

Subset systems

- Subset systems
 - Let E be a finite set. Let \mathcal{L} be a non-empty family of subsets of E (independent sets).

Subset systems

- Let E be a finite set. Let \mathcal{L} be a non-empty family of subsets of E (independent sets).
- Def. (E, \mathcal{L}) is called a subset system if:

 $\forall A \in \mathcal{L}, \ \forall A' \subseteq A, \ A' \in \mathcal{L}$

[hereditary property]

Subset systems

- Let E be a finite set. Let \mathcal{L} be a non-empty family of subsets of E (independent sets).
- Def. (E, \mathcal{L}) is called a subset system if:

 $\forall A \in \mathcal{L}, \ \forall A' \subseteq A, \ A' \in \mathcal{L}$

1

[hereditary property]

A (positive) weight function w defined on E induces a weight function defined on L:

$$v\left(X\right) = \sum_{e \in X} w\left(e\right)$$

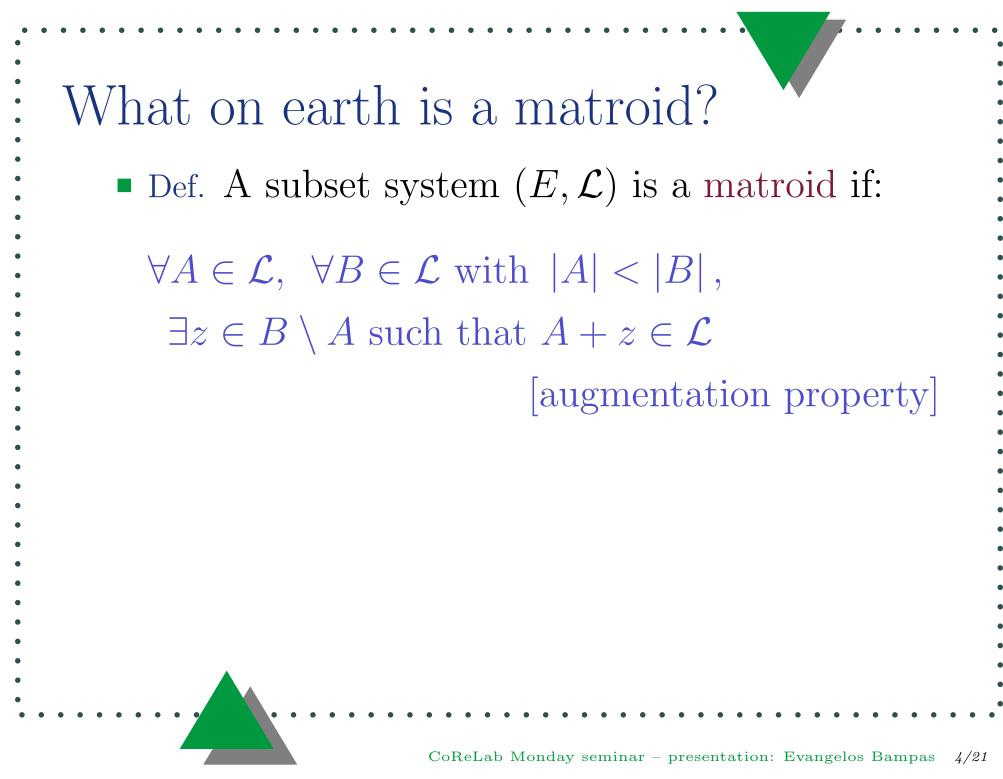
Picking a heaviest independent set

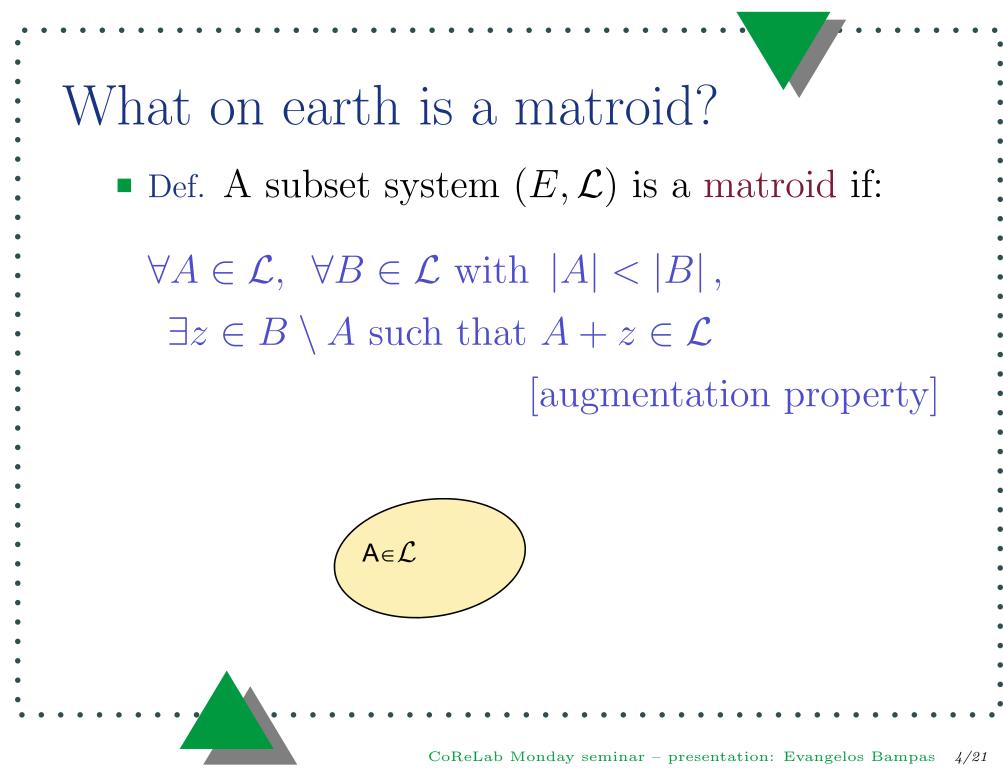
Prob. Given a subset system (E, \mathcal{L}) and a weight function $w : E \longrightarrow \mathbb{R}^+$, pick a maximum-weight element of \mathcal{L} .

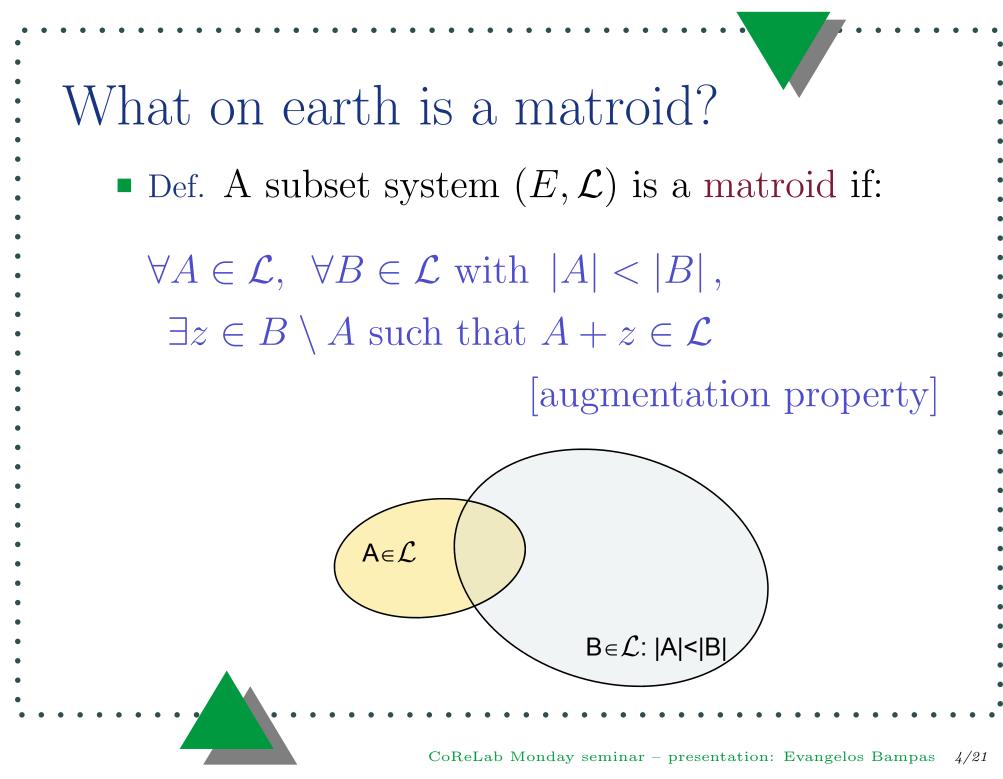
Picking a heaviest independent set • Prob. Given a subset system (E, \mathcal{L}) and a weight function $w: E \longrightarrow \mathbb{R}^+$, pick a maximum-weight element of \mathcal{L} . ■ Alg. Greedy: $SOL \leftarrow \emptyset$ for each $e \in E$ in non-increasing order of w(e)if $SOL + e \in \mathcal{L}$ then $SOL \leftarrow SOL + e$ return SOL

