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Abstract. We consider decision problems that are solved in a distributed
fashion by synchronous mobile agents operating in an unknown, anony-
mous network. Each agent has a unique identifier and an input string
and they have to decide collectively a property which may involve their
input strings, the graph on which they are operating, and their partic-
ular starting positions. Building on recent work by Fraigniaud and Pelc
[LATIN 2012, LNCS 7256, pp. 362–374], we introduce several natural
new computability classes allowing for a finer classification of problems
below co-MAV or MAV, the latter being the class of problems that are
verifiable when the agents are provided with an appropriate certificate.
We provide inclusion and separation results among all these classes. We
also determine their closure properties with respect to set-theoretic op-
erations. Our main technical tool, which is of independent interest, is
a new meta-protocol that enables the execution of a possibly infinite
number of mobile agent protocols essentially in parallel, similarly to the
well-known dovetailing technique from classical computability theory.

1 Introduction

1.1 Context and motivation

The last few decades have seen a surge of research interest in the direction
of studying computability- and complexity-theoretic aspects for various mod-
els of distributed computing. Significant examples of this trend include the
investigation of unreliable failure detectors [5,6], as well as wait-free hierar-
chies [14]. A more recent line of work studies the impact of randomization and
non-determinism in what concerns the computational capabilities of the LOCAL
model [9,12], as well as the impact of identifiers in the same model [10,11]. A
different approach considers the characterization of problems that can be solved
under various notions of termination detection or various types of knowledge
about the network in message-passing systems [1,2,3,4,17]. Finally, a recent work
focuses on the computational power of teams of mobile agents [13]. Our work
lies in this latter direction.

⋆ This work was partially funded by the ANR projects DISPLEXITY (ANR-11-BS02-
014) and MACARON (ANR-13-JS02-002). This study has been carried out in the
frame of the “Investments for the future” Programme IdEx Bordeaux – CPU (ANR-
10-IDEX-03-02).



The mobile agent paradigm has been proposed since the 90’s as a concept
that facilitates several fundamental networking tasks including, among others,
fault tolerance, network management, and data acquisition [15], and has been of
significant interest to the distributed computing community (see, e.g., the recent
surveys [7,16]). As such, it is highly pertinent to develop a computability theory
for mobile agents, that classifies different problems according to their degree
of (non-)computability, insofar as we are interested in really understanding the
computational capabilities of groups of mobile agents.

In this paper, we consider a distributed system in which computation is per-
formed by one or more deterministic mobile agents, operating in an unknown,
anonymous network. Each agent has a unique identifier and is provided with an
input string, and they have to collectively decide a property which may involve
their input strings, the graph on which they are operating, and their particular
starting positions. One may argue about the usefulness of developing a theory
specifically for mobile agent decision problems. We believe that, apart from its
inherent theoretical interest, such a study is bound to yield intermediate results,
tools, intuitions, and techniques that will prove useful when one moves on to
consider from a computability/complexity point of view other, perhaps more
traditional, mobile agent problems, such as exploration, rendezvous, pattern for-
mation, etc. One such tool is the protocol that we develop in this paper, which
enables the interleaving of the executions of a possibly infinite number of mobile
agent protocols.

1.2 Related work

In [13], Fraigniaud and Pelc introduced two natural computability classes, MAD

and MAV, as well as their counterparts co-MAD and co-MAV. The class MAD,
for “Mobile Agent Decidable”, is the class of all mobile agent decision problems
which can be decided, i.e., for which there exists a mobile agent protocol such
that all agents accept in a “yes” instance, while at least one agent rejects in a “no”
instance. On the other hand, the class MAV, for “Mobile Agent Verifiable”, is the
class of all mobile agent decision problems which can be verified. More precisely,
in a “yes” instance, there exists a certificate such that if each agent receives its
dedicated piece of it, then all agents accept, whereas in a “no” instance, for every
possible certificate, at least one agent rejects. Certificates are for example useful
in applications in which repeated verifications of some property are required.
Fraigniaud and Pelc proved in [13] that MAD is strictly included in MAV, and
they exhibited a problem which is complete for MAV under an appropriate notion
of oracle reduction.

