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Abstract. We are interested in the problem of satisfying a maximum-
profit subset of undirected communication requests in an optical ring that
employs the Wavelength Division Multiplexing technology. We present
four deterministic and purely combinatorial algorithms for this problem,
and give theoretical guarantees for their worst-case approximation ra-
tios. Two of these algorithms are novel, while the rest are adaptation
of earlier approaches. An experimental evaluation of the algorithms in
terms of attained profit and execution time reveals that the theoretically
best algorithm performs only marginally better than one of the new algo-
rithms, while at the same time being several orders of magnitude slower.
Furthermore, an extremely fast greedy heuristic with non-constant ap-
proximation ratio performs reasonably well and may be favored over the
other algorithms whenever it is crucial to minimize execution time.

Keywords: ring networks, optical networks, WDM, wavelength assign-
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1 Introduction

Wavelength Division Multiplexing (WDM) is a dominating technology in con-
temporary all-optical networking. It allows several connections to be established
through the same fiber links, provided that each of the connections uses a dif-
ferent wavelength. A second requirement is that a connection must use the same
wavelength from one end to the other in order to avoid the use of wavelength
converters which are costly or slow. In practice, the available bandwidth is lim-
ited to a few dozen, or at most hundred, wavelengths per fiber and the situation
is not expected to change in the near future. It is therefore impossible to serve a
large enough set of communication requests simultaneously. It thus makes sense
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Fig. 1. An optimal wavelength assignment on an optical ring with two available
wavelengths per fiber and four full-duplex pre-routed communication requests (paths
p1, . . . , p4), each associated with a profit. Different wavelengths are illustrated with
different line styles (a dotted line means that the request was not satisfied).

to consider the problem of satisfying a maximum-profit subset of requests, where
profits may represent priorities or actual revenues associated with the commu-
nication requests (see Figure 1).

In our model, requests are undirected and pre-routed. Undirected requests
correspond to full-duplex communication. In this mode of communication, it is
assumed that each physical link in the network is implemented with two parallel
optical fibers. Each fiber is reserved for carrying data in one direction only.
Whenever a request between two nodes is assigned a wavelength, this wavelength
is reserved for this request on both parallel paths connecting the two nodes; each
path is used for transferring data in one direction only. Two requests or paths are
assumed to overlap when they share a physical link of the network. Moreover,
pre-routed requests arise in settings where the path on which a request will be
routed is decided independently of the wavelength assignment procedure. This
is the case when there are specific routing requirements, such as shortest-path
routing, or when lightpaths are set up in an earlier stage of the virtual topology
design process.

In the wavelength assignment problem that we study, we are given a set of
simple paths in a network (representing full-duplex communication requests),
a profit associated with each path, and a number of available wavelengths. A
solution is any subset of the paths that can be assigned wavelengths in such
a way that overlapping paths receive different wavelengths. The goal is to find
a solution that maximizes the total profit of satisfied requests (see Figure 1
for an example). We call this problem Maximum Profit Path Coloring,
or MaxProfit-PC for short. We will focus on the MaxProfit-PC problem
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where the underlying network is a ring, which is a fundamental network topology
and is frequently deployed in practice (for example, in the case of SONET rings–
Synchronous Optical Network rings). Note, also, that MaxProfit-PC captures
request satisfaction problems in any kind of networks if we interpret colors as
time slots. Then, MaxProfit-PC corresponds to the problem of maximizing
the profit of requests that can be satisfied in a given number of time slots.

1.1 Related Work

While the cardinality version of the problem (called MaxPC, for Maximum
Path Coloring) has been studied by several researchers [1–5], MaxProfit-
PC has been considered in rather few papers [4, 5]. Both MaxProfit-PC and
MaxPC are NP -hard even in simple networks such as rings and trees; this can
be shown by an immediate reduction from the corresponding color minimization
problem (see e.g. [1]).

MaxProfit-PC in chains is also known as the “weighted k-coloring of inter-
vals” problem, which can be solved exactly as shown by Carlisle and Lloyd [5]. In
the case of MaxProfit-PC in rings, Caragiannis [4] has presented a randomized
algorithm based on linear programming that achieves an expected approxima-
tion ratio of 0.67. Let us note here that, although the algorithm in [4] achieves
a slightly better worst-case approximation ratio than one of our algorithms, we
have chosen not to include it in our experimental comparison, since our focus is
on deterministic and purely combinatorial algorithms.

