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Abstract. We consider the model of exploration of an undirected graph
G by a single agent which is called the rotor-router mechanism or the
Propp machine (among other names). Let πv indicate the edge adjacent
to a node v which the agent took on its last exit from v. The next time
when the agent enters node v, first a “rotor” at node v advances pointer
πv to the edge next(πv) which is next after the edge πv in a fixed cyclic
order of the edges adjacent to v. Then the agent is directed onto edge πv

to move to the next node. It was shown before that after initial O(mD)
steps, the agent periodically follows one established Eulerian cycle, that
is, in each period of 2m consecutive steps the agent traverses each edge
exactly twice, once in each direction. The parameters m and D are the
number of edges in G and the diameter of G. We investigate robustness
of such exploration in presence of faults in the pointers πv or dynamic
changes in the graph. We show that after the exploration establishes an
Eulerian cycle,
(i) if at some step the values of k pointers πv are arbitrarily changed,
then a new Eulerian cycle is established within O(km) steps;

(ii) if at some step k edges are added to the graph, then a new Eulerian
cycle is established within O(km) steps;

(iii) if at some step an edge is deleted from the graph, then a new Eulerian
cycle is established within O(γm) steps, where γ is the smallest
number of edges in a cycle in graph G containing the deleted edge.

Our proofs are based on the relation between Eulerian cycles and span-
ning trees known as the “BEST” Theorem (after deBruijn, van Aardenne-
Ehrenfest, Smith and Tutte).

Key words: Graph exploration, Rotor-router mechanism, Propp ma-
chine, Network faults, Dynamic graphs.

? Partially funded by the Royal Society International Joint Project, IJP - 2007/R1.
?? Additional support by the ANR projects ALADDIN and IDEA and the INRIA
project CEPAGE.



2 E. Bampas, L. Gąsieniec, R. Klasing, A. Kosowski, T. Radzik

1 Introduction

We investigate robustness of the single-agent exploration of an undirected con-
nected graph G based on the rotor-router mechanism. In this model of graph
exploration the agent has no operational memory and the whole routing mecha-
nism is provided within the environment. The edges adjacent to each node v are
arranged in a fixed cyclic order, which does not change during the exploration.
Each node v maintains a port pointer πv which indicates the edge traversed by
the agents on its last exit from v. If the agent has not visited node v yet, then πv

points to the initial arbitrary edge adjacent to v. The next time when the agent
enters node v, first the port pointer πv is advanced to the edge next(πv) which is
next after the edge πv in the cyclic order of the edges adjacent to v, and then the
agent is directed onto edge πv to move to the next node. This is one step of the
exploration. We can think about the process of advancing the port pointer πv

as if there was a “rotor” at node v moving pointer πv around the cyclic order of
the edges adjacent to v, hence the name the rotor-router mechanism. This model
was introduced by Priezzhev et al. [11], was further studied and popularised by
James Propp, and now is also referred to as the Propp machine.
Wagner et al. [14, 15] showed that in this model, starting from an arbitrary

configuration (arbitrary cyclic orders of edges, arbitrary initial values of the port
pointers and an arbitrary starting node) the agent covers all edges of the graph
within O(nm) steps, where n and m are the number of nodes and the number
of edges in the graph. Bhatt et al. [2] showed later that within O(nm) steps
the agent not only covers all edges but actually enters (establishes) an Eulerian
cycle. More precisely, after the initial stabilisation period of O(nm) steps, the
agent keeps repeating the same Eulerian cycle of the directed graph G which
is the directed symmetric version of graph G. Graph G contains two opposite
arcs (v, u) and (u, v) for each edge {v, u} in G. Subsequently Yanovski et al. [16]
showed that the agent enters an Eulerian cycle within 2mD steps, where D is
the diameter of the graph.
It has been frequently mentioned in the previous work that a useful property

of graph exploration based on the rotor-router mechanism is its robustness. In
case of link failures or other dynamic changes in the graph, after some additional
stabilisation period the agent goes back into the regime of repeatedly traversing
the graph along a (new) Eulerian cycle. We know that whatever the changes in
the graph are, the length of that additional stabilisation period is O(mD) (as
shown in [16], that much time is sufficient for establishing an Eulerian cycle from
any initial configuration) but no better bounds have been shown before.