In [8], Das et al. focus on the complexity of distributed verification, rather
than on its computability. In fact, their model differs in several aspects. First
of all, the networks in which the mobile agents operate are not anonymous, but
each node has a unique identifier. This greatly facilitates symmetry breaking, a
central issue in anonymous networks. On the other hand though, the memory
of the mobile agents is limited. Indeed, in [8], the authors study the minimal
amount of memory needed by the mobile agents to distributedly verify some
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Fig. 1. Containments between classes below MAV and co-MAV with corresponding
illustrative problems. Class and problem definitions are summarized in Tables 1 and 2,
respectively.

classes of graph properties. Again, the studied properties are different from the
ones studied here and in [13], since they do not depend on the mobile agents
or their starting positions. However, they may depend on labels that nodes can
possess in addition to their unique identifiers.

1.3 Our contributions

We introduce several new mobile agent computability classes which play a key
role in our endeavor for a finer classification of problems below MAV and co-MAV.
The classes MADs and MAVs are strict versions of MAD and MAV, respectively,
in which unanimity is required in both “yes” and “no” instances. Furthermore, we
consider the class co-MAV′ (and its counterpart MAV′) of mobile agent decision
problems that admit a certificate for “no” instances, while retaining the system-
wide acceptance mechanism of MAV.

We perform a thorough investigation of the relationships between the newly
introduced and pre-existing classes. As a result, we obtain a complete Venn
diagram (Figure 1) which illustrates the tight interconnections between them.
We take care to place natural decision problems (in the mobile agent context)
in each of the considered classes. Among other results, we obtain a couple of
fundamental, previously unknown, inclusions which concern pre-existing classes:
MAD ⊆ co-MAV and co-MAD ⊆ MAV.

We complement our results with a complete study of the closure properties of
these classes under the standard set-theoretic operations of union, intersection,
and complement. The various class definitions together with the corresponding
closure properties are summarized in Table 1.

The main technical tool that we develop and use in the paper is a new meta-
protocol that enables the execution of a possibly infinite number of mobile agent
protocols essentially in parallel. This can be seen as a mobile agent computing
analogue of the well-known dovetailing technique from classical recursion theory.

Proofs are omitted due to lack of space.
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Table 1. Overview of mobile agent decidability and verifiability classes and their clo-
sure properties. The notation yes (resp. no) means that all agents accept (resp. reject).
Similarly, ıyes (resp. Ùno) means that at least one agent accepts (resp. rejects).

Definition Closure Properties

“yes” instances “no” instances Union Intersec. Compl.

MADs (∀ certificate:) yes (∀ certificate:) no ✓ ✓ ✓

MAD (∀ certificate:) yes (∀ certificate:) Ùno ✗ ✓ ✗

co-MAD (∀ certificate:) ıyes (∀ certificate:) no ✓ ✗ ✗

MAVs ∃ certificate: yes ∀ certificate: no ✓ ✓ ✗

co-MAVs ∀ certificate: yes ∃ certificate: no ✓ ✓ ✗

MAV ∃ certificate: yes ∀ certificate: Ùno ✗ ✓ ✗

co-MAV ∀ certificate: ıyes ∃ certificate: no ✓ ✗ ✗

MAV′ ∃ certificate: ıyes ∀ certificate: no ✓ ✓ ✗

co-MAV′ ∀ certificate: yes ∃ certificate: Ùno ✓ ✓ ✗

2 Preliminaries

The graphs in which the mobile agents operate are undirected, connected, and
anonymous. The edges incident to each node v (ports) are assigned distinct
local port numbers (also called labels) from {1, . . . , dv}, where dv is the degree
of node v. The port numbers assigned to the same edge at its two endpoints do
not have to be in agreement.

We conventionally fix a binary alphabet Σ = {0, 1}. In view of the natural
bijection between binary strings and N which maps a string to its rank in the
quasi-lexicographic order of strings (shorter strings precede longer strings, the
rank of the empty string ε being 0), we will occasionally treat strings and nat-
ural numbers interchangeably. If x and y are strings, then 〈x, y〉 stands for any
standard encoding as a string of the pair of strings (x, y).