MaxPC in rings admits a 3
4 -approximation algorithm, as shown by Caragian-

nis [4]. Wan and Liu [1] present a (1− 1
e
)-approximation algorithm for MaxPC

in trees. In [1] they also study the case where requests are not routed in ad-
vance and present a constant approximation algorithm for meshes, as well as a
(1 − 1

e
)-approximation algorithm for rings. The latter was recently superseded

by an improved 2
3 -approximation algorithm due to Bian and Gu [6]. Li et al.

[7] also study a version of MaxProfit-PC where requests are not routed in
advance; in this version they assume directed requests and edge capacities that
must be obeyed, and present a 1

2 -approximation algorithm for rings.

1.2 Our Results

In this paper, we present four algorithms for MaxProfit-PC in rings with undi-
rected requests. Our algorithms combine ideas from algorithms for MaxPC [3,
1] with new techniques specially designed for coloring paths with profits. We
give theoretical bounds on the approximation ratio achieved by these algorithms
and then move on to perform an experimental comparison with respect to the
total profit of the solutions they produce and the execution time they require.

One of the results of this comparison is that Match-and-Replace, a novel
algorithm that we propose, performs only marginally worse than Iterative, which
is based on a well-known technique and gives the best theoretical guarantee
for the approximation ratio among the implemented algorithms. At the same
time, Match-and-Replace is several orders of magnitude faster than Iterative. A
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second finding of the experimental comparison is that a natural greedy heuristic
with non-constant theoretical approximation guarantee actually performs quite
competently and is also exceptionally fast.

The rest of the paper is organized as follows: In Section 2 we give a few
preliminary definitions. In Section 3 we present in detail the Match-and-Replace

algorithm. In Section 4 we present in detail the other three algorithms to be
included in the comparison. In Section 5 we describe the experimental setup
that we used and discuss the numerical results. We conclude in Section 6 with a
ranking of the algorithms with respect to their performance in the experiments.

2 Preliminaries

Let w : P → Q+ be a function assigning weights to the paths in some set P .
For any A ⊆ P , we will employ the notation w(A) for the total weight of A:
w(A) =

∑

p∈A w(p). Similarly, for any set S of subsets of P , we will employ
the notation w(S) for the sum of total weights of the elements of S: w(S) =
∑

A∈S
w(A). Note that, if S contains mutually disjoint subsets of P , then w(S) =

w
(
⋃

A∈S
A
)

.
We formally define the MaxProfit-PC problem in graph-theoretic terms

as follows:

Definition 1. Maximum Profit Path Coloring Problem (MaxProfit-
PC)
Input: 〈G,P , w, k〉, where G is an undirected graph, P is a set of simple paths
defined on G, w : P → Q+ is a profit function, and k ∈ N+ is the number of
available colors.
Feasible solution: a set of paths P ′ ⊆ P that can be colored with k colors so that
no overlapping paths are assigned the same color.
Goal: maximize w(P ′).

We also define MaxPC, which is the cardinality version of MaxProfit-PC
(equivalent to all paths having profit equal to 1).

Definition 2. Maximum Path Coloring Problem (MaxPC)
Input: 〈G,P , k〉, where G is an undirected graph, P is a set of simple paths
defined on G, and k ∈ N+ is the number of available colors.
Feasible solution: a set of paths P ′ ⊆ P that can be colored with k colors so that
no overlapping paths are assigned the same color.
Goal: maximize |P ′|.

Note that, in general, there may be multiple paths defined on the same set of
edges of a graph. We assume that each path in a given instance of the problem
is distinguished by a unique ID and thus we speak of sets instead of multisets of
paths. We will not make explicit use of path ID’s hereafter.