Our results. In this paper we develop bounds on the length of that additional
stabilisation period. These bounds depend on the extent of the failures or changes
in the graph. Thus we assume that an Eulerian cycle has been already established
and show the following.

(i) Faults in port pointers. If at some step the values of k pointers πv are
changed to arbitrary edges (that is, the value of πv is changed to an arbitrary
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edge adjacent to node v), then a new Eulerian cycle is established within
O(m min{k, D}) steps.

(ii) Addition of new edges. If at some step k edges are added to the graph,
then a new Eulerian cycle is established within O(m min{k, D}) steps.

(iii) Deletion of an edge. If at some step an edge is deleted from the graph
but the graph remains connected, then a new Eulerian cycle is established
within O(γm) steps, where γ is the smallest number of edges in a cycle in
graph G containing the deleted edge.

A faulty change of the value of the port pointer πv at a node v might occur
when something unexpected makes the node believe that πv should be re-set
to some default value. We assume that when a new edge {u, v} is added, it is
inserted in arbitrary places in the existing cyclic orders of edges adjacent to nodes
u and v, but otherwise those cyclic orders remain as they were before. Similarly,
when an edge {u, v} is deleted, the cyclic orders of the remaining edges adjacent
to nodes u and v remain as they were. On both addition and deletion of an edge
{v, u}, we allow arbitrary changes of the values of the port pointers at nodes
v and u. A concrete system would specify some default updates for the port
pointers on insertion or deletion of an edge, but for our results we do not need
to make any assumptions about those defaults.
Regarding our O(γm) bound for the case of deleting an edge, we note that

there are non-trivial classes of graphs (e.g., random graphs) in which each edge
belongs to a short cycle. For such graphs parameter γ is small and our bound
implies that the additional stabilisation period is short.

Previous work. The previous work which is most directly relevant to our pa-
per are Bhatt et al. [2] and Yanovski et al. [16], both already mentioned above.
Bhatt et al. [2] considers also mechanisms enabling the agent to stop after ex-
ploring the whole graph. Yanovski et al. [16], in addition to proving the 2mD

bound on the length of the stabilisation period, show also that this bound is
asymptotically optimal in the worst-case, and study the case when there are
k ≥ 2 agents. Regarding the terminology, we note that the graph exploration
model based on the rotor-router mechanism which we consider in this paper is
called the Edge Ant Walk algorithm in [14–16], while the same model is described
in [2] in terms of traversing a maze and marking edges with pebbles.
The rotor-router mechanism is the strategy of leaving a node v along the edge

for which the most time has elapsed since its last traversal in the direction from v.
Cooper et al. [4] consider an undirected variant of this oldest-first strategy which
chooses the edge for which the most time has elapsed since its last traversal in
any direction. They show that this undirected oldest-first strategy leads in the
worst case to exponential cover time.
The rotor-router mechanism has been often studied as a deterministic ana-

logue of the random walk on a graph, with the main objective of discovering
similarities and differences between these two processes. In the context of bal-
ancing the workload in a network, the single agent is replaced with a number
of agents, referred to as tokens. Cooper and Spencer [5] study d-dimensional
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grid graphs and show a constant bound on the difference between the number
of tokens at a given node v in the rotor-router model and the expected number
of tokens at v in the random-walk model. Subsequently Doerr and Friedrich [7]
analyse in more detail the distribution of tokens in the rotor-router mechanism
on the 2-dimensional grid.
The research area of graph exploration with simple agents (robots) is rich

in models and approaches. Exploration with robots with bounded memory has
been considered for example in [8, 9, 12]. Models which allow placement of some
identifiers or markers on nodes or edges of the graph have been considered for
example in [1, 6]. Some graph exploration techniques are surveyed in [10].