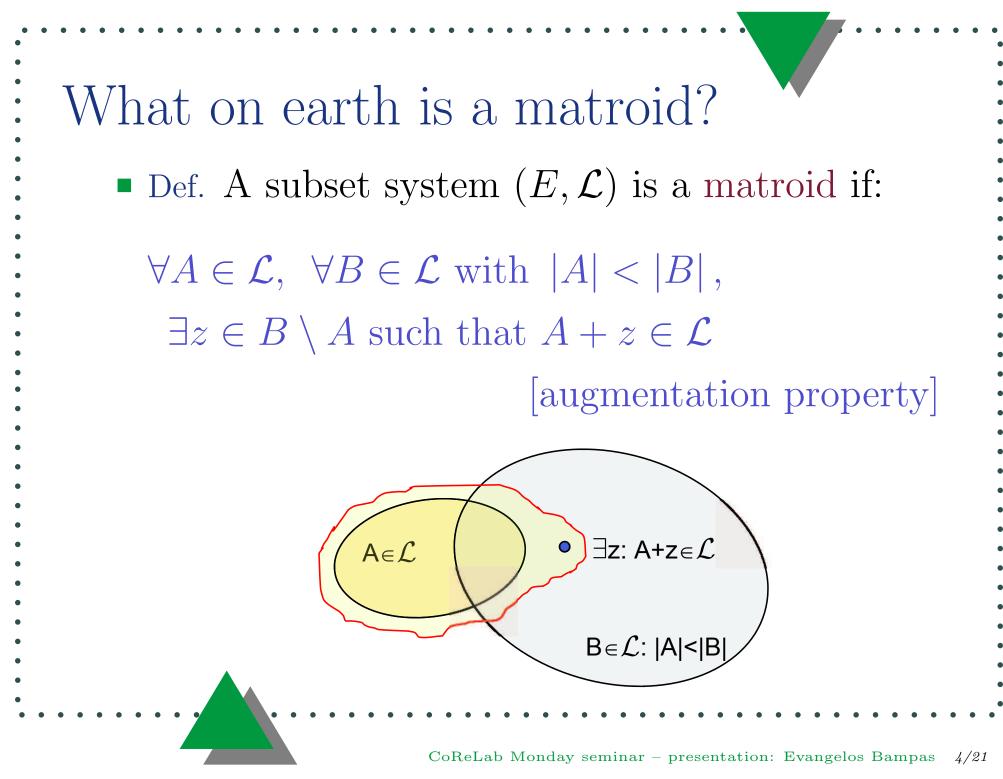
Picking a heaviest independent set

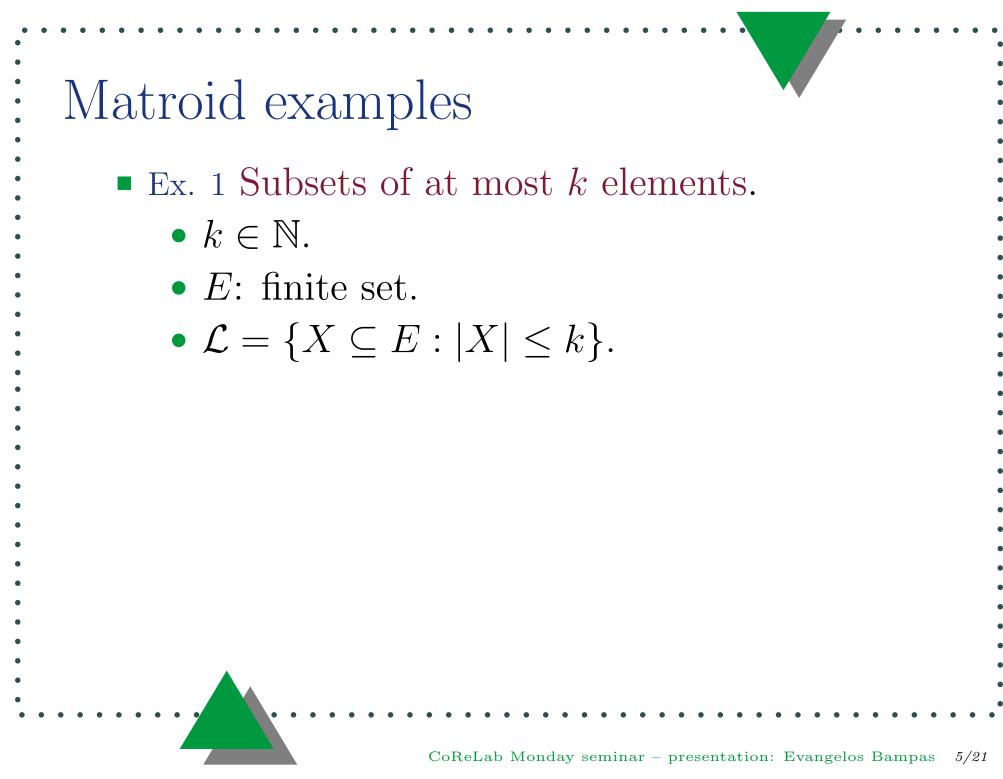
- Prob. Given a subset system (E, \mathcal{L}) and a weight function $w : E \longrightarrow \mathbb{R}^+$, pick a maximum-weight element of \mathcal{L} .
- Alg. Greedy:
 - $\mathrm{SOL} \leftarrow \emptyset$
 - for each $e \in E$ in non-increasing order of w(e)if SOL + $e \in \mathcal{L}$ then SOL \leftarrow SOL + ereturn SOL
- Thm. Greedy is optimal for any weight function on (E, L) iff (E, L) is a matroid. (Rado-Edmonds)