If x is a list, then |x| is the length of x and xi is the i-th element of x. If f is
a function that can be applied to the elements of x, then we will use the notation
f(x) =

(

f(x1), . . . , f(x|x|)
)

. In the same spirit, if x and y are equal-length lists
of strings, then 〈x,y〉 stands for the list

(

〈x1, y1〉 , . . . ,
〈

x|x|, y|y|
〉)

.
We denote by Σ0

1 the set of recursively enumerable (or Turing-acceptable)
decision problems, Π0

1 = co-Σ0
1, and ∆0

1 = Σ0
1 ∩ Π0

1. ∆0
1 is exactly the set of

Turing-decidable problems.

2.1 Mobile agent computations

A mobile agent protocol is modeled as a deterministic Turing machine. Mobile
agents are modeled as instances of a mobile agent protocol (i.e., copies of the
corresponding deterministic Turing machine) which move in an undirected, con-
nected, anonymous graph with port labels. Each mobile agent is provided ini-
tially with two input strings: its ID, denoted by id, and its input, denoted by x.
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By assumption, in any particular execution of the protocol, the ID of each agent
is unique. The execution of a group of mobile agents on a graph G proceeds in
synchronous steps. At the beginning of each step, each agent is provided with an
additional input string, which contains the following information: (i) the degree
of the current node u, (ii) the port label at u through which the agent arrived
at u (or ε if the agent is in its first step or did not move in the previous step), and
(iii) the configuration of all other agents which are currently on u. Then, each
agent performs a local computation and eventually halts by accepting or reject-
ing, or it moves through one of the ports of u, or remains at the same node. We
assume that all local computations take the same time and that edge traversals
are instantaneous. Therefore, the execution is completely synchronous.

Let M be a mobile agent protocol, G be a graph, id be a list of distinct
IDs, s be a list of nodes of G, and x be a list of strings such that |id| = |s| =
|x| = k > 0. We denote by M(id, G, s,x) the execution of k copies of M ,
the i-th copy starting on node si and receiving as inputs the ID idi and the
string xi. The tuple (id, G, s,x) is called the implicit input. Similarly, we denote
by M(id, x; id, G, s,x) the personal view of the execution of M on the implicit
input, as experienced by the agent with ID id and input x. We distinguish be-
tween the explicit input (id, x), which is provided to the agent at the beginning
of the execution, and the implicit input, which may or may not be discovered
by the agent in the course of the execution.

Given an implicit input, we write M(id, x; id, G, s,x) = yes (resp. no) if the
agent with explicit input (id, x) accepts (resp. rejects) during M(id, G, s,x). Fur-
thermore, we write M(id, G, s,x) 7→ yes (resp. no), if ∀i M(idi, xi; id, G, s,x) =
yes (resp. no), and M(id, G, s,x) 7→ ŷes (resp. ıno), if all agents halt and for
some i M(idi, xi; id, G, s,x) = yes (resp. no).

2.2 Mobile agent decision problems

Definition 1 ([13]). A mobile agent decision problem on anonymous graphs
is a set Π of instances (G, s,x), where G is a graph, s is a non-empty list of
nodes of G, and x is a list of strings with |x| = |s|, which satisfies the following
closure property: For every G and for every automorphism α of G that preserves
port numbers, (G, s,x) ∈ Π if and only if (G,α(s),x) ∈ Π.1

We will refer to instances which belong to a problem Π as “yes” instances
of Π . Instances that do not belong to Π will be called “no” instances of Π .
The complement Π of a mobile agent decision problem Π is the problem Π =
{(G, s,x) : |s| = |x| and (G, s,x) 6∈ Π}.2 Some examples of decision problems
are shown in Table 2.

1 Note that this closure property is syntactically different from the one used in [13]
due to notational differences, but the two are equivalent.

2 It is easy to check that if Π is a decision problem, then Π also satisfies the closure
property of Definition 1. Therefore, Π is also a decision problem.
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Table 2. Definitions of some mobile agent decision problems that we use in the rest
of the paper.

alone = {(G, s,x) : |s| = 1}
allempty = {(G, s,x) : ∀i xi = ε}
consensus = {(G, s,x) : ∀i, j xi = xj}
degree = {(G, s,x) : ∀i ∃v dv = xi}
degreeγ = {(G, s,x) : G contains a node of degree γ} (for γ ≥ 1)
mineven = {(G, s,x) : mini xi is even}
path = {(G, s,x) : G is a path}
teamsize = {(G, s,x) : ∀i xi = |s|}
treesize = {(G, s,x) : ∀i G is a tree of size xi}

Definition 2 ([13]). A decision problem Π is mobile agent decidable if there
exists a protocol M such that for all instances (G, s,x): if (G, s,x) ∈ Π then
∀id M(id, G, s,x) 7→ yes, whereas if (G, s,x) /∈ Π then ∀id M(id, G, s,x) 7→ıno.
The class of all decidable problems is denoted by MAD.