Our analysis of the rotor-router mechanism is based on the relationship be-
tween the Eulerian cycles in the directed graph G and the spanning trees in the
undirected graph G which underlies the following theorem. This theorem, some-
times referred to as the “BEST” theorem, was discovered by de Bruijn and van
Aardenne-Ehrenfest [3] on the basis of earlier work by Smith and Tutte [13].

Theorem 1 (Bruijn, van Aardenne-Ehrenfest, Smith, Tutte).
The number of Eulerian cycles in the directed, symmetric version of an undi-
rected connected graph G = (V, E) is equal to

∏
v∈V (d(v)− 1)! times the number

of spanning trees of G, where d(v) is the degree of node v in G.

In Section 2 we establish the terminology and notation used in this paper and
give the basic properties of exploration based on the rotor-router mechanism. In
Section 3 we describe the connection between the Eulerian cycles and spanning
trees in the context of the rotor-router mechanism. In passing we show how
Theorem 1 follows from our analysis of the rotor-router mechanism. In Section 4
we investigate in more detail the stabilisation period of exploration with the
rotor-router mechanism. The analysis developed in Sections 3 and 4 culminates
in Theorem 3, which can be viewed as a quantitative description of the progress of
stabilising the exploration, that is, the progress towards establishing an Eulerian
cycle. In Section 5 we give our bounds on the length of the additional stabilisation
period after some failures or changes in the graph have occurred. All these results
are simple consequences of Theorem 3. We point out that all of the obtained
bounds are asymptotically tight in the worst case.

2 The Rotor-router model

Let G = (V, E) be an undirected connected graph with n nodes, m edges and
diameter D. The directed graph G = (V, E) is the directed symmetric version
of G, where the set of arcs E = {(v, u), (u, v) : {v, u} ∈ E}. We will refer to the
undirected links in graph G as edges and to the directed links in graph G as
arcs. We will also keep using boldface symbols, as G and E, to stress that we
refer to directed graphs and arcs. For a node v ∈ V , d(v) denotes the degree of
v in G.
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We consider the rotor-router model (on graph G) with a single agent. The
agent moves in discrete steps from node to node along the arcs of graph G. A
configuration at the current step is a triple

((ρv)v∈V , (πv)v∈V , r),

where ρv is a cyclic order of the arcs (in graph G) outgoing from node v, πv is
an arc outgoing from node v, which is referred to as the (current) port pointer
at node v, and r is the current node – the node where the agent is at the current
step. For each node v ∈ V , the cyclic order ρv of the arcs outgoing from v is fixed
at the beginning of exploration and does not change in any way from step to
step (unless an edge is dynamically added or deleted as discussed in the previous
section). For an arc (v, u), let next(v, u) denote the arc next after arc (v, u) in
the cyclic order ρv.
During the current step, first the port pointer πr at the current node r is

advanced to the next arc outgoing from r (that is, πr becomes next(πr)), and
then the agent moves from node r traversing the arc πr. The exploration starts
from some initial configuration and then keeps running without ever terminating.
We consider in this paper the rotor-router model as a mechanism for exploration
of a graph, so the most interesting questions for us are how quickly the agent
explores the whole graph, and how evenly it keeps traversing the edges of the
graph. The following two simple lemmas will be used in later analysis.

Lemma 1. The agent visits each node infinitely many times (thus traverses each
arc infinitely many times).

Proof. If a node v is visited only finitely many times, then each node in the
neighbourhood of v is visited only finitely many times. Thus, by induction, each
node in the graph is visited only finitely many times, contradicting the assump-
tion that the agent does not terminate. ut

Lemma 2. If in the current step i the agent leaves the current node r along
an arc (r, y), then the first arc traversed for the second time during the period
i, i + 1, . . . , is this arc (r, y).