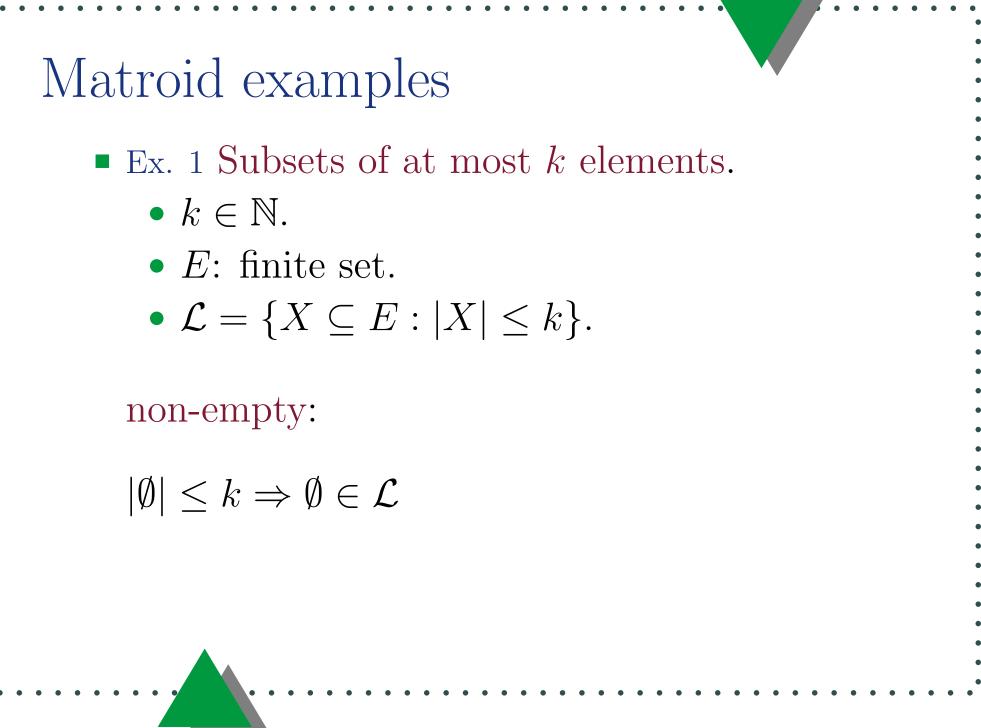


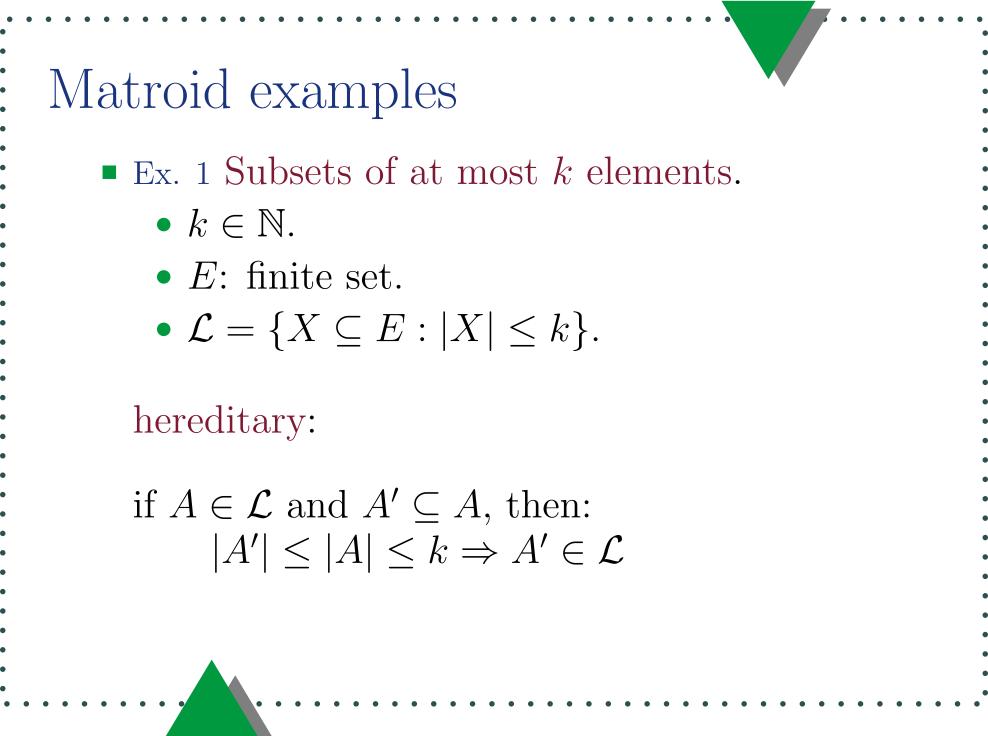




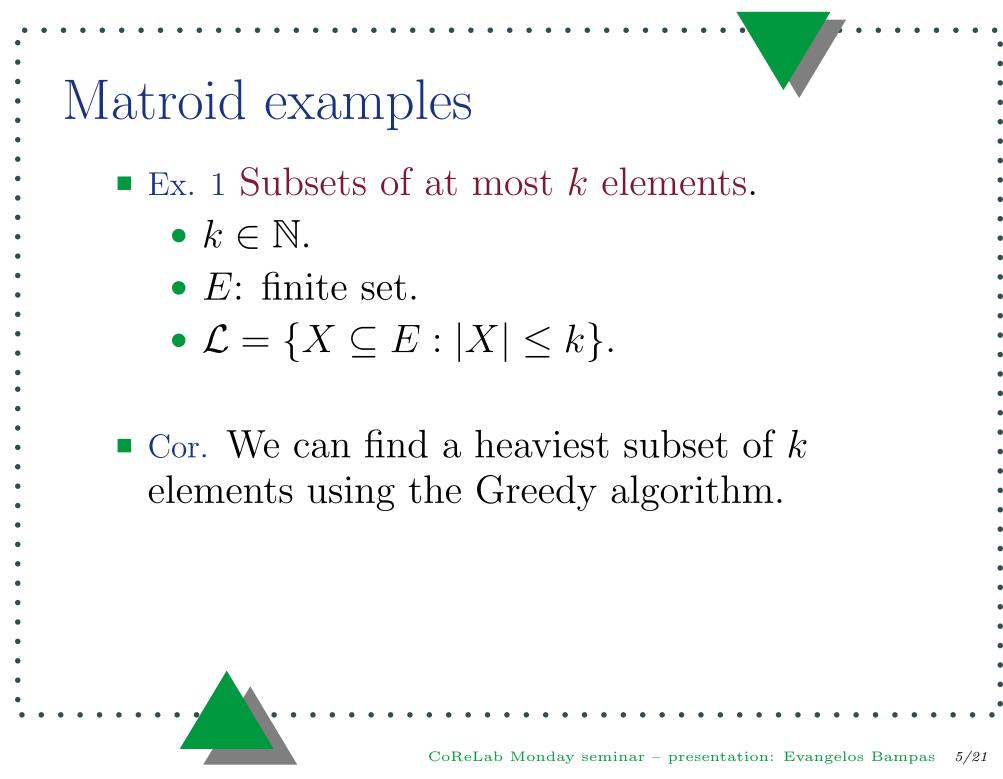


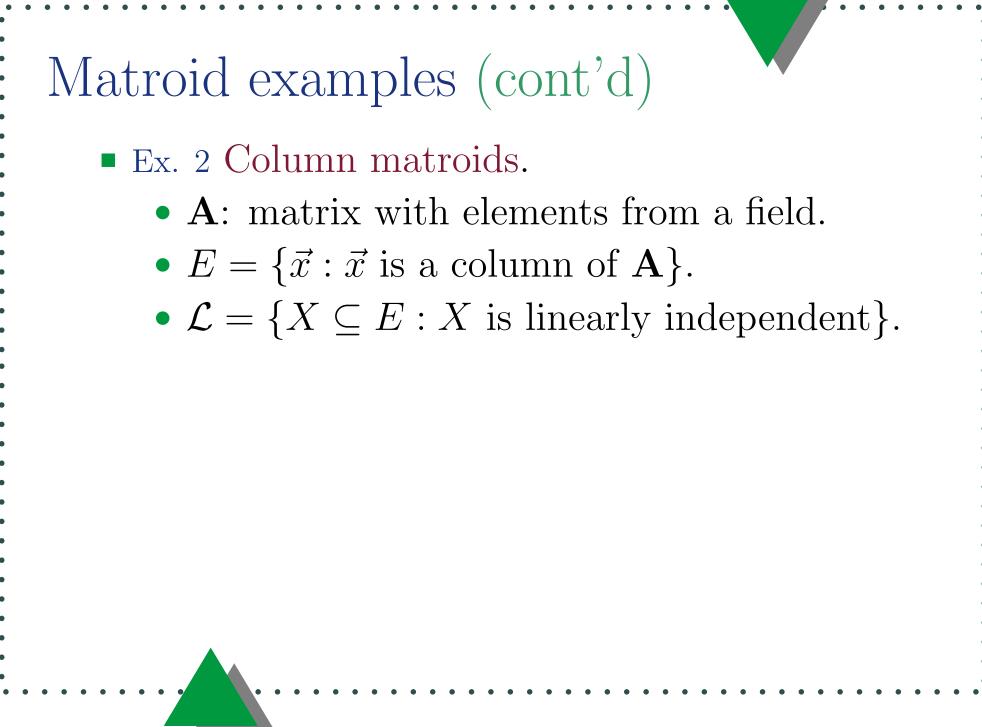






Matroid examples
• Ex. 1 Subsets of at most
$$k$$
 elements.
• $k \in \mathbb{N}$.
• E : finite set.
• $\mathcal{L} = \{X \subseteq E : |X| \le k\}$.
augmentation:
if $|A| < |B|$, then for arbitrary $z \in B \setminus A$:
 $|A + z| = |A| + 1 \le |B| - 1 + 1 \le k$
thus, $|A + z| \in \mathcal{L}$





Matroid examples (cont'd) Ex. 2 Column matroids. A: matrix with elements from a field.

- $E = \{ \vec{x} : \vec{x} \text{ is a column of } \mathbf{A} \}.$
- $\mathcal{L} = \{ X \subseteq E : X \text{ is linearly independent} \}.$

non-empty:

the empty set is vacuously linearly independent

Matroid examples (cont'd)