A chain is a graph that consists of a single path, while a ring is a graph that
consists of a single cycle. If we remove an edge e from a ring we get a chain; we
call such an edge a separation edge.
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Given a network G = (V, E) and a set of paths P , we denote by n the size of
set V , and by m the size of set P . If P is a set of paths and e is an edge, then we
denote by L(e,P) the load of edge e with respect to P , i.e. the number of paths
in P that use e. We denote by length(p) the number of edges of path p. Given a
set of paths P and a coloring thereof, the subset of P that is colored with color i

is called the i-th color class of P and is denoted by P(i).
Carlisle and Lloyd [5] give an exact algorithm for MaxProfit-PC in chains

that runs in O(km log m) time. In the sequel, we will often use this algorithm as
a subroutine for the algorithms that we present. We will refer to this algorithm
as the Carlisle-Lloyd Algorithm.

An algorithm A for a maximization problem Π is a ρ-approximation algo-
rithm (for 0 < ρ ≤ 1) if for every instance I of Π , A runs in time polynomial in
|I| and delivers a solution with profit SOL ≥ ρ · OPT , where OPT denotes the
profit of an optimal solution for I.

3 The Match-and-Replace Algorithm

We propose a novel algorithm for MaxProfit-PC in rings. The Match-and-

Replace algorithm is based on a popular technique used for rings, namely to
pick a separation edge and remove it from the ring. The set of requests is then
partitioned, with respect to the separation edge, into two subsets: the subset of
requests that use the separation edge, and the subset of requests that do not use
it. Observe that the latter subset can be regarded as an instance of MaxProfit-
PC in a chain, and thus it can be colored optimally in polynomial time. After
this step, the algorithm tries to color some of the requests that use the separation
edge, possibly sacrificing some of the requests that have already been colored.
To that end, it computes a maximum-weight matching on the corresponding
compatibility graph:

Definition 3 (Compatibility graph). Let 〈G = (V, E),P , w, k〉 be an in-
stance of MaxProfit-PC and e ∈ E be a separation edge that partitions
the path set P into Pe (paths in P that use edge e) and Pc = P \ Pe. For
any partial coloring of the paths in Pc, we define the compatibility graph H
as follows: H = (U, D) is a weighted complete bipartite graph with node set
U = {Pc(i) : 1 ≤ i ≤ k} ∪ Pe and edge weights

h(Pc(i), q) = w(q) − w(Pc(i)
q) ,

where Pc(i)
q is the subset of Pc(i) that contains all paths that overlap with q.

A detailed description of the algorithm is presented in Algorithm 1. We prove
below that this algorithm achieves an approximation ratio of 1

2 , and that the
analysis that we provide is tight.

Theorem 1. The Match-and-Replace algorithm achieves an approximation ratio
of 1

2 for MaxProfit-PC in rings.
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Algorithm 1 Match-and-Replace

Input: an instance 〈G,P , w, k〉 of MaxProfit-PC, where G is a ring
1: Pick an arbitrary separation edge e of the ring. Let Pe be the set of paths that use

edge e and Pc = P \ Pe.
2: Color the instance 〈G − e,Pc, w, k〉 optimally, using the Carlisle-Lloyd Algorithm

for MaxProfit-PC in chains.
3: Let Pc(i) be the i-th color class of Pc, 1 ≤ i ≤ k (note that some color classes may

be empty).
4: Construct the compatibility graph H that corresponds to the separation edge picked

in Step 1 and the partial coloring obtained in Step 3.
5: Find a maximum-weight matching M of H.
6: for each edge (Pc(i), q) ∈ M do

7: uncolor all paths in Pc(i)
q and color path q ∈ Pe with color i.

8: end for

Proof. Let OPT be the value of any optimal solution of the ring instance, OPT c

be the value of any optimal solution of the instance constrained to path set Pc,
and OPT e be the value of any optimal solution of the instance constrained to
path set Pe. Because Pe and Pc form a partition of P ,

OPT ≤ OPT c + OPT e . (1)

Let SOLc be the value of the solution obtained in Step 2 of the algorithm
(chain subinstance solution), and SOL be the value of the final solution. Clearly,

SOL = SOLc + h(M) (2)

where h(M) is the sum of the weights of the edges that belong to the matching M

computed in Step 5 (recall that h is the edge weight function of the compatibility
graph H). The instance 〈G−e,Pc, w, k〉 is solved optimally in Step 2. Therefore,
taking also into account Equation 2 we have that:

OPT c = SOLc ≤ SOL . (3)

Let S = {Pc(i) : 1 ≤ i ≤ k}, and SM be the set of Pc(i)’s that are matched
by M . Similarly, let Pe,M be the paths in Pe that are matched by M . Finally,
let K be the set of the k most profitable paths of Pe. We will now show that

OPTe = w(K) ≤ SOL . (4)

For the sake of analysis we will examine a solution SOL′ that Match-and-

Replace would have computed if it had chosen a matching M ′ of a subgraph H′

of H in Step 5. The bipartite graph H′ has the same node set and the same edge
weight function as H, but only a subset of the edges of H. More specifically,
for every pair (Pc(i), q): the edge (Pc(i), q) is in H′, if w(q) − w(Pc(i)) > 0 and
q ∈ K. Let M ′ be a maximum matching in H′, and let SM ′ and Pe,M ′ be defined
analogously for M ′ as for M . Similarly to Equation 2,

SOL′ = SOLc + h(M ′) . (5)
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Note that SOLc = w(S). Denoting by Pc(i)
¬q the set of paths in Pc(i) that do

not overlap with q, we have:

h(M ′) = w(Pe,M ′ ) −
∑

(P (i),q)∈M ′

w(Pc(i)
q)

= w(Pe,M ′ ) −
∑

(Pc(i),q)∈M ′

[w(Pc(i)) − w(Pc(i)
¬q)]

= w(Pe,M ′ ) − w(SM ′ ) +
∑

(Pc(i),q)∈M ′

w(Pc(i)
¬q) ,

Equation 5 may then be rewritten as follows:

SOL′ = w(S \ SM ′ ) + w(Pe,M ′ ) +
∑

(Pc(i),q)∈M ′

w(Pc(i)
¬q) .

We observe that Pe,M ′ ⊆ K and therefore w(Pe,M ′ ) + w(K \ Pe,M ′) = w(K), so
the last sum can be expanded in the following way:

SOL′ = w(S \ SM ′) + w(K) − w(K \ Pe,M ′) +
∑

(Pc(i),q)∈M ′

w(Pc(i)
¬q) . (6)

Observe also that for any Pc(i) 6∈ SM ′ and q 6∈ Pe,M ′ , there must be no
edge between them in H′, hence w(Pc(i)) ≥ w(q). Moreover, w(S \ SM ′) and
w(K\Pe,M ′) are sums with the same number of terms because |K| = |S| = k and
|SM ′ | = |Pe,M ′ |. These observations imply that w(S \ SM ′ ) − w(K \ Pe,M ) ≥ 0,
therefore Equation 6 yields:

SOL′ ≥ w(K) . (7)

Since H′ is a subgraph of H, M ′ is a matching also for H, although proba-
bly not a maximum-weight one. Therefore, h(M) ≥ h(M ′), which implies, from
Equations 2 and 5, that SOL ≥ SOL′. Combining this last inequality with Equa-
tion 7, we obtain Equation 4.

By Equations 3 and 4, SOL is an upper bound on both OPT e and OPT c,
which together with Equation 1 gives:

SOL ≥
OPT

2
.

⊓⊔

Example 1 (Tight example for the approximation ratio of Match-and-Replace).
Consider the MaxProfit-PC instance illustrated in Figure 2. There is only
one available color and three paths p1, p2, and p3. Paths p1 and p3 are non-
overlapping, while p2 overlaps with both p1 and p3. The profits of the paths are:
w(p1) = w(p3) = α and w(p2) = α + 1, where α is an arbitrary value. Assuming
that edge e, as shown in Figure 2, is picked as separation edge in Step 1, it is
straightforward to verify that Match-and-Replace will color path p2 with the only
available color, while the optimal solution would be to color paths p1 and p3.
Therefore, the profit of the solution returned by the algorithm can be as bad as
a fraction α+1

2α
of the optimal, which approaches 1

2 as α goes to infinity.
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Fig. 2. An instance of MaxProfit-PC in which the Match-and-Replace algorithm
performs as badly as possible. There is only one available color and three paths, p1,
p2, and p3 with profits α, α + 1, and α respectively. Assuming that Match-and-Replace

picks edge e as separation edge in Step 1, it will color path p2 for a profit of α + 1,
while the optimal solution would be to color paths p1 and p3 for a profit of 2α. The
value of α is arbitrary.