Proof. Let v be the first node which the agent exits d(v) + 1 times during the
period i, i + 1, . . .. That is, the agent exits node v for the first time at some
step j′ ≥ i along an arc (v, u), then it exits v once along all remaining arcs
outgoing from v, and then it exits v again along arc (v, u) at some step j′′ > j′.
During the period i, i + 1, . . . j′′ − 1, for every node z ∈ V , the agent exits z at
most d(z) times. Thus the arcs traversed during the period i, i + 1, . . . , j′′ − 1
are all distinct, and arc (v, u) is the first arc traversed for the second time. If
j′ ≥ i + 1, then during the period i, i + 1, . . . j′′ − 1 the agent must enter node v

d(v)+1 times, because during the period i+1, i+2, . . . j′′ the agent leaves node
v d(v) + 1 times. Hence if j′ ≥ i + 1, then there is an arc incoming to node v

which is traversed twice during the period i, i + 1, . . . j′′ − 1. This contradiction
implies that j′ = i, so (v, u) = (r, y). ut
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3 Trees and Eulerian cycles

If T is a tree in graph G (not necessarily spanning all nodes of G), then T

obtained from T by directing all edges towards a selected node v in T is called
an in-bound tree in G, and node v is the root of T . A subset of arcs H in G is
an in-bound tree with a root cycle, if it is an in-bound tree with one additional
arc outgoing from the root. That additional arc creates a (directed) cycle, which
we call a root cycle. We can view H as consisting of one cycle (the root cycle)
and a number of in-bound node-disjoint trees rooted at nodes of this cycle (only
the roots of these trees belong to the root cycle).
Let F = {πv : v ∈ V } be the set of the current port pointers. For the current

node r, we are interested in the structure of F r = F \ {πr}, since, as we show
later, the structure of F r is a good indicator of how far the agent is from entering
an Eulerian cycle. The component of F r containing the current node r is an in-
bound tree rooted at r, which we call the leading tree. Each component H of F r

other than the leading tree is an in-bound tree with a root cycle.
The following Lemmas 3 and 4 show that the condition that the agent follows

an Eulerian cycle and the condition that the leading tree spans all nodes of the
graph are equivalent.

Lemma 3. Assume that the current leading tree T spans all nodes of the graph.
Then during the next 2m steps the agent traverses an Eulerian cycle in G.
Moreover, the leading tree after these 2m steps is again the same tree T .

Proof. Let r be the current node (and the root of the current leading tree T )
and let (r, y) be the arc which the agent traverses in the current step. Let Γ

be the cycle (the sequence of arcs) which the agent follows starting from this
traversal of arc (r, y) and ending right before the second traversal of this arc.
We show that Γ is an Eulerian cycle in G. For u 6= r, let p(u) be the parent of
u in tree T , that is, (u, p(u)) = πu. From Lemma 2, all arcs on Γ are distinct,
so it remains to show that Γ contains all arcs.
Cycle Γ contains all d(r) arcs outgoing from node r: after following cycle Γ ,

the agent is about to traverse arc (r, y) again, so it must have already traversed
all arcs outgoing from r. This means that Γ must also contain all d(r) arcs
incoming to r (no arc occurs twice on Γ ), including all arcs πu = (u, p(u)) with
p(u) = r. When cycle Γ passes through such an arc (u, p(u)), then it must have
already passed through all arcs outgoing from node u, since arc (u, p(u)) = πu

is the last arc outgoing from node u to be taken by the agent. This further
implies that Γ contains all arcs incoming to u, including all arcs (w, p(w)) with
p(w) = u. By induction on the distance to node r in tree T , for each node v,
cycle Γ contains all arcs outgoing from v.
Since the agent has traversed an Eulerian cycle, all port pointers are back to

what they were before traversing Γ . Thus the leading tree after traversing Γ is
the same as it was before traversing Γ . ut

Fig. 1 illustrates Lemma 3. The diagram on the left shows a graph and the
current leading tree (arcs in bold) which spans all nodes. The current node
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r is the root of this tree. The diagram on the right shows the Eulerian cycle
followed by the agent. We assume in this figure that the cyclic order of the
arcs outgoing from a node is the anti-clockwise order, and that arc (r, x) is the
current value of the port pointer πr. Thus the first arc followed by the agent is
arc (r, y) = next(r, x).