- Ex. 2 Column matroids.
 - A: matrix with elements from a field.
 - $E = \{ \vec{x} : \vec{x} \text{ is a column of } \mathbf{A} \}.$
 - $\mathcal{L} = \{ X \subseteq E : X \text{ is linearly independent} \}.$

hereditary:

linear dependency cannot be introduced by removing vectors

Matroid examples (cont'd)

Ex. 2 Column matroids.

- A: matrix with elements from a field.
- $E = \{ \vec{x} : \vec{x} \text{ is a column of } \mathbf{A} \}.$
- $\mathcal{L} = \{ X \subseteq E : X \text{ is linearly independent} \}.$

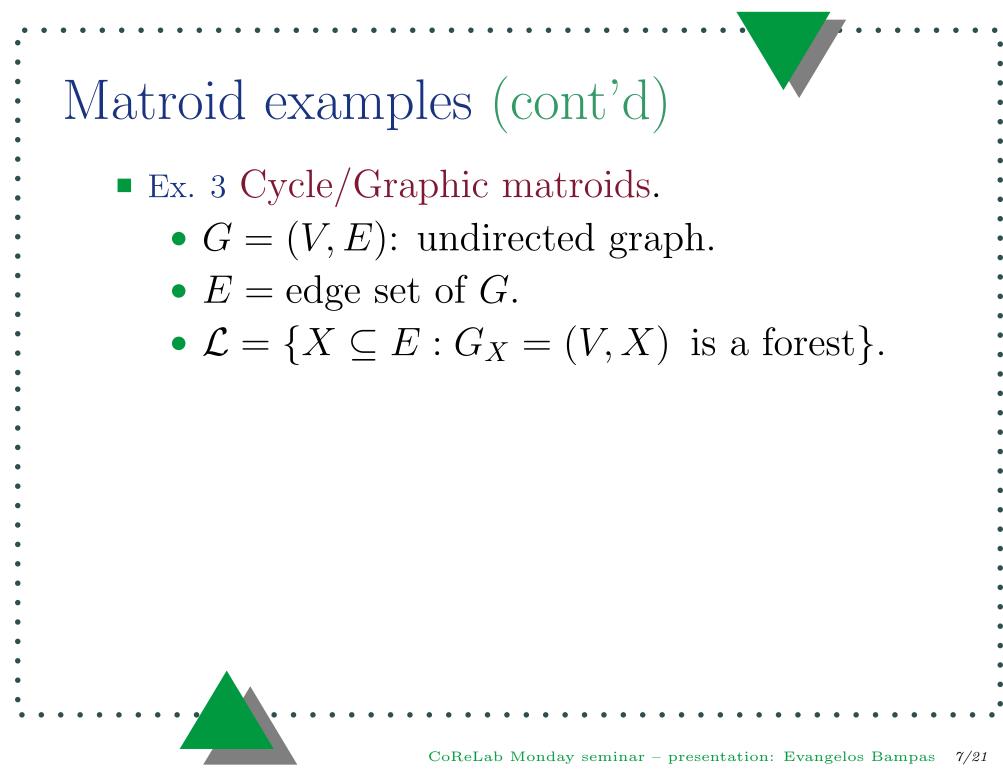
augmentation:

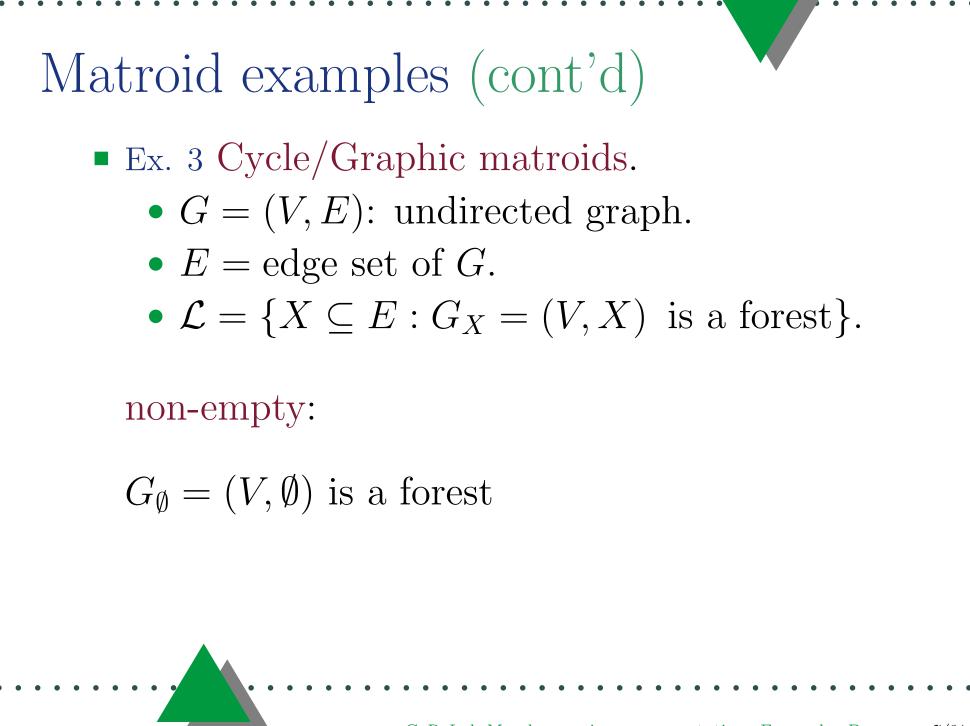
if $\forall z \in B \setminus A, A + z \notin \mathcal{L}$, then each vector of *B* is linearly dependent on the vectors of *A* which implies $|B| \leq |A|$