Definition 3 ([13]). A decision problem Π is mobile agent verifiable if there
exists a protocol M such that for all instances (G, s,x): If (G, s,x) ∈ Π then
∃y ∀id M(id, G, s, 〈x,y〉) 7→ yes, whereas if (G, s,x) /∈ Π then ∀y ∀id M(id, G, s,
〈x,y〉) 7→ıno. The class of all verifiable problems is denoted by MAV.

When there is no room for confusion, we will use the term certificate both
for the string y provided to an agent and for the collection of certificates y

provided to the group of agents. If we need to distinguish between the two, we
will refer to y as a certificate vector. Finally, if X is a class of mobile agent
decision problems, then co-X = {Π : Π ∈ X}.

Remark 1. Note that in [13], only decidable (in the classical sense) mobile agent
decision problems were taken into consideration. As a result, it was by definition
the case that MAD and MAV were both subsets of ∆0

1. For the purposes of this
work, we do not impose this constraint.

3 Mobile Agent Decidability Classes

A problem Π is in co-MAD if and only if it can be decided by a mobile agent
protocol in a sense which is dual to that of Definition 2: If the instance is in Π ,
then at least one agent must accept, whereas if the instance is not in Π , then
all agents must reject. We will consider one more such variant in the form of the
“strict” class MADs. A problem belongs to this class if it can be solved in such a
way that every agent always outputs the correct answer.

Definition 4. A decision problem Π is in MADs if and only if there exists a pro-
tocol M such that for all instances (G, s,x): if (G, s,x) ∈ Π then ∀id M(id, G, s,
x) 7→ yes, whereas if (G, s,x) /∈ Π then ∀id M(id, G, s,x) 7→ no.
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By definition, MADs is a subset of both MAD and co-MAD and it is easy to
check that MADs = co-MADs. Moreover, all of these classes are subsets of ∆0

1,
since a centralized algorithm, provided with an encoding of the graph and the
starting positions, inputs, and IDs of the agents, can simulate the corresponding
mobile agent protocol and decide appropriately. As mentioned in [13], path is
an example of a mobile agent decision problem which is in ∆0

1 \ MAD, since,
intuitively, an agent cannot distinguish a long path from a cycle. In fact, this
observation yields path ∈ ∆0

1 \ (MAD ∪ co-MAD).
A nontrivial problem in MADs is treesize. The problem was already shown to

be in MAD in [13]. For the stronger property that treesize ∈ MADs, we need a
modification of the protocol given in [13].

Proposition 1. treesize ∈ MADs.

We now show that MAD and co-MAD are strict supersets of MADs.

Proposition 2. allempty ∈ MAD \MADs and allempty ∈ co-MAD \MADs.

As we mentioned, MADs is included in both MAD and co-MAD. In fact,
MADs = MAD∩ co-MAD. We state this as a theorem without proof, since it can
be obtained as a corollary of Theorems 2 and 3, which we will prove in Section 5.

Theorem 1. MADs = MAD ∩ co-MAD.

By Theorem 1, if allempty was included in co-MAD, we would obtain allempty ∈
MADs, which we know to be false. Thus, allempty /∈ co-MAD and we obtain a sep-
aration between MAD and co-MAD. Symmetrically, allempty ∈ co-MAD \MAD.

4 Interleaving Multiple Mobile Agent Protocols

It is important to have a tool that enables the execution of several mobile agent
protocols on the same instance, and that also permits the mobile agents to make
decisions based on the outcomes of these executions. For example, if one were
to give a direct proof of Theorem 1 above, one would need a way for the agents
to coordinate in order to execute both the MAD and the co-MAD protocol for a
particular problem, and then, based on the outcome of these executions, to give
a unanimous correct answer (in the spirit of MADs).

