycle of even length, i.e., n = 2k for some integer k ≥ 2. We will show that
2⌊n

6 ⌋ + n
2 mod 3 queries are necessary and sufficient to verify Cn. We number

the vertices of Cn from 0 to n− 1 clockwise. Thus, the two neighbours of vertex
i are (i + 1) mod n and (i − 1) mod n. In what follows, we will assume that all
indices are modulo n. We start by proving the following necessary conditions.

Proposition 12. Let n = 2k for some integer k ≥ 2. Let Q ⊆ V (Cn). If Q
verifies Cn, then for every i ∈ {0, . . . , n−1}, one among i−1, i+1, i+k−1, i+k+1
is contained in Q.

18

Proof. For the sake of contradiction, assume that Q verifies Cn but i−1, i+1, i+
k−1, i+k+1 6∈ Q. Consider the graphG′ = Cn+

{
(i−1, i+1), (i+k−1, i+k+1)

}

and observe that tableCn
(q) = tableG′(q) for every q ∈ Q (see also Figure 3

(a)). ⊓⊔

Proposition 13. Let n = 2k for some integer k ≥ 2. Let Q ⊆ V (Cn). If Q
verifies Cn, then for every i ∈ {0, . . . , n − 1}, one among i, i + 1, i + k − 1, i +
k, i+ k + 1, i+ k + 2 is contained in Q.

Proof. The proof immediately follows from Proposition 8. As an alternative
proof, consider the graph G′ = Cn −

{
(i + k − 1, i + k), (i + k + 1, i + k +

2)
}
+
{
(i+ k− 1, i+ k+1), (i+ k, i+ k+2)

}
and assume, for the sake of contra-

diction, that Q does not contain any of the vertices in the statement. Observe
that tableCn

(q) = tableG′(q) for every q ∈ Q (see also Figure 3 (b)). ⊓⊔

Proposition 14. Let n = 2k for some integer k ≥ 2. Let Q ⊆ V (Cn). If Q
verifies Cn, then for every i ∈ {0, . . . , n− 1}, one among i− 1, i, i+ 1, i+ k, i+
k + 1, i+ k + 2 is contained in Q.

Proof. Consider the graph G′ = Cn+
{
(i−1, i+1), (i+k, i+k+2)

}
and assume,

for the sake of contradiction, that Q does not contain any of the vertices in the
statement. Observe that tableCn

(q) = tableG′(q) for every q ∈ Q (see also
Figure 3 (c)). ⊓⊔

Thanks to the above propositions, we can prove the following lower bound
on the number of queries needed to verify Cn.

Lemma 6. Let n = 2k for some integer k ≥ 2. Let Q ⊆ V (Cn). If Q verifies
Cn, then |Q| ≥ 2⌊n

6 ⌋+ n
2 mod 3.

Proof. Let Q ⊆ V (Cn) be a set of queries that verifies Cn. For every i ∈
{0, . . . , 2k−1}, let counter(i) = |Q∩{i, i+k}|. Clearly, |Q| = ∑k−1

i=0 counter(i).
As Q verifies Cn, then it also satisfies Propositions 12, 13, and 14. The following
holds:

Claim 1. For every i such that counter(i) = counter(i + 1) = 0 we have that
counter(i− 1) = 2 or counter(i + 2) = 2.

Proof. By assumption, we have that i, i + 1, i + k, i + k + 1 6∈ Q. Moreover, by
Proposition 12, we have that counter(i − 1), counter(i+ 2) ≥ 1. To show that
counter(i − 1) ≥ 2 or counter(i + 2) ≥ 2, assume for the sake of contradiction
that counter(i − 1) = counter(i + 2) = 1. Then, by Proposition 13, we have
that i + k − 1 ∈ Q or i + k + 2 ∈ Q. W.l.o.g., assume that i + k + 2 ∈ Q. As
counter(i+2) = 1, we have that i+2 6∈ Q. Then, i, i+1, i+2, i+k, i+k+1 6∈ Q,
and then from Proposition 14, we have that i+k−1 ∈ Q. As counter(i−1) = 1,
this implies i − 1 6∈ Q. Therefore, i + k, i + k + 1, i − 1, i, i + 1, i + 2 6∈ Q thus
violating the necessary condition of Proposition 13. ⊓⊔