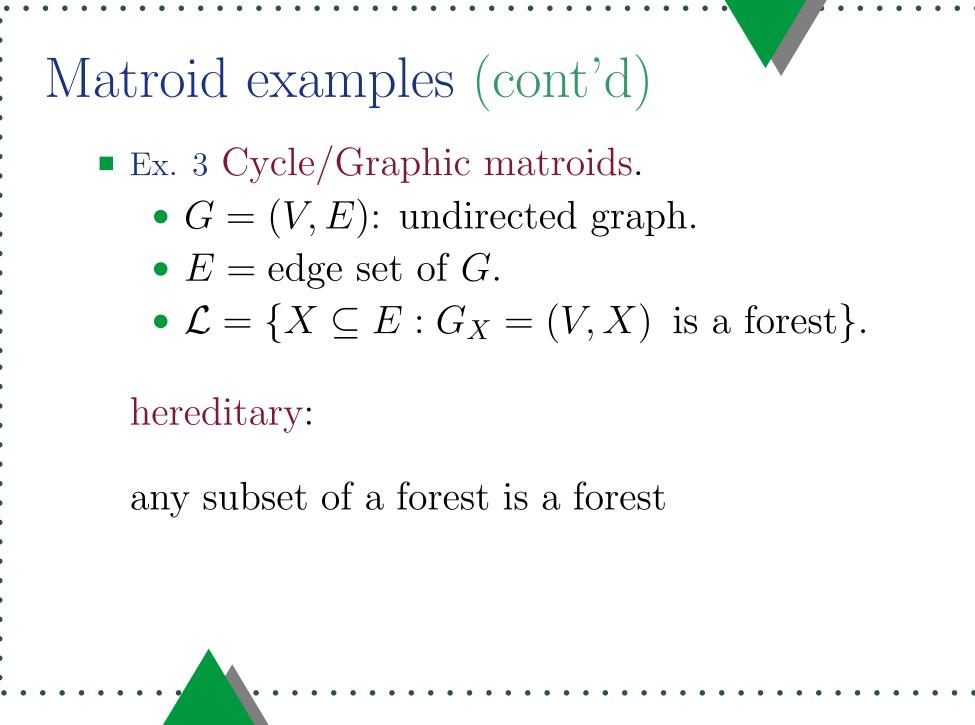
Matroid examples (cont'd) Ex. 2 Column matroids. A: matrix with elements from a field.

- $E = \{ \vec{x} : \vec{x} \text{ is a column of } \mathbf{A} \}.$
- $\mathcal{L} = \{ X \subseteq E : X \text{ is linearly independent} \}.$

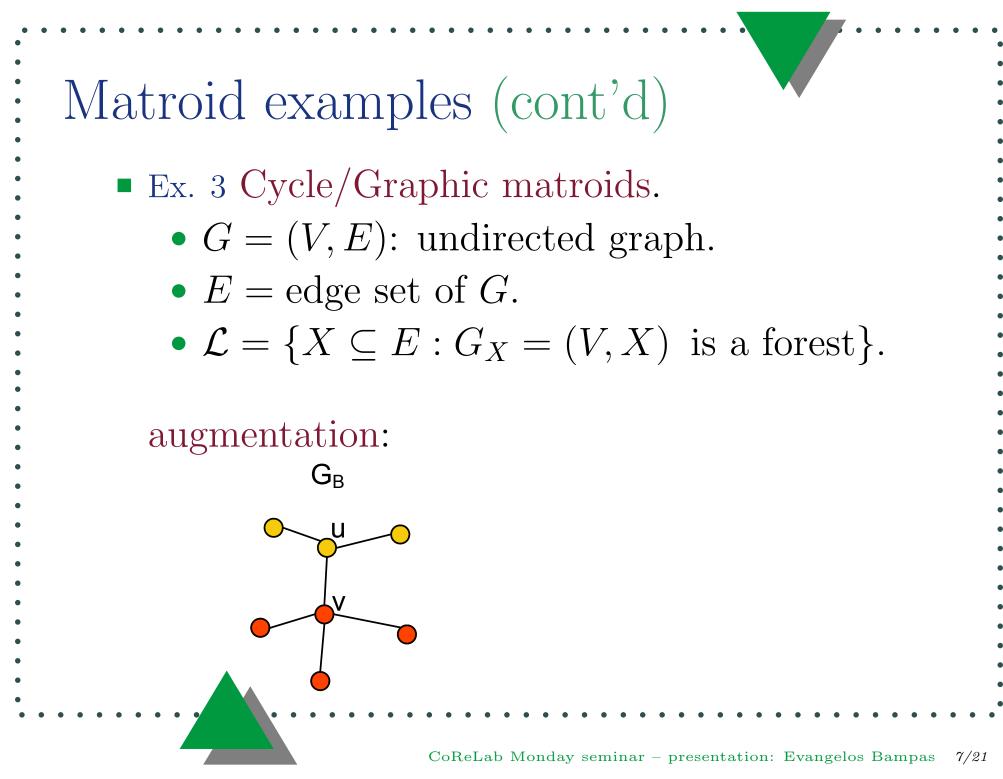
• Cor. We can find a heaviest base among the vectors of **A** using the Greedy algorithm.