In classical computing, the well known dovetailing technique achieves this
interleaving of different computations. Classical dovetailing proceeds in phases:
in phase T , the first T steps of the first T programs are executed. At this point, an
auxiliary function is executed, which decides, based on these executions, whether
to accept, reject, or continue with the next phase. Correspondingly, the mobile
agent meta-protocol which we propose in this section, proceeds in phases: in
phase T , the agents execute the first T steps of the first T mobile agent protocols
and then decide whether to accept, reject, or proceed to the next phase. In
the mobile agent case, each agent decides independently by locally executing
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a function, which is given as a parameter to the meta-protocol. We call this
function a local decider.

Still, it may happen that one or more agents halt as a result of executing the
local decider, while others decide to continue. In such a case, the execution of
the protocols in the next phase could be corrupted because the halted agents no
longer follow the protocol. However, these halted agents can now be regarded
as fixed tokens and the meta-protocol uses them in order to create a map of
the graph. In fact, this is done in such a way as to ensure that all non-halted
agents obtain not only the map of the graph but actually full knowledge of the
implicit input. Based on this knowledge, each agent decides irrevocably whether
to accept or reject by means of a second function which is given as a parameter
to the meta-protocol, and which we call a global decider.

4.1 Ingredients of the meta-protocol

We propose a generic meta-protocol PN ,f,g, which is parameterized by N , f, g.
The set N is a, possibly infinite, recursively enumerable set of mobile agent
protocols. Let Ni, i ≥ 0, denote the i-th protocol in such an enumeration. The
functions f and g are computable functions which represent local computations
with the following specifications:

Global decider: The function f maps pairs consisting of an explicit and an im-
plicit input, i.e., tuples of the form (id, x; id, G, s,x), to the set {accept, reject}.
In this case, we say that f is a global decider. When an agent executes f , it halts
by accepting or rejecting according to the outcome of f .

Local decider: The function g takes as input an explicit input (id, x) and a list
(H1, . . . , Hσ) of arbitrary length σ, where each Hj is the history of the partial
execution of Nj(id, x; id, G, s,x) for a certain number of steps and (id, G, s,x)
is an implicit input common for all histories H1, . . . , Hσ. The outcome of g is
one of {accept, reject, continue}. When an agent executes g, it halts in the
corresponding state if the outcome is accept or reject, otherwise it continues
without halting.

If for every implicit input (id, G, s,x) and for every T0, there exists a T ≥
T0 and some i such that the local computation g(idi, xi, H1, . . . , Hmin(T,|N |))
returns either accept or reject, where each Hj is an encoding of the execution
of Nj(idi, xi; id, G, s,x) for T steps, then we say that g is a local decider for N .

The meta-protocol uses the following procedures Create-Map and Rdv:

Procedure Create-Map(R): An agent executes this procedure only when it
is on a node which contains at least one halted (or idle) agent. Starting from this
node, and treating the halted agent as a fixed mark, it attempts to create a map
of the graph assuming that the graph contains at most R nodes. More precisely,
the agent first creates a map consisting in a single node corresponding to the
marked node r, with dr pending edges with port numbers from 1 to dr. Then,
while there remain some pending edges and there are at most R explored nodes,
the agent explores some arbitrary pending edge as follows. The agent goes to
the known extremity u of the pending edge by using the map and traverses it.
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It then determines whether its current position v corresponds to a node of its
map, as follows: For every node w in its map, it computes a path in the map
going from w to r and follows the corresponding sequence of port numbers in
the unknown graph, starting from v. If it leads to the marked node, then v = w
and the agent updates its map by linking the pending edges of u and w with the
appropriate port numbers. Otherwise, it retraces its steps to come back to v and
tests a next node w. If all nodes turn out to be different from v, then the agent
goes back to the marked node through u, and updates its map by adding a new
node corresponding to v, linked to u, and with the appropriate number of new
pending edges. At the end of the procedure, the agent either has a complete map
of the graph, or knows that the graph has more than R nodes. This procedure
takes at most 4R4 steps.

Procedure Rdv(R, id): This procedure guarantees that a group of k agents
which (a) know the same upper bound R on the number of nodes in the graph,
(b) have distinct id’s {id1, . . . , idk}, and (c) start executing Rdv(R, idi) at the
same time from different nodes si, will all meet each other after finite time.
Moreover, each agent knows when it has met all other agents executing Rdv,
even without initial knowledge of k.