Lemma 4. Assume that at the current step i the leading tree T does not span
all nodes of the graph. Then the route Γ traversed by the agent during the next
2m steps is not an Eulerian cycle.

Proof. Consider the (non-empty) set A of the arcs incoming to tree T , that is,
the arcs with the start nodes outside T and the end nodes in T . If after the
next 2m steps the agent is not back in the starting node r, then Γ is not a
cycle. Therefore assume that the agent comes back to node r after 2m steps.
If during these 2m steps the agent traverses an arc in A more than once or
does not traverse it at all, then obviously Γ is not an Eulerian cycle. Therefore
assume now that each arc in A is traversed exactly once, and let (v, u) be the
arc in A traversed last. Consider the order of the arcs outgoing from node v

ending with the arc which is the value of the port pointer πv at node v at step i:
(v, x1), (v, x2), . . . , (v, xd(v)) = πv. Arc (v, u) is the last arc in this order which
belongs to Γ , but (v, u) is not the arc πv: node u is in T but arc πv does not
lead to T (or otherwise node v would belong to the leading tree T ). Thus Γ

does not contain arc πv, so it is not an Eulerian cycle. ut

y

r

x

r

x

y

Fig. 1. Left: the leading tree spanning all nodes of the graph (arcs in bold). Right: the
corresponding Eulerian cycle, assuming the anti-clockwise order of arcs outgoing from
a node (other cycles are obtained for other cyclic orders of arcs).

For the initial configuration ((ρv)v∈V , (πinit
v )v∈V , rinit), let

τ = τ((ρv)v∈V , (πinit
v )v∈V , rinit) ≤ ∞,

denote the first step when the leading tree spans all nodes of G. We use this
parameter τ as our formal definition of the stabilisation time, and call these
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initial τ steps the stabilisation period. Lemma 3 implies immediately the following
corollary.

Corollary 1. After the stabilisation period, the agent keeps traversing the same
Eulerian cycle.

We refer to the Eulerian cycle which the agent keeps repeating after the
stabilisation period as the established Eulerian cycle. Yanovski et al. [16] defined
t0 as the first step when all arcs of the graph are traversed and showed the
following result.

Theorem 2. [16] For any graph G, any cyclic order ρv of the arcs outgoing
from each node v ∈ V , and any initial values of the port pointers πv, v ∈ V , we
have t0 ≤ 2mD, and from step t0+1 the agent keeps repeating the same Eulerian
cycle of graph G.

The definitions of steps τ and t0 are somewhat different, but these two steps
cannot be far apart. Lemma 3 implies that t0 ≤ τ +2m. On the other hand, since
from step t0 the agent follows an Eulerian cycle (Theorem 2), then Lemma 4
implies that τ ≤ t0.
We conclude this section by showing the connection between the rotor-router

mechanism and Theorem 1. We fix a node r as the current node and an arc (r, x)
as the current value of the port pointer πr (the agent will follow in the current
step arc next(r, x)). Let T denote an in-bound spanning tree ofG rooted at node
r, and let ρv denote a cyclic order of the arcs in G outgoing from v. Consider
the assignment of Eulerian cycles of G to pairs (T , (ρv)v∈V ) given by Lemma 3.
More precisely, assigns to a pair (T , (ρv)v∈V ) the Eulerian cycle of G which is
followed by the agent starting from the configuration ((ρv)v∈V , T ∪{πr}, r), that
is, starting with T as the leading tree. It is easy to verify that the cycles Γ ′ and
Γ ′′ assigned to two distinct pairs (T ′, (ρ′v)v∈V ) and (T ′′, (ρ′′v )v∈V ) are distinct.
We now show that each Eulerian cycle of graph G corresponds to some pair