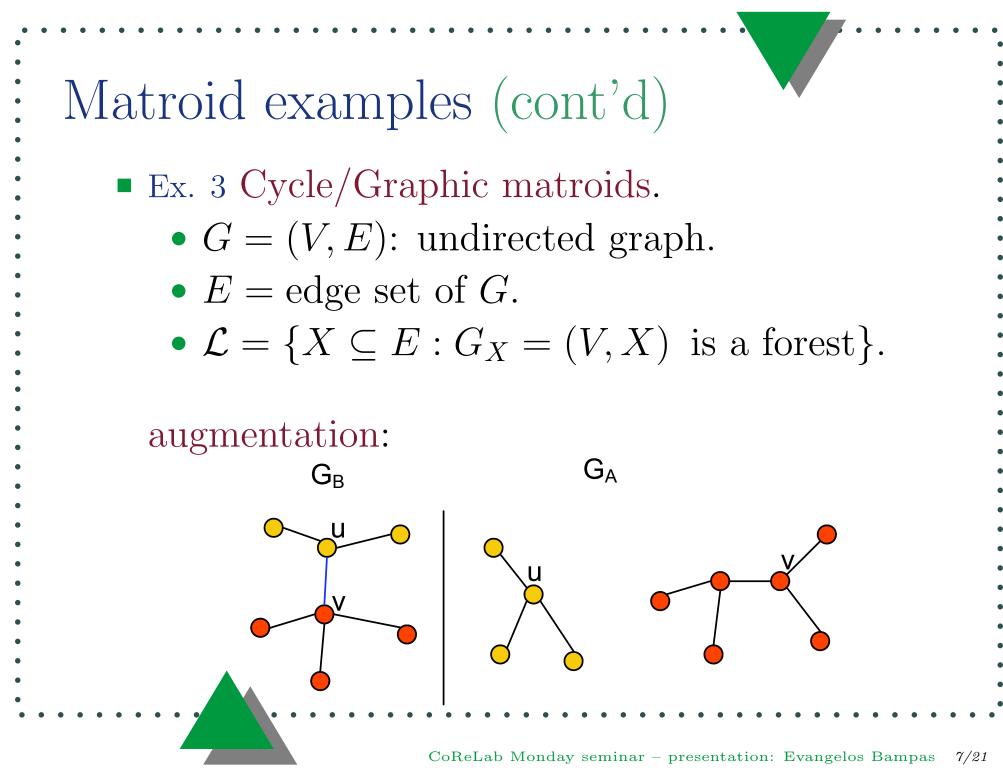


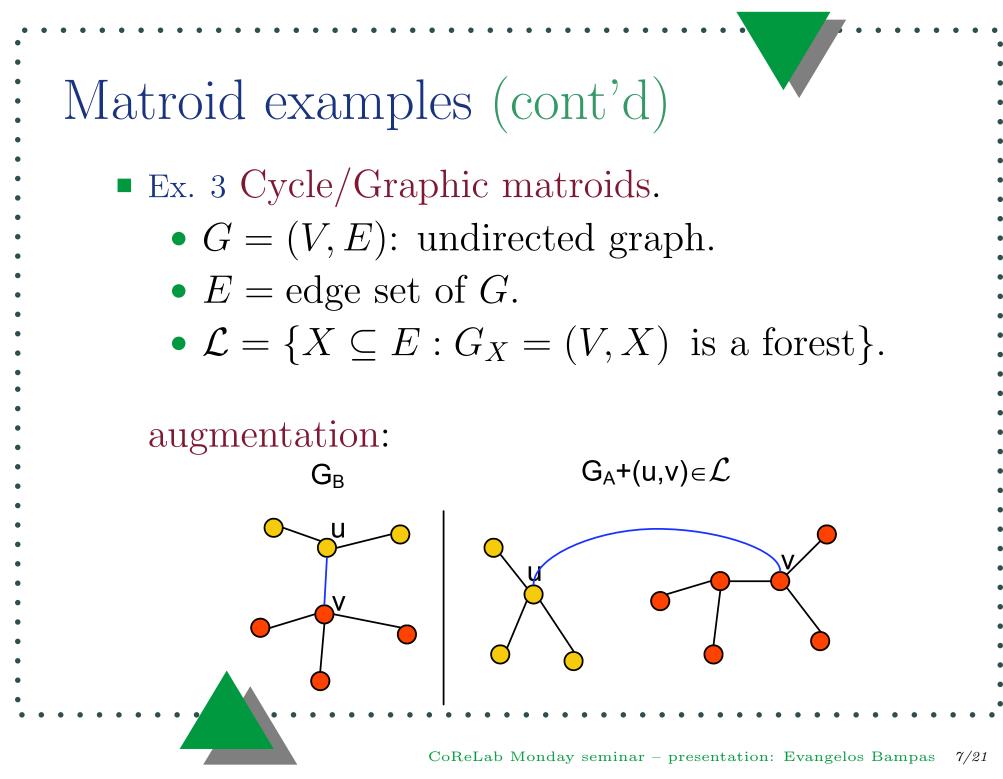


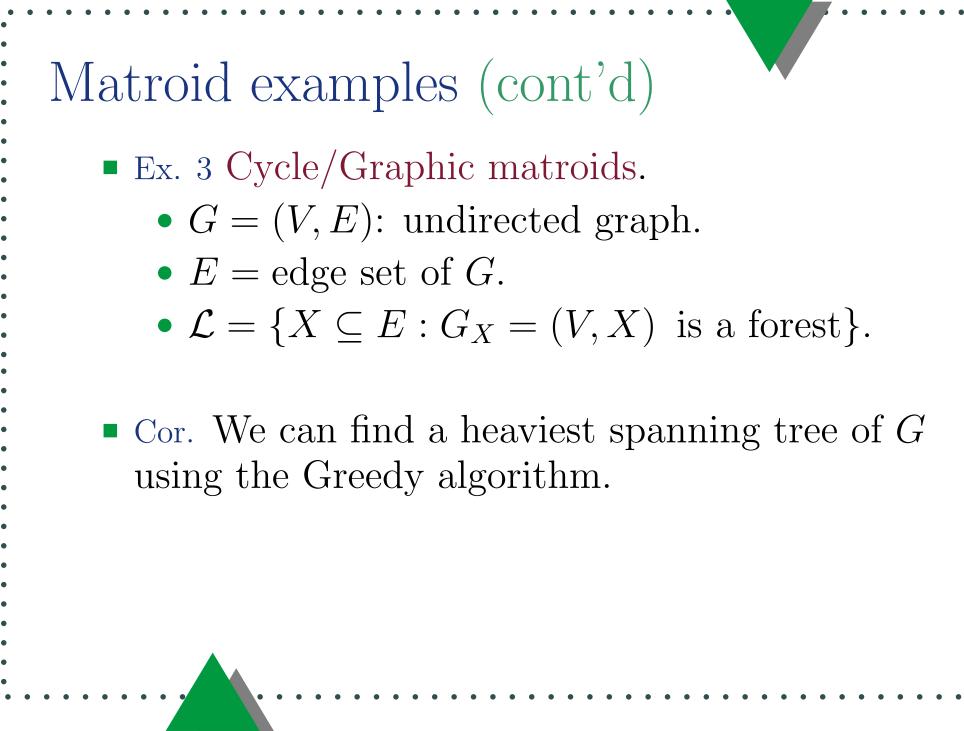


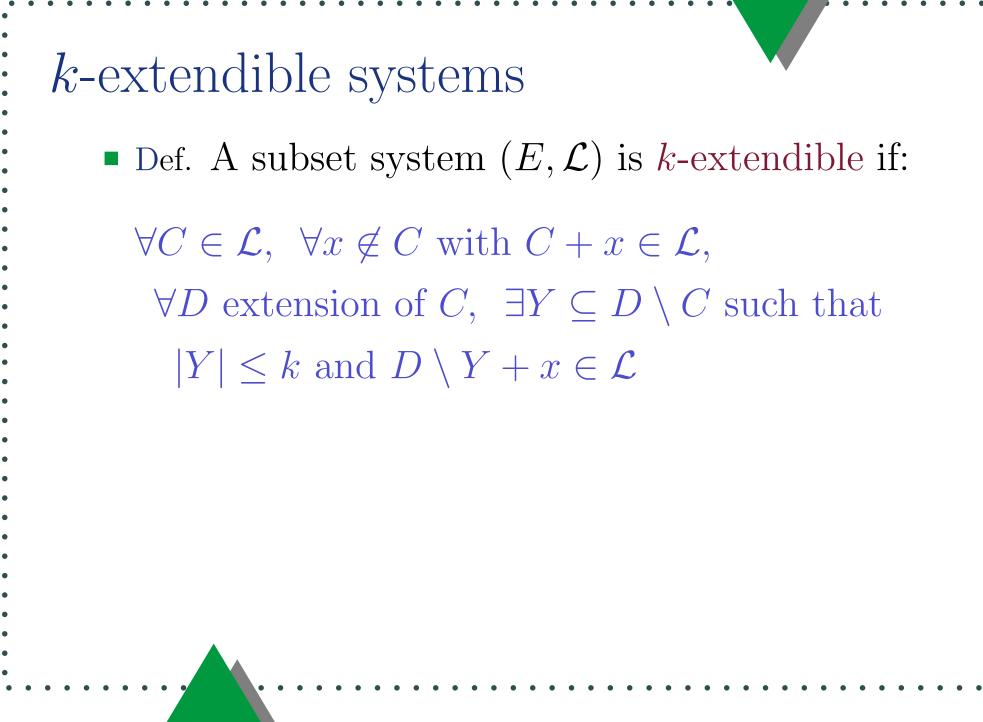
Matroid examples (cont'd)
• Ex. 3 Cycle/Graphic matroids.
•
$$G = (V, E)$$
: undirected graph.
• $E =$ edge set of G .
• $\mathcal{L} = \{X \subseteq E : G_X = (V, X) \text{ is a forest}\}.$
augmentation:
if $|A| < |B|$, then
#trees in $G_A >$ #trees in G_B

