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Introduction

Periodic Metro Scheduling (PMS): Maximize
the safety distance between trains that use the
same edge.

Path Coloring (PC): Minimize the number of
wavelengths used to accommodate a set of
communication requests in an all-optical
network.
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Outline
We study PMS in the following topologies:

Chains and spiders: we present exact
algorithms that utilize exact algorithms for
PC as subroutines.

Special classes of rings and trees: we prove
NP-hardness results by reduction from PC,
and present 1

ρ
L

L+1
-approximation algorithms.

General rings: we present an 1
6
-approximation

algorithm.
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Periodic Metro Scheduling (PMS)

Maximize safety distance: the minimum time
distance between successive trains that pass
from the same edge in the same direction.

This results in a safer and more delay-tolerant
system.
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PMS in more detail
We are given a railway network graph with
edges representing directed railway lines.

We are given a set of simple paths
representing train routes.

All trains move at the same speed. The travel
time for each edge is given.

All routes are re-executed periodically (e.g.
every hour). The period T is given.

The waiting time at stations is negligible.

Goal: maximize safety distance.
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Path Coloring (directed)

Assign different colors to paths sharing a
directed edge.

Minimize the number of colors used.
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An algorithm for PMS in chains

Solve the corresponding PC instance with L
colors, where L is the maximum load on any
edge.

Divide the period into L timeslots:
0, T

L
, 2T

L
, . . . , (L− 1)T

L
. Assign the i-th timeslot

to paths colored with the i-th color.

For each path, set starting time
s time = timeslot + (starting dist from 0).

Upper bound: safety distance ≤ T
L
.

The solution obtained is optimal.
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An example for chains
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Stars and spiders

Solve the corresponding PC instance using L
colors and assign timeslots accordingly.

Compute starting times:
For paths passing through 0, or directed towards it, set

s time = timeslot − (starting dist from 0)

For paths directed away from 0, set

s time = timeslot + (starting dist from 0)

p1

p2

p3
0
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PMS in rings is NP-hard

PC is NP-hard [Garey, Johnson, Miller,
Papadimitriou, 1980].

Given a PC instance with n nodes, construct
a PMS instance with time distances 1 and
T = n.

A coloring with k colors yields a schedule with
safety distance T

k
by synchronizing each route

with respect to an arbitrarily chosen node.
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PMS in rings is NP-hard (cont’d)

A schedule with distance T
k

yields a k-coloring
by following the reverse procedure:

For each route r compute the value

t′(r) = s time(r) − (starting dist from 0)

Assign to r the color i, where i is the
maximum integer s.t. i · T

k
≤ t′.

For two overlapping routes r and r′, the
difference between t′(r) and t′(r′) is ≥ T

k
.

Therefore, the coloring is valid.
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Relation between PC and PMS in
rings

OPTPMS < T
OPTPC−1

otherwise, we would obtain a coloring with OPTPC − 1

colors.

OPTPMS ≤ T
L

upper bound.

SOLPMS = T
SOLPC

by using SOLPC timeslots.
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PMS in rings (C ≡T 0)

Theorem: A ρ-approximation for PC yields a
1
ρ

L
L+1

-approximation for PMS.

Corollary: There is a 2
3

L
L+1

-approximation

algorithm [Karapetian, 1980] and a

0.73 L
L+1

-approximation randomized algorithm

[Kumar, 1998] for PMS in rings where C ≡T 0.
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Rings (C 6≡T 0)

When C 6≡T 0, T
OPTPC

may not be achievable.

0

t2

t1

D

kT

t1

t2-D

u

The time distance
of the two routes
is the minimum of
their time distances
at nodes 0 and u.
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Rings (C 6≡T 0)

When C 6≡T 0, T
OPTPC

may not be achievable.

0

T/2

0

T/2

kT

0

0

u

The time distance
of the two routes
is the minimum of
their time distances
at nodes 0 and u.
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Rings (C 6≡T 0)

0 (N-1)t kt kt+D 

When a timeslot kt is assigned, timeslots close
to kt + D are excluded, where D = C mod T .

As a result we need more timeslots.
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An algorithm for PMS in rings
(C 6≡T 0)

Split the paths into two sets P0 and Pc.

Solve the chain in Pc optimally, excluding
timeslots as needed.

Sort paths in P0 in non-increasing order of
ending nodes.

Assign timeslots to those paths, excluding
timeslots as needed.

Set s time for p ∈ P0 s.t. p arrives at 0 at
time timeslot .
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Rings (C 6≡T 0)

We need 6L′ timeslots, where
L′ = max{Lc, L0}.

We have achieved a time distance of T
6L′ .

T
L′ is an upper bound on the optimal solution.

Therefore, we obtain a 1
6
-approximation

algorithm.
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Trees with τ (e) ≡T
2

0

We study trees where the
time distance for every
edge is an integer multiple
of T

2
.

In this case for the time
distances τ between any
three nodes a, b, c we have
τ(a, b) + τ(b, c) ≡T τ(a, c).

a

b

c

ATMOS 2006 18/22



PMS in trees is NP-hard

PC is NP-hard [Mihail, Kaklamanis, Rao,
1995].

Given a PC instance, set the time distances
equal to 1 and the period T = 2.

A coloring with k colors exists iff there is a
schedule with safety distance T

k
.

proof: by similar arguments as for rings.
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Trees (τ (e) ≡T
2

0)

Suppose paths p : a → b and

p′ : c → d overlap and u is their

first common node.

p arrives at u at

timeslot(p)+τ(0, a)+τ(a, u) ≡T

timeslot(p) + τ(0, u).

p′ arrives at u at

timeslot(p′)+τ(0, c)+τ(c, u) ≡T

timeslot(p′) + τ(0, u).

a

c

b d

u
0

p

p
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Trees (τ (e) ≡T
2

0)

Theorem: Given a ρ-approximation for PC in
trees, a 1

ρ
L

L+1
-approximation can be achieved

for PMS in this class of trees.

Corollary: There is a 3
5

L
L+1

-approximation

algorithm for PMS in this class of trees
[Erlebach, Jansen, Kaklamanis, Mihail,
Persiano, 1999].
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Conclusions
Exact algorithms for PMS in chains and
spiders.

Hardness results and 1
ρ

L
L+1

-approximation

algorithms for rings with C ≡T 0 and trees
with τ(e) ≡T

2

0.

A 1
6
-approximation algorithm for general rings.

Further work:

General trees, other topologies.

Other techniques (without using PC).
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