(T , (ρv)v∈V ). For an arbitrary Eulerian cycle Γ of G, for each v ∈ V , let ρv

be the cyclic order of the arcs outgoing from a node v defined by the order of
these arcs along Γ . Pick the beginning of cycle Γ such that edge (r, x) is the
last edge on Γ . For each node v 6= r, let πv be the last arc on Γ outgoing from
v. The set of arcs T = {πv : v ∈ V \ {r}} does not contain a cycle, so it is
an in-bound spanning tree of G rooted at node r. The agent starting from the
configuration ((ρv)v∈V , T ∪{πr}, r) follows cycle Γ , so cycle Γ is assigned to the
pair (T , (ρv)v∈V ).
The above one-to-one correspondence between the Eulerian cycles in G and

the pairs (T , (ρv)v∈V ), where T is an in-bound spanning tree of G rooted at
node r and ρv is a cyclic order of the arcs in G outgoing from v, gives a one-to-
one correspondence between the Eulerian cycles inG and the pairs (T, (ρv)v∈V ),
where T is a spanning tree in G: identify an in-bound spanning tree of G rooted
at node r with the spanning tree of G obtained from T by disregarding the
directions of arcs. The existence of a one-to-one correspondence between the
Eulerian cycles in G and the pairs (T, (ρv)v∈V ) implies Theorem 1. Indeed, for



Robustness of the rotor-router mechanism 9

a node v ∈ V , there are (d(v)− 1)! distinct cyclic orders ρv. Thus the number of
Eulerian cycles in G is equal to

∏
v∈V (d(v) − 1)! times the number of spanning

trees of G, as Theorem 1 states.

4 Evolution of the leading tree

With respect to the set of port pointers F r = F \ {πr}, where r is the current
node, a node v is an ancestor of a node u if, and only if, the path in F r starting
from v passes through u. Each node is its own ancestor. If a node v belongs to
the leading tree T , then the ancestors of v are all nodes on the path in T from v

to the root r, including both v and r. If a node v does not belong to the leading
tree T , then it belongs to a component H of F r which is an in-bound tree with
a root cycle. In this case, the ancestors of v are all nodes on the path in H from
v to the cycle and all nodes on the cycle.

Fig. 2. The changing leading tree when the agent does not go outside the tree. The
white node is the current node (and the root of the tree). The dotted arrow indicates
the edge to be taken from the current node.

The following Lemmas 5 and 6, which describe changes of the leading tree,
can be easily verified.

Lemma 5. If a node belongs to the current leading tree, then it remains in the
leading tree in all subsequent steps.

Lemma 6. Let v be a node which is not in the current leading tree. Node v

enters the leading tree at the first step when the agent visits an ancestor of v.
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Fig. 2 shows an example how the leading tree changes when the agent does
not go outside of the tree. Note that this figure shows only the leading tree, not
the whole graph. Fig. 3 illustrates Lemma 6.
Lemma 7 below can be viewed as a generalisation of Lemma 3 to the case

when the leading tree does not span all nodes. The neighbourhood of the leading
tree T consists of the nodes which are not in T but are adjacent to the nodes
in T .

Lemma 7. Each node which is in the current step in the neighbourhood of the
leading tree T is visited within the next 2m steps.

Proof. Let (r, s) be the arc traversed in the current step i, and then traversed
again for the second time in a future step j > i. Lemma 2 implies that the arcs
traversed in steps i, i + 1, . . . , j − 1 are all distinct, so j ≤ i + 2m. We can show,
similarly as in the proof of Lemma 3, that each arc outgoing from each node in
tree T is traversed during the period i, i + 1, . . . , j − 1. Thus each node v in the
neighbourhood of tree T is visited at least once during this period. ut

the current leading tree

vv

ur

the next leading tree

ur

Fig. 3. The port pointers πx, x 6= r, are shown as boldface arrows. Left: the current
step, when node v is outside the leading tree. Right: the next step, when the agent
visits an ancestor u of v and v enters the leading tree.