The Rdv procedure uses as a subroutine the following Explore-Ball pro-
cedure: An agent executing Explore-Ball(R) attempts to explore the ball of
radius R around its starting node si, assuming an upper bound of R on the
maximum degree of the graph. This is achieved by having the agent try ev-
ery sequence of length R of port numbers from the set {1, . . . , R}, retracing
its steps backward after each sequence to return to si. If a particular sequence
instructs the agent to follow a port number that does not exist at the current
node (i.e., the port number is larger than the degree of the node), then the agent
aborts that sequence and returns to si. Attempting all possible sequences takes
at most B(R) = 2R · RR steps. If an agent finishes earlier, it waits on si un-
til B(R) steps are completed. Therefore, a team of agents that start executing
Explore-Ball(R) at the same time from different nodes are synchronized and
back at their starting positions after B(R) steps.

Now, for each bit of idi, the Rdv procedure executes the following: If the bit
is 0, the agent waits at si for B(R) steps and then executes Explore-Ball(R),
whereas if the bit is 1, the agent first executes Explore-Ball(R) and then
waits on its starting position for B(R) steps. After it exhausts the bits of idi, the
agent executes twice Explore-Ball(R). This guarantees that, if the number of
nodes is at most R, then after 2 · (|idi|+ 1) ·B(R) steps, each agent i is located
at si and has met all other agents executing Rdv. Note that after every integer
multiple of B(R) steps, each agent is located at its initial node si.

4.2 Description of the meta-protocol

The meta-protocol PN ,f,g works in phases, which correspond to increasing values
of a presumed upper bound T on the number of nodes in the graph, the length
of all agent identifiers, and the completion time of protocols N1, . . . , NT . We will
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Fig. 2. High-level flowchart of the meta-protocol of Section 4.

say that an agent is idle if it is waiting indefinitely on its starting node for some
other agent to provide it with the knowledge of the full implicit input. We will
say that an agent is participating if it is not halted and not idle. Note that an
agent may halt only as a result of executing one of the decider functions f and g.
In each phase T , the agents perform the following actions (see also Fig. 2):

Search for nearby starting positions and set flags. Each participating agent i
first executes Rdv(2T, idi) for at most 2(T + 1)B(2T ) steps. By design of Rdv,
this guarantees that agent i will explore its 2T -neighborhood at least once and,
in particular, if T ≥ |idi|, then for each other participating agent, agent i will
explore its 2T -neighborhood at least once with that agent staying on its starting
node. If, in the process, the agent meets any agent, then it sets its accompanied
flag. It also sets its neutralized flag if the encountered agent is participating and
it has a lexicographically larger ID. If the encountered agent is halted or idle,
the agent sets its mapseeker flag. Finally, if the agent finds a node with degree
larger than 2T or if the length of its ID is greater than T , it sets its cautious
flag. All agents synchronize at this point.

Mapseeker agents attempt to create a map of the graph. Next, each agent i
with the mapseeker flag set moves to a halted or idle agent which it has found
previously, while executing Rdv in the current phase. Then, it attempts to create
a map of the graph by executing Create-Map(T ) and returns to si. Overall, this
takes at most 4T 4+4T steps. Moreover, during the execution of Create-Map,
mapseeker agents collect starting position and input information from all halted
and idle agents that they encounter. Meanwhile, non-mapseeker agents wait
for 4T 4 + 4T steps. All agents synchronize at this point.

So far, we have achieved that, if T ≥ n, where n is the number of nodes in G,
then either no agent is a mapseeker having the full map of G, or all participating
agents have the mapseeker flag set and they have the full map of G (Lemma 1
below). If all mapseeker agents have the full map of G and T ≥ n, then each such
agent i executes Rdv(n, idi), which guarantees that, finally, it is located at si
and has met all other agents executing Rdv. Therefore, after concluding the
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Rdv procedure, each mapseeker executes f with full knowledge of the implicit
input (Lemma 2).