Time complexity of Match-and-Replace: The most time-consuming step of the
algorithm is Step 5. The compatibility graph H has O(k +m) nodes and O(km)
edges; recall that m is the number of paths and k is the number of available
colors in the original instance. The maximum-weight matching computation of
Step 5 requires, therefore, O(km(k + m) + (k + m)2 log(k + m)) time. Under
the reasonable assumption that k ≪ m, the time complexity of the algorithm
becomes O(m2(k + log m)).

4 Other Approaches for Approximating MaxProfit-PC

In this section we present three more algorithms for MaxProfit-PC, which we
call Best Choice, Iterative, and MPLU-Greedy.

4.1 Best Choice

A second, more naive application of the separation edge technique involves pick-
ing the best of the following two solutions:

1. the solution obtained by coloring optimally the paths that do not use the
separation edge, and

2. using one color for each of the k most profitable paths that use the separation
edge.
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Algorithm 2 Best Choice

Input: an instance 〈G,P , w, k〉 of MaxProfit-PC, where G is a ring
1: Pick an arbitrary separation edge e of the ring. Let Pe be the set of paths that use

edge e and Pc = P \ Pe.
2: Color the instance 〈G − e,Pc, w, k〉 optimally, using the Carlisle-Lloyd Algorithm

for MaxProfit-PC in chains. Let k′ be the number of colors used in this partial
coloring. Use the remaining colors, if any, for the k−k′ most profitable paths in Pe.
Let PA be the set of colored paths.

3: Let PB be the set of the k most profitable paths in Pe.
4: if w(PA) > w(PB) then return the coloring obtained in Step 2 for PA.
5: else return the coloring that uses a different color for each path in PB.
6: end if

We call this algorithm Best Choice and a detailed description is given in Algo-
rithm 2. This algorithm also achieves an approximation ratio of 1

2 for MaxProfit-
PC in rings: the upper bound on OPT given by Equation 1 holds also for the
separation edge e picked in Step 1; besides, the profits of the solutions obtained
in Steps 2 and 3 are at least as large as OPT c and OPT e, respectively. We thus
have:

Theorem 2. The Best Choice algorithm achieves an approximation ratio of 1
2

for MaxProfit-PC in rings.

Furthermore, observe that the MaxProfit-PC instance illustrated in Fig-
ure 2 also serves as a tight example for the Best Choice algorithm.

Time complexity of Best Choice: Step 2 requires O(km log m) time. The selection
of the k most profitable paths in Step 3 can be done in O(m) time, by selecting
the path with the (|Pe|−k)-th smallest profit using a known linear time selection
algorithm which at the same time performs a partition with the selected element
as pivot (see e.g. [8], pages 189-191). Therefore, the overall time complexity of
the algorithm is dominated by Step 2 and is O(km log m).

4.2 Iterative

In this subsection we present an algorithm that iteratively colors a maximum-
profit subset of non-overlapping requests. This algorithm is based on a known
maximum coverage technique that also applies to coloring problems (see e.g.
Wan and Liu [1], Erlebach et al. [9], or Awerbuch et al. [10]). We will refer to
this algorithm as Iterative. Iterative works as follows: during each iteration i it
computes for each path p a maximum-profit subset Sp of non-overlapping paths
that contains p. Finally, the set Sp with maximum profit is colored with color i

and is removed from P .
In order to compute Sp it suffices to solve MaxProfit-PC in the following

instance: 〈G − p,P¬p, w, 1〉, where G − p is the graph obtained by removing all
edges of path p from G and P¬p is the set of paths that do not overlap with
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Algorithm 3 Iterative

Input: an instance 〈G,P , w, k〉 of MaxProfit-PC, where G is a ring
1: for each color i do

2: Si := ∅
3: for each path p ∈ P do

4: Sp := {p}
5: Find a maximum-profit set of edge-disjoint paths that do not overlap with p

by running the Carlisle-Lloyd Algorithm for MaxProfit-PC on the in-
stance 〈G − p,P¬p, w, 1〉, where G − p is the graph obtained by removing
all edges of path p from G and P¬p is the set of paths that do not overlap
with path p; insert these paths in Sp.