Lemmas 6 and 7 imply that a node v which is outside of the leading tree
but has an ancestor u in the neighbourhood of the leading tree will enter the
leading tree within 2m steps. If a node v which is outside of the leading tree has
an ancestor u in the neighbourhood of a node w which has an ancestor y in the
neighbourhood of the leading tree, then v will enter the leading tree within 4m

steps (node w will enter the leading tree within 2m steps and then node v will
enter the leading tree within additional 2m steps), and so on. To formalise this,
we define the length of an arc (v, u) as equal to 0, if (v, u) ∈ F r, and equal to 1
otherwise. The distance from a node v to a node x is the minimum total length
of a path from v to x in G. Note that the length of an arc and the distance from
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a node to another node are relative to the current step (and the current values
of the port pointers). The distance from a node v to a node x is 0 if, and only if,
x is an ancestor of v. Observe also that the distance from one node to any other
node is never greater than the diameter D of the graph.

Theorem 3. If the distance from a node v to the current node r is equal to k,
then node v enters the leading tree within 2km steps.

Proof. The proof is by induction on k. If the distance from a node v to the
current node r is 0, then there is a path from v to r consisting of port pointers
(arcs with length 0), so node v is in the leading tree already in the current step.
If the distance from a node v to the current node r is k ≥ 1, then a shortest

path from v to r (with respect to the current lengths of the arcs) follows first
port pointers from v to an ancestor u of v (zero or more arcs of length 0), and
then follows an arc (u, w) to a neighbour w of u which is not an ancestor of v
(an arc of length 1). The distance from node w to the current node r is k − 1,
so by the inductive hypothesis, node w enters the leading tree within 2(k − 1)m
steps. Thus node u is in the neighbourhood of the leading tree within 2(k− 1)m
steps, so Lemma 7 implies that node u is visited within 2km steps. This and
Lemma 6 imply that node v enters the leading tree within 2km steps. ut

We note that Theorem 3 gives an alternative proof of the O(mD) bound
shown in [16] on the number of steps required in the rotor-router model to
enter an Eulerian cycle. Recall that for any configuration of the rotor-router
mechanism and any node v, the distance from v to the current node (w.r.t. the
lengths of the arcs) is at most D. Using Theorem 3 we conclude that all nodes
enter the leading tree within 2mD steps.

5 Faulty port pointers and dynamic changes of the graph

In this section we give bounds on the number of steps needed to establish a new
Eulerian cycle when some changes in the graph have occurred. All these bounds
follow from Theorem 3. A spontaneous (faulty) change of the value of the port
pointer πv is a change to an arbitrary arc outgoing from node v.
After the stabilisation period, inserting or deleting an edge {v, u} may be

harmless if this operation does not change the port pointers at nodes v and
u. If these port pointers remain as they were, then the leading tree does not
change, so it continues spanning all nodes and a new Eulerian cycle is established
immediately. However, recall from Section 1 that we assume that insertion or
deletion of an edge {v, u} may cause arbitrary changes of the values of the port
pointers at nodes v and u. Recall also that we assume that the cyclic orders of
the edges adjacent to nodes v and u excluding edge {v, u} are the same after the
insertion/deletion as they were before.

Theorem 4. In the rotor-router model, after the stabilisation period, if k port
pointers spontaneously change their values at some step, then a new Eulerian
cycle is established within 2m min{k, D} steps.
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Proof. Consider the leading tree right before those k changes of the port pointers.
The stabilisation period has passed, so the leading tree spans all nodes. For each
node x ∈ V , the length of the path P in the leading tree from x to the current
node is equal to 0. When k port pointers change their values, then at most k

arcs on path P change length from 0 to 1. This means that the new length of P
is at most k, so the distance from x to the current node is at most k, and this
distance is never greater than D. Thus Theorem 3 implies that all nodes in the
graph will be back in the leading tree within 2m min{k, D} steps. ut

Theorem 5. In the rotor-router model, after the stabilisation period, if k new
edges are added to the graph at some step, then an Eulerian cycle in the expanded
graph is established within 2m min{2k, D} steps.