Perform dovetailing. At this point, if no agent is a mapseeker having the full
map of G, the agents execute each of the protocols N1, . . . , Nmin(T,|N |) for at
most T steps, and then retrace backward to si (agents are synchronized after
executing each protocol). If any of these protocols instructs an agent to halt,
the agent instead waits until the T -step execution period has finished, and then
returns to si. If the agent does not have the cautious or accompanied flags set, it
then executes g(id, x,H1, . . . , Hmin(T,|N |)), where Hj is the history of the T -step
execution of Nj with explicit input (id, x). Since this process takes at most 2T 2

steps, all agents that do not halt as a result of executing g are synchronized at
the end of the current phase. It is guaranteed that the histories fed to the local
decider g correspond to correct executions of the corresponding protocols for
implicit input (id, G, s,x), even though some of the agents may have halted or
become idle in earlier phases (Lemma 3 and Corollary 1).

Neutralized agents become idle. Finally, at the end of the phase, neutralized
agents start waiting for the implicit input (i.e., they become idle), and when
they receive it (from some mapseeker agent), they execute the global decider f .

Lemma 1. In each phase, either all or none of the participating agents (i.e.,
non-halted and non-idle) execute f .

Lemma 2. Any agent that executes f has full knowledge of the implicit input
(id, G, s,x).

Lemma 3. If an agent i executes g during phase T , then no other agent’s start-
ing node is at distance 2T or less from si.

By Lemma 3, we obtain following corollary:

Corollary 1. Any agent i that executes g has histories which correspond to the
correct histories of Nj(idi, xi; id, G, s,x) for T steps (1 ≤ j ≤ min(T, |N |)), even
though some of the agents may have halted or become idle in earlier phases.

In view of Corollary 1, we can show that all agents terminate and, in fact,
they all terminate on their respective starting nodes.

Lemma 4. Let f be a global decider and let g be a local decider for N . Then,
each agent halts under the execution PN ,f,g(id, G, s,x) by executing either f
or g. Moreover, each agent i halts on its starting node si.

4.3 Application of the meta-protocol

To summarize, the meta-protocol is a generic tool that enables us to interleave
the executions of a possibly infinite set of mobile agent protocols. Eventually,
each agent accepts or rejects, based either on the histories of the executions of a
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number of these protocols (by means of the local decider), or on full knowledge
of the implicit input (by means of the global decider).

We use the meta-protocol in order to place a particular problem in one of
the mobile agent computability classes of Table 1. A common part of the proofs
consists in defining the list of protocols N and suitable deciders f and g, and
in showing that f and g indeed satisfy the global and local decider properties,
respectively. This is followed by a part tailored to each particular result, where
we use the properties of the meta-protocol (Lemmas 1–4 and Corollary 1) and
the particular definitions of f and g, in order to show that agents that execute
PN ,f,g always terminate in the desired state. The desired state is indicated by
the class in which we wish to place the problem. For example, if we wish to show
that a problem is in MADs, we will have to show that all agents give the correct
answer for all implicit inputs.

5 Mobile Agent Verifiability Classes

Definition 5. A decision problem Π is in MAVs if and only if there exists a pro-
tocol M such that for all instances (G, s,x): if (G, s,x) ∈ Π then ∃y ∀id M(id, G,
s, 〈x,y〉) 7→ yes, whereas if (G, s,x) /∈ Π then ∀y ∀id M(id, G, s, 〈x,y〉) 7→ no.

By definition, MAVs ⊆ MAV. Moreover, MAV ⊆ Σ0
1, since a centralized al-

gorithm can simulate the MAV protocol for all possible certificate vectors (by
classical dovetailing) and accept if it finds a certificate for which all agents ac-
cept. By taking complements, we obtain as well that co-MAVs ⊆ co-MAV ⊆ Π0

1.
There exist several nontrivial problems in MAVs and co-MAVs (Proposition 3).

Furthermore, we can show that MAV is a strict superset of MAVs and, as a
corollary, co-MAV is a strict superset of co-MAVs (Proposition 4).

Proposition 3. For any fixed γ ≥ 1, degreeγ ∈ MAVs. Furthermore, consensus ∈
co-MAVs and alone ∈ co-MAVs.

Proposition 4. degree ∈ MAV \ (MAVs ∪ co-MAV).

Proposition 4 also separates MAV from co-MAV. In order to separate Σ0
1

from MAV and Π0
1 from co-MAV, we observe that the teamsize problem, which

is clearly in ∆0
1 = Σ0

1 ∩ Π0
1, is neither in MAV nor in co-MAV.