6: if w(Sp) > w(Si) then

7: Si := Sp

8: end if

9: end for

10: Color all requests in Si with color i.
11: P := P \ Si

12: end for

path p. Observe that this instance is a chain instance and can be solved optimally
with the Carlisle-Lloyd Algorithm. The solution of this instance, together with
path p, constitutes the set Sp. We give a detailed description of the algorithm
in Algorithm 3.

It has been observed by Erlebach et al. [9] that a straightforward adaptation
of the technique of Awerbuch et al. [10] can be used to prove that the Iterative

algorithm achieves an approximation ratio of 1 − 1
e

for the cardinality version
of MaxProfit-PC, where all requests have profit equal to 1. It turns out that
the analysis goes through for the case of non-uniform profits as well. We include
the proof in Appendix A for the sake of completeness.

Theorem 3. The Iterative algorithm achieves an approximation ratio of 1 − 1
e

for MaxProfit-PC in rings.

Time complexity of Iterative: The time complexity of Step 5 of the algorithm is
O(km log m), and in the worst case at most km iterations of the inner loop are
needed. Therefore, the total time complexity of Iterative is O(k2m2 log m).

4.3 Greedy

We present a natural greedy heuristic for MaxProfit-PC. The key idea is
that the more edges a path uses, the more likely it is to block other, possibly
more profitable paths from being added to the solution. On the other hand, a
path may be so profitable that it is worth picking it in the solution, despite its
length. Translating these observations into an algorithm, we end up with the
following approach: consider the paths in non-increasing order of the ratio of
their profit over their length; if there is an available color for the current path,
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Algorithm 4 MPLU-Greedy

Input: an instance 〈G,P , w, k〉 of MaxProfit-PC

1: Sort the paths p ∈ P in order of non-increasing ratio w(p)
length(p)

.

2: for each path p ∈ P (in the order of Step 1) do

3: If there is some color i that can be assigned to p, color path p with color i.
4: end for

color it–otherwise drop this path. We call this algorithm Most Profit per Length

Unit Greedy, for short MPLU-Greedy (Algorithm 4). It is very fast and easy to
implement but, as we show below, there is no constant ρ, 0 < ρ ≤ 1, such
that the profit of the solution returned by the algorithm is guaranteed to be at
least a fraction ρ of the optimal. Note that the algorithm works in any network
topology, not just in rings.

Example 2 (Non-constant approximation ratio of MPLU-Greedy in rings). Con-
sider the instance of MaxProfit-PC that is illustrated in Figure 3. There is
only one available color, and two overlapping paths, p1 and p2, with w(p1) = ℓ−1
and w(p2) = 1. The length of the paths p1 and p2 is ℓ and 1, respectively. The
MPLU-Greedy algorithm will first consider path p2 and color it with the only
available color. This will result in the path p1 remaining uncolored. The total
profit of this solution is 1. On the other hand, the optimal solution would use
the only available color to color path p1 and obtain a profit of ℓ−1. This implies
that the solution returned by the algorithm can be as bad as a fraction 1

ℓ−1 of
the optimal. Given that ℓ can be arbitrarily large, the algorithm can be made
to perform arbitrarily badly.

Time complexity of MPLU-Greedy: A simple implementation of the algorithm
requires O(nmk) time.

5 Numerical Results

5.1 Experimental Setup

We implemented all algorithms in C++, making use of the LEDATM class library
of efficient data types and algorithms. All source files were compiled with the
BorlandTM C++ 5.5 for Win32 compiler, set to generate fastest possible code.
We relied on LEDA routines and classes for graph, array, list and priority queue
operations including sorting and finding maximum-weight matchings in bipartite
graphs. The experiments were run on a PentiumTM 4 3.2GHz with 512MB of
memory.