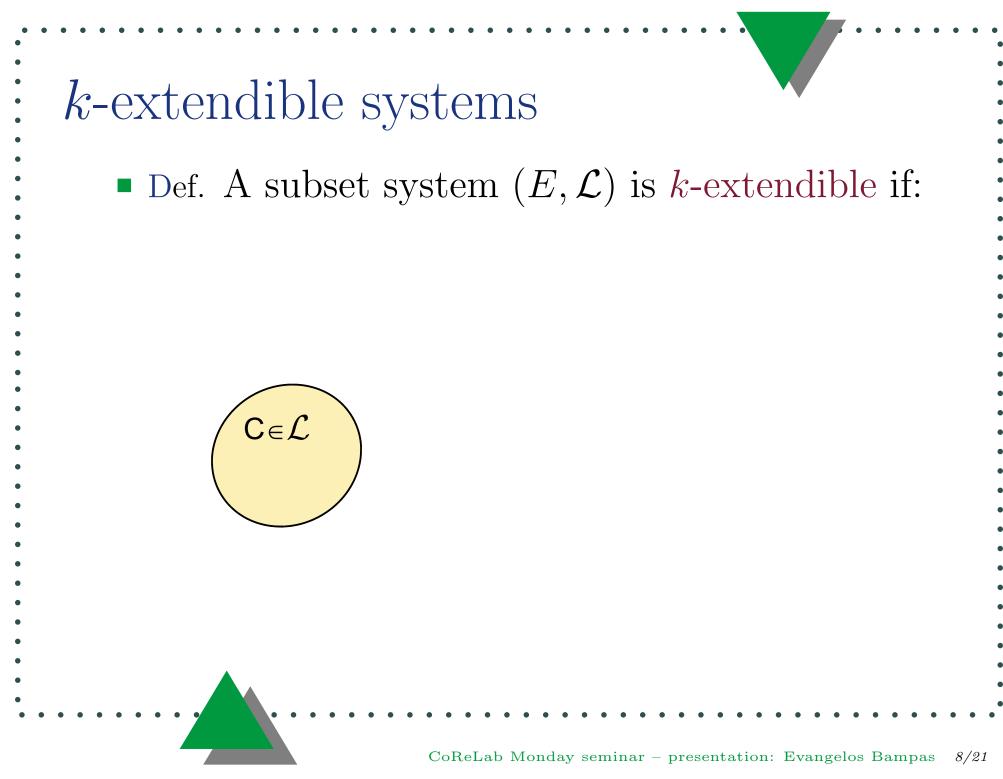


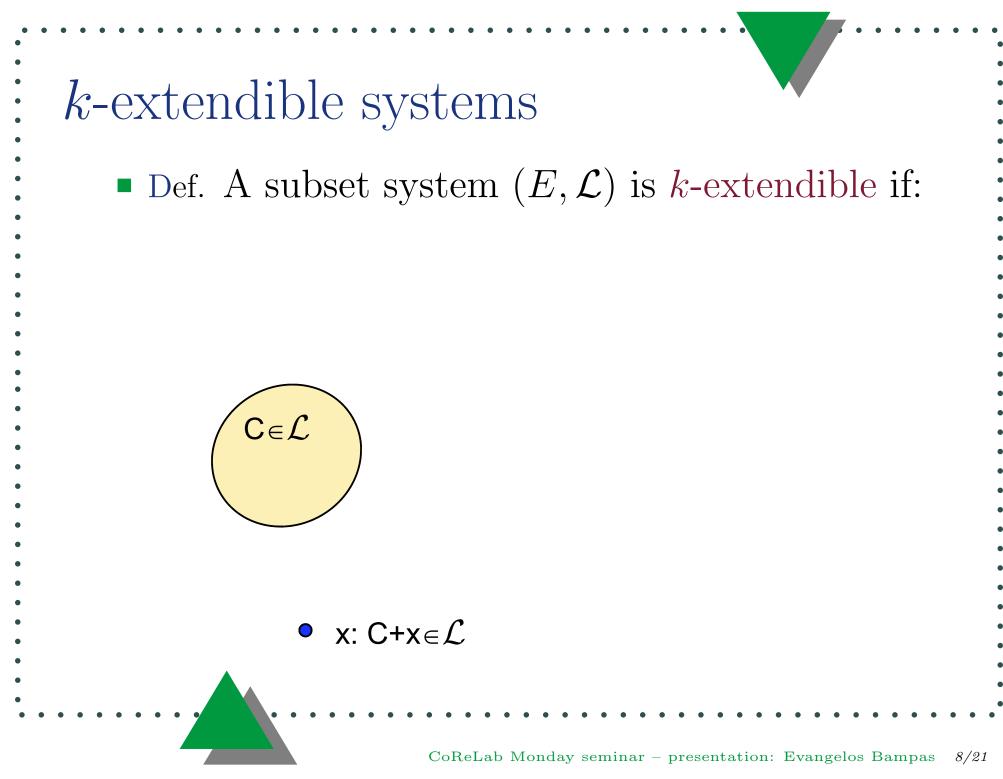


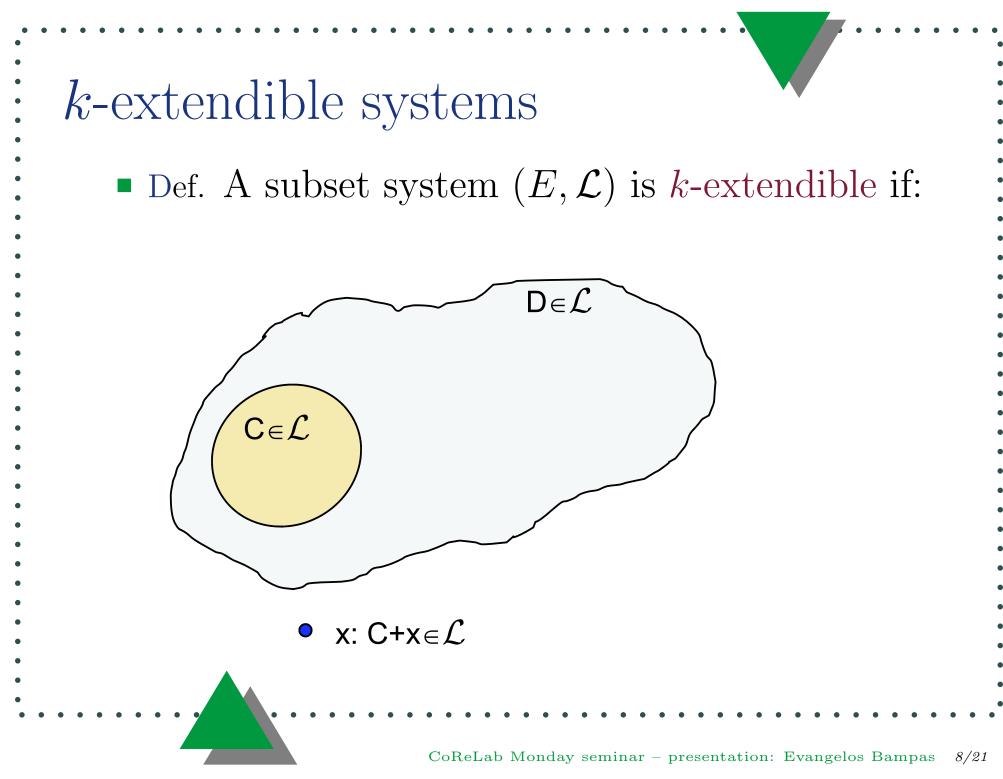