Proposition 5. teamsize ∈ ∆0
1 \ (MAV ∪ co-MAV).

Decision problems with “no” certificates In classical computability, the
class Π0

1 = co-Σ0
1 can be seen as the class of problems that admit a “no” cer-

tificate, i.e.: for “no” instances, there exists a certificate that leads to rejection,
whereas for “yes” instances, no certificate can lead to rejection. In this respect,
while MAV can certainly be considered as the mobile agent analogue of Σ0

1,
co-MAV is not quite the analogue of Π0

1. Problems in co-MAV indeed admit a
“no” certificate, but the acceptance mechanism is reversed: for “no” instances,
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there exists a certificate that leads all agents to reject. This motivates us to
define and study co-MAV′, the class of mobile agent problems that admit a “no”
certificate while retaining the MAV acceptance mechanism, as well as its com-
plement MAV′. We give the definition of MAV′ below.

Definition 6. A decision problem Π is in MAV′ if and only if there exists a pro-
tocol M such that for all instances (G, s,x): if (G, s,x) ∈ Π then ∃y ∀id M(id, G,
s, 〈x,y〉) 7→ ŷes, whereas if (G, s,x) /∈ Π then ∀y ∀id M(id, G, s, 〈x,y〉) 7→ no.

By definition, it holds that MAVs ⊆ MAV′ and co-MAVs ⊆ co-MAV′. To show
MAV′ = MAVs (and thus co-MAV′ = co-MAVs), we need to “boost” the MAV′ pro-
tocol so that the agents answer unanimously even in “yes” instances. We achieve
this by supplying an extra certificate, which is interpreted as the number of nodes
of the graph. This enables the agents to meet and exchange information in “yes”
instances, and therefore reach a unanimous decision. The meta-protocol from
Section 4 essentially provides “for free” the necessary subroutines for meeting
and exchanging information.

Theorem 2. MAV′ = MAVs and co-MAV′ = co-MAVs.

In view of Theorem 2, it follows that MAVs ⊆ MAV∩co-MAV and co-MAVs ⊆
MAV∩ co-MAV. We separate MAV∩ co-MAV from both of these classes with the
problem mineven:

Proposition 6. mineven ∈ (MAV ∩ co-MAV) \ (MAVs ∪ co-MAVs).

Connections with the decidability classes We explore the relationships
among the decidability classes of Section 3 and the classes defined in this section.
From the definitions we know that MAD ⊆ co-MAV′, therefore, by Theorem 2,
MAD ⊆ co-MAVs. Similarly, co-MAD ⊆ MAVs. Therefore, since MADs ⊆ MAD ∩
co-MAD, we also have that MADs ⊆ MAVs ∩ co-MAVs.

We show in Theorem 3 that, in fact, MADs = MAVs∩co-MAVs. Furthermore,
from the definitions and Theorem 2, we have MAD ⊆ MAV ∩ co-MAVs and
co-MAD ⊆ MAVs ∩ co-MAV. We show that these actually hold as equalities in
Theorem 4 below. The proof of Theorem 3 (resp. Theorem 4) is based on trying
all possible combinations of certificates for the MAVs (resp. MAV) and co-MAVs

protocols. Here, we use the full power of the meta-protocol of Section 4 in order
to interleave and synchronize this infinite number of executions.

Theorem 3. MADs = MAVs ∩ co-MAVs.

Theorem 4. MAD = MAV ∩ co-MAVs and co-MAD = MAVs ∩ co-MAV.

Note that it was shown in [13] that, if we consider decision problems that are
decidable or verifiable by a single agent (thus giving rise to the classes MAD1

and MAV1), then it holds that MAD1 = MAV1∩ co-MAV1. Theorems 3 and 4 can
be seen as generalizations of that result to multiagent classes.
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Proposition 7. For any fixed γ ≥ 1, degreeγ ∈ MAVs \ co-MAD and degreeγ ∈
co-MAVs \MAD.

In view of Theorem 4, Proposition 7 yields a separation between MAVs

and co-MAV, as degreeγ ∈ MAVs \ co-MAV, and a separation between co-MAVs

and MAV, as degreeγ ∈ co-MAVs \MAV.
By combining the results of this section with the results of Section 3, we

obtain a picture of the relationships among the classes below MAV and co-MAV,
as illustrated in Figure 1.
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