19

(a)

(b)

Cn G′

G′Cn

G′Cn

(c)

...
...

i

i + k

i − 1 i + 1

i + k − 1i + k + 1

...
...

i

i + k

i − 1 i + 1

i + k − 1i + k + 1

i + k + 1 i + k

i

.

.

.

.

.

.

i + k − 1

i + 1i

.

.

.

.

.

.

i + k + 1

i + k − 1

i + 1

i + k

i + k + 2

i

i + k + 1

i + 1

i + k

.

.

.

...

i − 1

i

i + k + 1

i + 1

i + k

i + k + 2

.

.

.

...

i − 1

i + k + 2

i + k + 2

Fig. 3. Necessary conditions for the query set to verify a cycle Cn of even length. In
each row of the picture, at least one black vertex of Cn on the left side must be part of
the query set in order to distinguish between Cn and the graph G′ on the right side.

20

Let X =
{
i | 0 ≤ i ≤ k − 1, counter(i) = 0, counter(i − 1), counter(i +

1) ≥ 1
}
. Let Y =

{
(i, i + 1) | 0 ≤ i ≤ k − 1, counter(i), counter(i + 1) =

0
}
. Finally, let ℓ be the number of vertices i, with 0 ≤ i ≤ k − 1 such that

counter(i), counter(i − 1), counter(i + 1) ≥ 1. Since Proposition 12 holds, we
have that counter(i) + counter(i + 2) ≥ 1, for every i ∈ {0, 1, . . . , k − 1}.
As a consequence, for every i ∈ X , we have that counter(i − 2), counter(i −
1), counter(i + 1), counter(i + 2) ≥ 1. Similarly, for every (i, i + 1) ∈ Y , we
have that counter(i − 2), counter(i − 1), counter(i + 2), counter(i + 3) ≥ 1.
This implies that k = 3|X |+ 4|Y |+ ℓ and |X |+ |Y | ≤ ⌊k/3⌋. Finally, note that
we cannot have three consecutive nodes with counter(i − 1) = counter(i) =
counter(i+1) = 0, as this would also imply counter(i+k−1) = counter(i+k) =
counter(i + k + 1) = 0, which would contradict Proposition 12. Therefore, by
the above claim, we have that |Q| ≥ 2|X |+ 3|Y |+ ℓ. We conclude that

|Q| ≥ 2|X |+ 3|Y |+ ℓ ≥ k − |X | − |Y | ≥ 2

⌊
k

3

⌋
+ k mod 3 = 2

⌊n
6

⌋
+

n

2
mod 3.

⊓⊔

We now show that the above bound is tight:

Lemma 7. The set Q = {i | 0 ≤ i ≤ k − 1, i mod 3 ∈ {0, 1}} of size 2
⌊
n
6

⌋
+

n
2 mod 3 verifies Cn.

Proof. We have to show that Q verifies every edge and every non-edge of Cn.
Our first goal is to establish that Q verifies every edge and non-edge of the form
(i, j), where 0 ≤ i ≤ k − 1 and j 6= i.

We remark immediately that Q clearly verifies every edge and non-edge of
the form (i, j), where i ∈ Q and j 6= i. Now, consider any vertex i ∈ {0, . . . , k−1}
with i 6∈ Q. We distinguish between the following three cases:

– If i ≤ k−3, then, by construction, i−2, i−1, i+1, i+2∈ Q. By Proposition 4,
{i+1} verifies all the non-edges (i, j) with j ∈ {i+3, i+4, . . . , i+k}. Similarly,
{i−1} verifies all the non-edges (i, j) with j ∈ {i+k, i+k+1, . . . , i+2k−3 =
i−3}. Finally, {i−2} verifies the non-edge (i, i−2), {i−1} verifies the edge
(i, i− 1), {i+1} verifies the edge (i, i+1), and {i+2} verifies the non-edge
(i, i+ 2).