Instance packs: An instance pack is a set of 50 randomly generated MaxProfit-
PC instances 〈G,P , w, k〉, where G is a ring, specified by the following parame-
ters:

– the number n of nodes in the ring,
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p2

1

1

ℓ−1

ℓ

p1

Fig. 3. An instance of MaxProfit-PC in which the MPLU-Greedy algorithm performs
badly. There is only one available color and two paths, p1 and p2 with profits ℓ − 1
and 1 respectively, and length ℓ and 1 respectively. The MPLU-Greedy algorithm will
color path p2 for a profit of 1, while the optimal solution would be to color path p1 for
a profit of ℓ − 1. The value of ℓ is arbitrary.

– the number m of requests in the set P ,
– the number k of available colors,
– an upper bound W on the profit of the requests, and
– the manner in which paths are generated: either uniform or gaussian:µ:σ.

Each instance in the instance pack is defined on a ring with n nodes. There are k

available colors. The path set P of the instance has cardinality m, and the profit
of each path in P is selected uniformly at random from the set {1, . . . , W}. The
path itself is generated in one of two ways:

– If the mode of generation is uniform, the two endpoints of the path are
selected independently uniformly at random from the node set of the ring.
The edges actually used by the path are the edges that connect the first
endpoint to the second one, in the clockwise direction.

– If the mode of generation is gaussian:µ:σ, then the first endpoint of the path
is selected uniformly at random from the node set of the ring. Subsequently,
the length of the path is selected at random, following the normal distribution
with mean µ and standard deviation σ. The path spans as many edges as
its length in the clockwise direction, starting from the first endpoint.

For each instance pack that we generated, we executed each algorithm on all
instances of the pack and measured the average execution time and the average
profit of satisfied requests. Furthermore, for each of these values we calculated
a 95 percent confidence interval which is shown on the plots.



13

In each one of the figures discussed below (Figures 4, 5, 6, 7, 8), we present
the results corresponding to several instance packs. In each of these instance
packs, we keep four of the above parameters fixed and let one of them vary in
order to exhibit the effect of this parameter on the execution time and on the
profit of satisfied requests.

Note that execution times were measured using the timer class of the LEDA
package, which does not provide routines for measuring exact processor time.
However, we ran the experiments on a dedicated machine and kept background
processes at a minimum.

Computing an upper bound on OPT: In order to obtain an estimation of the
performance of our algorithms we use the following upper bound on the value
of an optimal solution:

OPT ≤ min
e∈E

{OPT e + OPT c} ,

where OPT e is the total profit of the k most profitable paths using edge e, and
OPT c is the optimal solution of the MaxProfit-PC instance that contains only
the paths that do not use edge e. The latter is computed using the Carlisle-Lloyd
Algorithm, as discussed earlier.

5.2 Discussion

A first observation is that all algorithms perform considerably better than their
theoretical guarantee. Indeed, we have included a curve showing the computed
upper bound (UB) in our figures and it turns out that all algorithms manage
to satisfy a good fraction of an optimal solution, often much better than the
theoretically predicted.

In the experiments of Figure 4, we compare all algorithms for variable number
of nodes ranging from 4 to 16 (typical values for SONET rings), with the number
of requests being ten times the number of nodes. The number of available wave-
lengths is fixed to 8. The endpoints of each request are chosen uniformly at ran-
dom. The profit of each request is chosen uniformly at random from {1, . . . , 10}.
We observe that Iterative achieves the best performance, closely followed by
Match-and-Replace which is a remarkably faster algorithm. MPLU-Greedy per-
forms quite well, although there is no constant bound on its approximation ratio.
Best Choice has no particular merits, but serves as a good basis in order to ex-
hibit the improvement achieved by Match-and-Replace. In Figure 5, experiments
with a wider variance of profits than the ones in Figure 4, namely between 1
and 100, result in a similar ranking of the algorithms in terms of achieved profit.
Observe that, in some cases in Figure 5, Match-and-Replace even outperforms
the Iterative algorithm (for example in the instance pack with m = 350).