Proof. Adding k edges may result in changes of the values of up to 2k port point-
ers, so Theorem 4 implies that an Eulerian cycle is established in the expanded
graph within 2m min{2k, D} steps. ut

Theorem 6. In the rotor-router model, after the stabilisation period, if at some
step an edge {v, u} is removed from the graph but without disconnecting it, then
an Eulerian cycle in the new graph is established within 2γm steps, where γ is
the smallest number of edges on a cycle in G containing edge {v, u}.

Proof. The removal of an edge {v, u} from the graph may change the port point-
ers at nodes v and u. Similarly as in the proof of Theorem 4, consider the leading
tree right before this edge removal. For each node x ∈ V , the length of the path
P in the leading tree from x to the current node is equal to 0. When edge {v, u}
is removed, then two arcs on path P may change their length from 0 to 1, and
if arc (v, u) or arc (u, v) belongs to P , then we replace this arc with the γ − 1
arcs from a shortest cycle in G containing this arc. The length of the new path
from x to the current node is at most γ (at most γ arcs have length 1), so the
distance from x to the current node is at most γ. Thus Theorem 3 implies that
all nodes in the graph are back in the leading tree within 2γm steps. ut

The bounds which appear in Theorems 4, 5, and 6 are all asymptotically
tight in the worst case. Indeed, for some values of parameters s and d, consider
the lollipop graph Gs,d obtained by merging a vertex r of the clique Ks with an
end-vertex of the path Pd (cf. Fig. 4a). Let the agent be located at vertex r after
the stabilization of the rotor-router. When k port pointers are altered at internal
nodes of path Pd (k < d), the rotor-router will only stabilize to a new Eulerian
cycle after visiting each of the edges of the clique at least k times. Hence, for any
feasible set of parameters n, m, k, D there exists a graph with Θ(n) nodes, Θ(m)
edges and diameter Θ(D), such that restoring the stable state of the rotor-router
after modification of k port pointers requires Ω(m min{k, D}) steps. Thus, the
bound in Theorem 4 is asymptotically tight in the worst case.
Likewise, by the construction shown in Fig. 4b, we obtain a worst-case lower

bound of Ω(m min{k, D}) steps for the stabilization period after adding k new
edges to the graph, asymptotically matching the bound in Theorem 5. Note that
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the addition of edges to the graph may by assumption result in modifications to
pointer arrangements at the endpoints of added edges. Finally, Fig. 4c provides
an example of a scenario in which removing a single edge leads to a stabilization
period of Ω(γm), asymptotically matching the bound in Theorem 6.

6 Conclusions

In this paper we have presented a quantitative evaluation of the robustness of
the graph exploration based on the rotor-router mechanism. Our bounds on the
length of the additional stabilisation period, required after some faults or changes
have occurred in the graph, are asymptotically tight in the worst-case.
Our analysis can be applied to other possible models of faults and dynamic

changes in the graph. For example, one may observe that our analysis implies
that the rotor-router mechanism tolerates spontaneous changes of the cyclic or-
ders of the edges. More precisely, if at some step after the stabilisation period the
cyclic orders of edges change in any way but the port pointers remain the same

Fig. 4. Worst-case examples for the stabilization period of the rotor-router after
changes to the graph: (a) modification of k port pointers, (b) addition of k edges,
(c) removal of a single edge e.
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(that is, they point to the same edges as before), then the agent immediately
enters a new Eulerian cycle (no need for any additional stabilisation period).
Challenging questions arise with introduction of multiple agents to the rotor-

router model. If we have many agents, then there are still interesting open ques-
tions left regarding the stabilisation and periodicity of exploration even in the
static case (no faults, no dynamic changes of the graph).
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