– If i = k − 2, then, by construction, k − 4, k − 3, k − 1 ∈ Q. Similarly to the
previous case, by Proposition 4, {k − 1} verifies all the non-edges (k − 2, j)
with j ∈ {k + 1, k + 2, . . . , 2k − 2} and {k − 3} verifies all the non-edges
(k− 2, j) with j ∈ {2k− 2, 2k− 1, . . . , 2k+k− 5 = k− 5}. Moreover, {k− 4}
verifies the non-edge (k−2, k−4), {k−3} verifies the edge (k−2, k−3), and
{k− 1} verifies the edge (k− 2, k− 1). It remains to show that the non-edge
(k − 2, k) is verified.
Note that, by combining the knowledge we obtained so far about the edges
and non-edges of node k− 2 with the knowledge we obtained in the previous
case about the edges and non-edges of nodes i ≤ k − 3 that do not belong

21

w := j⋆ − 2

q := j⋆ − 1

q′ := j⋆

k − l
k

j

0

q := j⋆ − 2

w := j⋆ − 1

j⋆

q′ := j⋆ − 3

0

k − l
k

j

q′ := j⋆ − 2

q := j⋆ − 1

w := j⋆

k − l
k

0

j

Fig. 4. The three cases in which the queries {q, q′} verify non-edge (k− 1, j) in Cn by
Proposition 5. Nodes depicted by hollow circles are in Q. Nodes j and j⋆ are antipodal
in Cn. Left: j

⋆ mod 3 = 1. Middle: j⋆ mod 3 = 0. Right: j⋆ mod 3 = 2.

in Q and the knowledge about the edges and non-edges of nodes in Q, we
know at this point that the nodes 0 → 1 → · · · → k form a path and there is
no other edge with an endpoint in {1, . . . , k− 1} except, possibly, (k− 2, k).

Suppose now that (k − 2, k) is an edge. Since the query at {0} returns the
pair 〈k, 1〉, we know that 0 → 1 → · · · → k − 2 → k is a shortest path
between 0 and k of length k− 1. Moreover, the query at {k− 1} returns the
pair 〈2k − 1, k − 2〉, so we know that k − 1 → k − 2 → · · · → 0 → 2k − 1 is
a shortest path between k − 1 and 2k − 1 of length k. However, the query
at {0} also returns the pair 〈k, 2k − 1〉, which implies that there exists a
path between 2k − 1 and k of length k − 2, since the shortest path between
0 and k is of length k − 1. This, in turn, implies that there exists a path
between 2k − 1 and k − 1 of length k − 1, which contradicts the fact that
k − 1 → k − 2 → · · · → 0 → 2k − 1 is a shortest path between k − 1 and
2k − 1. Therefore, (k − 2, k) has to be a non-edge.

– If i = k−1, then, by construction, k−3, k−2 ∈ Q. As before, {k−2} verifies
all the non-edges (k− 1, j) with j ∈ {2k− 1, 0, . . . , k− 4}. Moreover, {k− 3}
verifies the non-edge (k−1, k−3) and {k−2} verifies the edge (k−1, k−2).

Next, consider non-edge (k− 1, j), where j ∈ {k+1, k+2, . . . , 2k− 2}. This
non-edge is verified as follows: Let j⋆ = (j+k) mod n be the antipodal node
of j in Cn.