In the experiments of Figure 6 the load is comparable to the number of
wavelengths and this explains the good performance of all algorithms (except
Best Choice). In particular, the average load is around 20 for every 100 requests
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Fig. 6. Instance pack parameters: n = 100, m ranges from 200 to 500, k = 80, W = 10,
endpoints: gaussian:20:2.

and thus there are enough wavelengths to color almost all paths, especially for
number of requests up to 300.

In the experiments of Figure 7 only one endpoint of each request is chosen
uniformly at random and the other endpoint is determined in such a way so
that the length of the request follows the normal distribution with mean 8 and
standard deviation 1. In these experiments MPLU-Greedy appears competent
and Iterative displays noticeable superiority. This behavior can be explained if
we take into account that the length of paths is about half the cycle and thus
with high probability each color can be used for at most two paths. This fact
favors Iterative, which has fewer limitations on the path combinations it tries.

Figure 8 illustrates a comparison of the running time of the algorithms. We
observe that Iterative is thousands of times slower than Match-and-Replace, which
has comparable performance in terms of achieved profit. Best Choice is somewhat
faster than Match-and-Replace. MPLU-Greedy is several times faster than Best

Choice.

6 Conclusions

To evaluate the experimental results we take into consideration the obtained
profit as well as the time performance. Taking into account both measures we first
remark that Match-and-Replace should be the algorithm of choice for practical
purposes, since it achieves one of the best performances with respect to the
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Table 1. A rough ranking of the algorithms with respect to their performance in the
experiments. The two rightmost columns give the theoretical bounds on the approxi-
mation ratio and the time complexity.

Algorithm Attained profit Time efficiency Appr. ratio Time complexity

Match-and-Replace ⋆⋆⋆⋆ ⋆⋆⋆ 0.5 O(m2(k + log m))

MPLU-Greedy ⋆⋆⋆ ⋆⋆⋆⋆ non-constant O(nmk)

Iterative ⋆⋆⋆⋆ ⋆ 0.632 O(k2m2 log m)

Best Choice ⋆ ⋆⋆⋆ 0.5 O(km log m)

obtained profit, and at the same time its time requirements are reasonably low.
In most cases Iterative produces marginally better solutions than Match-and-

Replace, but its time consumption could be prohibitive. On the other hand, if
time efficiency is crucial it would also make sense to consider MPLU-Greedy,
which is a very fast algorithm with acceptable performance. Taking into account
both performance with respect to profit and time efficiency, as they were assessed
from the experimental results, we rank all four algorithms in Table 1. We also
include the theoretical bounds on the approximation ratio and time complexity
for reference.
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A Proof of Theorem 3

Proof. Let 〈G,P , w, k〉 be an input to the Iterative algorithm, and ti = w(Si),
1 ≤ i ≤ k, be the total profit of the paths colored with color i during the i-th
iteration of the algorithm. Let OPT be the total profit of an optimal solution.

We first prove that, for any j : 1 ≤ j ≤ k:

j
∑

i=1

ti ≥ OPT ·

(

1 −

(

1 −
1

k

)j
)

. (8)

Equation 8 certainly holds for j = 1: there is at least one set of non-
overlapping edge-disjoint paths with total profit at least OPT

k
, and the Iterative

algorithm finds the largest such set during the first iteration. Assuming that
Equation 8 holds for j = s − 1, we get:

s
∑

i=1

ti =
s−1
∑

i=1

ti + ts (9)

≥
s−1
∑

i=1

ti +
OPT −

∑s−1
i=1 ti

k
(10)

=

(

1 −
1

k

)

·
s−1
∑

i=1

ti +
OPT

k
(11)

≥

(

1 −
1

k

)

· OPT ·

(

1 −

(

1 −
1

k

)s−1
)

+
OPT

k
(12)

= OPT ·

(

1 −

(

1 −
1

k

)s)

. (13)

Therefore, Equation 8 holds for all j between 1 and k. By setting j = k in
Equation 8 we get:

k
∑

i=1

ti ≥ OPT ·

(

1 −

(

1 −
1

k

)k
)

≥

(

1 −
1

e

)

· OPT , (14)

that is, the solution returned by the Iterative algorithm is at least a fraction of
1 − 1

e
≈ 0.632 of the optimal. ⊓⊔