• If j⋆ mod 3 = 1 (in this case, j⋆ is in the range 1 ≤ j⋆ ≤ k − 2), let
q = j⋆ − 1, q′ = j⋆, and w = j⋆ − 2. We have q, q′ ∈ Q, (q, q′) ∈ E(Cn),

k − 1 6∈ T
q
Cn

(w), j ∈ T
q
Cn

(w), k − 1 ∈ T
q
Cn

(q′), and j ∈ T
q′

Cn
(q) (see also

Figure 4, left). Therefore, non-edge (k−1, j) is verified by Proposition 5.

• If j⋆ mod 3 ∈ {0, 2} (in this case, j⋆ is in the range 2 ≤ j⋆ ≤ k − 3), let
q = max{i | 0 ≤ i < j⋆ ∧ i ∈ Q}, q′ = q − 1, and w = q + 1. We have
q, q′ ∈ Q, (q, q′) ∈ E(Cn), j 6∈ T

q
Cn

(w), k − 1 ∈ T
q
Cn

(w), j ∈ T
q
Cn

(q′), and

k−1 ∈ T
q′

Cn
(q) (see also Figure 4, middle and right). Therefore, non-edge

(k − 1, j) is verified by Proposition 5.

Finally, in order to verify edge (k − 1, k), note that, as in the previous case,
we know that the nodes 0 → 1 → · · · → k − 1 form a path and there is no
other edge with an endpoint in {1, . . . , k − 1} except, possibly, (k − 1, k).

22

Since the query at {0} returns 〈k, 1〉, it follows that (k − 1, k) must be an
edge.

As a consequence of the above reasoning, we have verified so far that the
nodes 0 → 1 → · · · → k form a path and that there do not exist any other edges
with an endpoint in {1, . . . , k − 1}. Additionally, since the query at {0} returns
both 〈k, 1〉 and 〈k, 2k − 1〉, we deduce that 0 → 1 → · · · → k is a shortest path
of length k from 0 to k and, consequently, the nodes in {k, k + 1, . . . , 2k = 0}
must also form a shortest path of length k from 0 to k. Therefore, the graph
must be a cycle and it only remains to verify the order in which the vertices
in {k, k + 1, . . . , 2k = 0} are traversed by the shortest path from 0 to k having
2k − 1 as first hop.

First, observe that for any i ∈ Q, there exists a unique node, i+ k, for which
the query at {i} returns more than one pair: 〈i+k, i− 1〉 and 〈i+k, i+1〉. Since
we are on a cycle, this node must be antipodal to i, and therefore the distance
between i and i+ k must be equal to k.

We will now prove that for all x ∈ {0, 1, . . . , k − 2}, we can verify that
0 → 1 → · · · → k → · · · → k + x is a path. The proof proceeds by induction
on x. For x = 0, we have already verified that 0 → 1 → · · · → k is a path. Now,
assume that we have verified the path up to k+x, for some x ∈ {0, 1, . . . , k−3}.
In order to verify the edge (k+x, k+x+1), we consider the following two cases:

– If x+1 ∈ Q, then we know that the shortest path from x+1 to k+x+1 has
length k, we know that there exists a shortest path from x+ 1 to k + x+ 1
having x+2 as first hop, and we know that x+1 → x+2 → · · · → k+x is a
path of length k−1 on the cycle. From these, we deduce that (k+x, k+x+1)
must be an edge.

– If x+1 6∈ Q, then we must have x+2 ∈ Q. We know that x+2 and k+x+1
are not antipodal and we know that the unique shortest path from x+ 2 to
k + x + 1 must go through x + 3 and have length k − 1 or less. However,
x+ 2 → x+ 3 → · · · → k + x is a path that goes through x+ 3, has length
k − 2, and does not contain k + x+ 1. Therefore, (k + x, k + x+ 1) must be
an edge, otherwise the length of the shortest path from x + 2 to k + x + 1
would be more than k − 1.

Finally, the last remaining edge (2k − 2, 2k − 1) is easily deduced since we
know the graph is a cycle, 0 → 1 → · · · → 2k− 2 is a path, and we have already
verified the edge (0, 2k − 1). ⊓⊔

Thus, from Lemma 6 and 7, we have obtained the following:

Theorem 8. The Network Verification Problem w.r.t. the routing-table query
model on cycles of even length can be solved in linear time.

We conclude this section by proving a necessary condition of a query set to
verify a cycle of odd length. Let Cn be a cycle of odd length, i.e., n = 2k + 1,
for some integer k ≥ 1. We number the vertices of Cn from 0 to n− 1 clockwise.
Thus, the two neighbours of vertex i are (i + 1) mod n and (i − 1) mod n. In
what follows, we will assume that all indices are modulo n.

23

Proposition 15. Let n = 2k + 1 for some integer k ≥ 1. Let Q ⊆ V (Cn). If Q
verifies Cn, then for every i ∈ {0, . . . , n − 1}, one among i, i + k − 1, i + k, i +
k + 1, i+ k + 2 is contained in Q.

Proof. The proof immediately follows from Proposition 8. As an alternative
proof, consider the graph G′ = Cn−

{
(i+k−1, i+k), (i+k+1, i+k+2)

}
+
{
(i+

k − 1, i + k + 1), (i + k, i + k + 2)
}
and observe that tableCn

(q) = tableG′(q)
for every q ∈ Q. ⊓⊔

Observe that Proposition 15 implies a lower bound of
⌊
n
8

⌋
on the number of

queries needed to verify Cn.

7 Conclusions

In this paper, we addressed the problem of verifying a graph w.r.t. the newly
defined routing-table query model. On the one hand, we showed that the problem
is NP-hard to approximate within o(logn) (which is tight for graphs of diameter
2), and on the other hand that it can be solved optimally in linear time for some
basic network topologies. A first open problem is therefore the development of
an approximation algorithm for general graphs. Actually, Lemma 4 states that
a CLDC of a graph always verifies the graph, independently of its diameter.
Interestingly, this could open the way for providing an approximation algorithm
for verifying any graph, if one would be able to lower bound the size of a feasible
query set via the size of an optimal CLDC. Concerning the size of an optimal
query set, we provided a lower bound of Ω(log logn) queries to verify a network
of n nodes. Thus, another interesting question to address is whether this result
can be improved, or alternatively to show that it is tight.

We argued that our query model is much closer to reality than the previously
used all-shortest-paths and all-distances query models, as it relies on local infor-
mation that can be gathered by simply exploring the routing tables of the nodes
of a given network. In practice, however, routing tables could contain much more
information than the one we used in defining our query model. A first natural
extension is that in which the routing tables contain also the distances to the
destination nodes. Apparently, this richer routing-distances query model should
be more powerful than both the routing-table and the all-distances query model.
However, a more in-depth analysis that we carried out showed that this is only
partially true. Indeed, as for the all-distances query model, also for the routing-
distances query model it can be shown that it is NP-hard to approximate the
Network Verification Problem within o(logn). On the positive side, an O(log n)-
approximation algorithm for the problem can be given for arbitrary graphs (as
in the all-distances query model), and this favorably compares with the routing-
table query model, where we were able to exhibit such a result only for graphs
of diameter 2. Thus, adding just distances is not enough to really strengthen
the model. Therefore, we plan in the future to investigate further variants of
the introduced model, with the goal of being as much adherent as possible to
the true set of information that routing tables can return in the various used

24

network communication protocols. Moreover, for the presented query model and
its envisioned variants, establishing whether the network verification problem is
in NPO is a challenging research question. Notice that the best currently known
upper bound on the complexity of the corresponding decision problem (given a
graph G and a positive integer k, can G be verified in the routing-table model
with at most k queries?) is Σp

2 , which follows easily from the definition of the
problem. Finally, a major task which is completely left open is that of under-
standing the computational hardness of the network discovery problem in the
routing-table query model.

Acknowledgements. The authors wish to thank the anonymous referees for their in-
sightful comments, which were helpful to substantially improve the paper.

References

1. Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffman, M. Mihal’ák, and
S. Ram, Network discovery and verification, IEEE Journal on Selected Areas in
Communications, 24(12):2168–2181, 2006.

2. Y. Bejerano and M. Rastogi, Rubust monitoring of link delays and faults in IP
networks, IEEE/ACM Transactions on Networking, 14(5):1092–1103, 2006.

3. D. Bilò, T. Erlebach, M. Mihal’ák, and P. Widmayer, Discovery of network
properties with all-shortest-paths queries, Theoretical Computer Science, 411(14-
15):1626–1637, 2010.

4. N.H. Bshouty and H. Mazzawi, Reconstructing weighted graphs with minimal
query complexity, Theoretical Computer Science, 412(19):1782–1790, 2011.

5. S.-S. Choi and J.H. Kim, Optimal query complexity bounds for finding graphs,
Artificial Intelligence, 174(9-10):551–569, 2010.

6. L. Dall’Asta, J.I. Alvarez-Hamelin, A. Barrat, A. Vázquez, and A. Vespignani, Ex-
ploring networks with traceroute-like probes: Theory and simulations, Theoretical
Computer Science 355(1):6–24, 2006,

7. T. Erlebach, A. Hall, and M. Mihal’ák, Approximate discovery of random graphs,
Proc. of the 4th Int. Symp. on Stochastic Algorithms: Foundations and Applications
(SAGA’07), Vol. 4665 of LNCS, 82–92, 2007.

8. M.R. Garey and D.S. Johnson, Computers and intractability: a guide to the theory
of NP-completeness, W.H. Freeman & Co., New York, NY, USA, 1979.

9. R. Govindan and H. Tangmunarunkit, Heuristics for Internet map discovery, Proc.
of the 19th IEEE Int. Conf. on Computer Communications (INFOCOM’00), 1371–
1380, 2000.

10. S. Gravier, R. Klasing, and J. Moncel, Hardness results and approximation algo-
rithms for identifying codes and locating-dominating codes in graphs, Algorithmic
Operations Research, 3:43–50, 2008.

11. S. Guha and S. Khuller, Approximation algorithms for connected dominating sets,
Algorithmica, 20:374–387, 1998.

12. F. Harary, A characterization of block graphs, Canadian Mathematical Bulletin,
6(1):1–6, 1963.

13. F. Harary, Graph Theory, Addison-Wesley, Reading, MA, USA, 1969.
14. F. Harary and R. Melter, The metric dimension of a graph, Ars Combinatoria,

191–195, 1976.

25

15. A.J. Hoffman and R.R. Singleton, Moore graphs with diameter 2 and 3, IBM
Journal of Research and Development, 5(4):497–504, 1960.

16. J. Hopcroft and R.E. Tarjan, Efficient algorithms for graph manipulation, Com-
munication of the ACM, 16:372–378, 1973.

17. S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graphs, Discrete
Applied Mathematics, 70:217–229, 1996.

18. H. Mazzawi, Optimally reconstructing weighted graphs using queries, Proc. of
the 21st Annual ACM-SIAM Symp. on Discrete Algorithms (SODA’10), 608–615,
2010.

19. L. Reyzin and N. Srivastava, Learning and verifying graphs using queries with
a focus on edge counting, Proc. of the 18th Int. Conf. on Algorithmic Learning
Theory (ALT’07), Vol. 4754 of LNCS, 285–297, 2007.

20. S. Sen and V.N. Muralidhara, The covert set-cover problem with application to
network discovery, Proc. of the 4th Int. Workshop on Algorithms and Computation
(WALCOM’10), Vol. 5942 of LNCS, 228–239, 2010.

21. J. Suomela, Approximability of identifying codes and locating-dominating codes.
Information Processing Letters, 103(1):28–33, 2007.

26