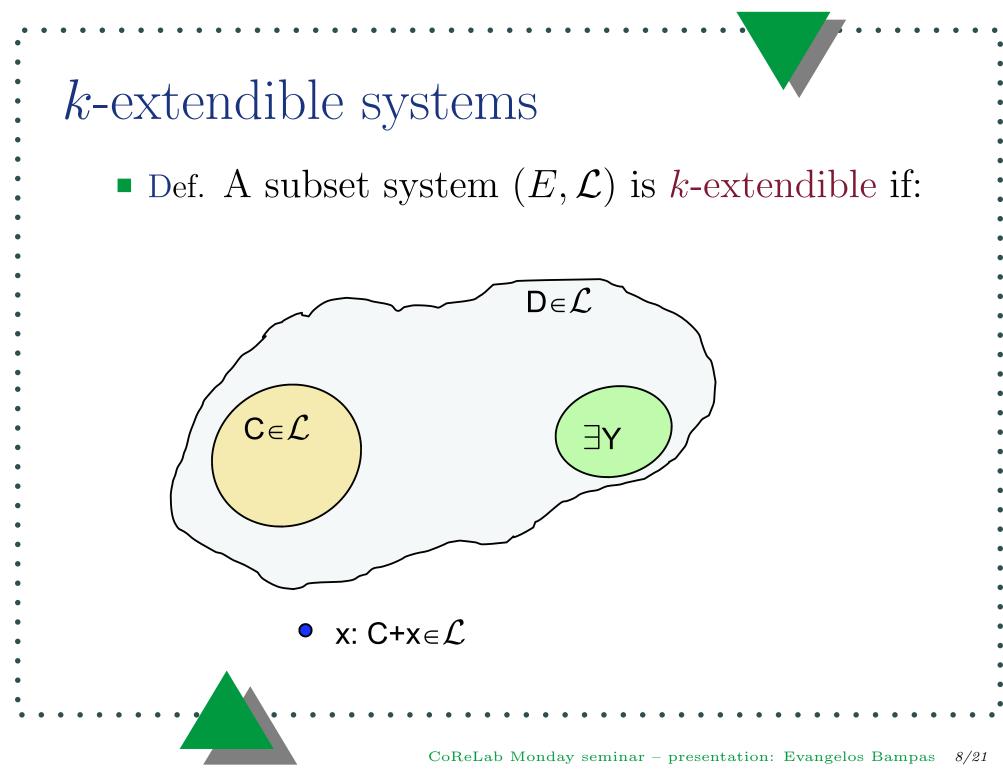


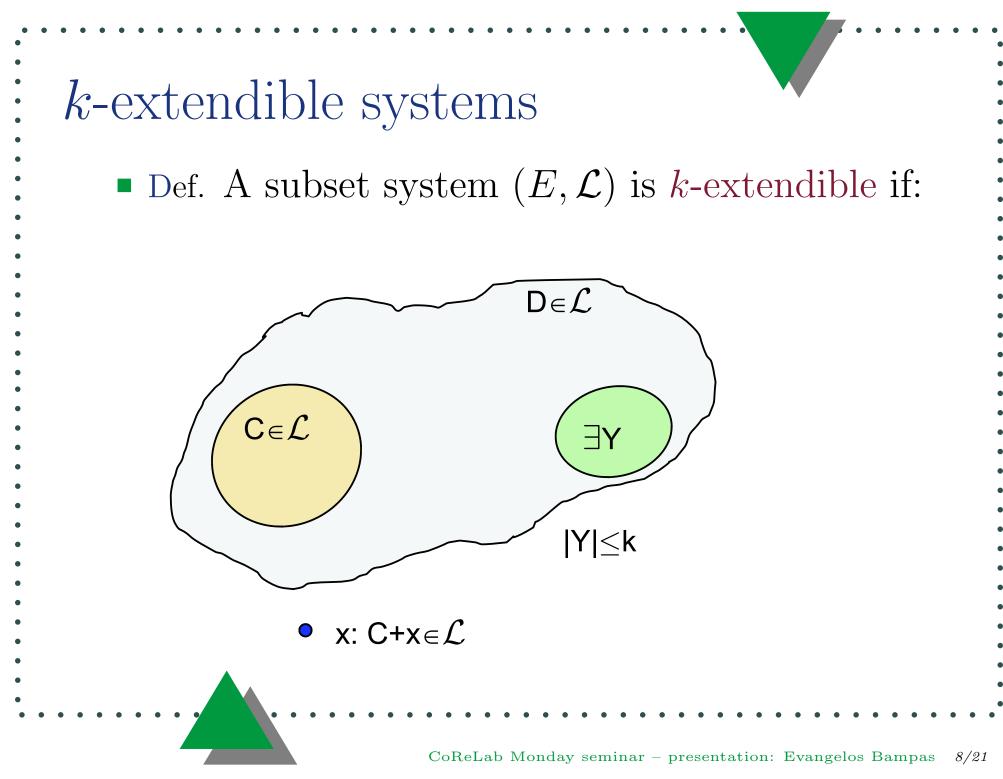


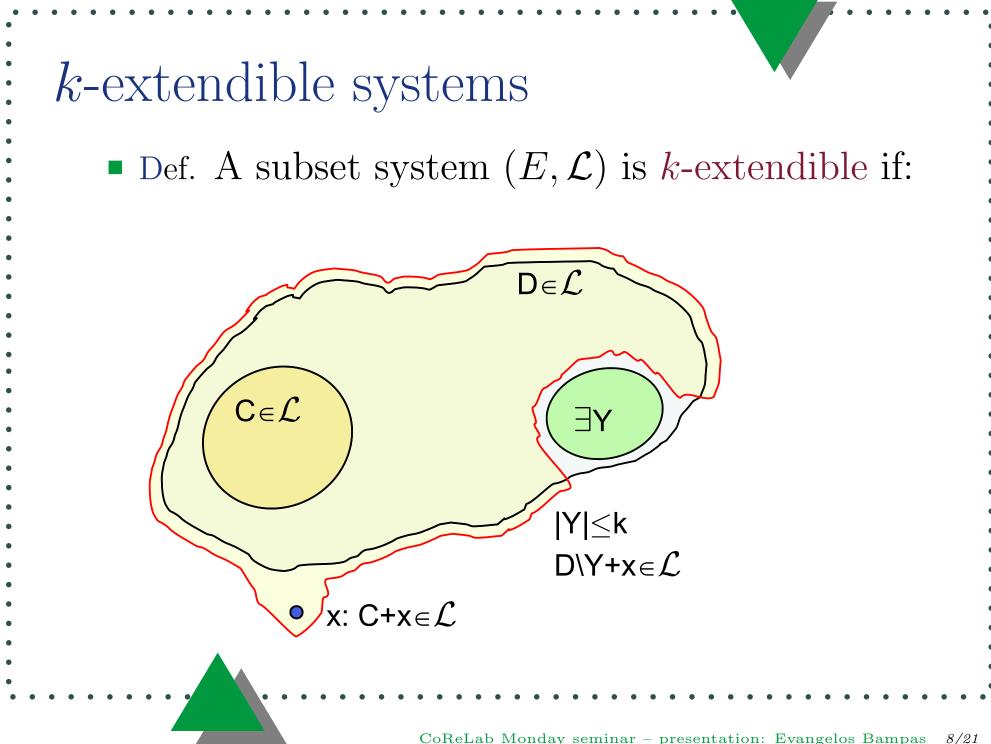




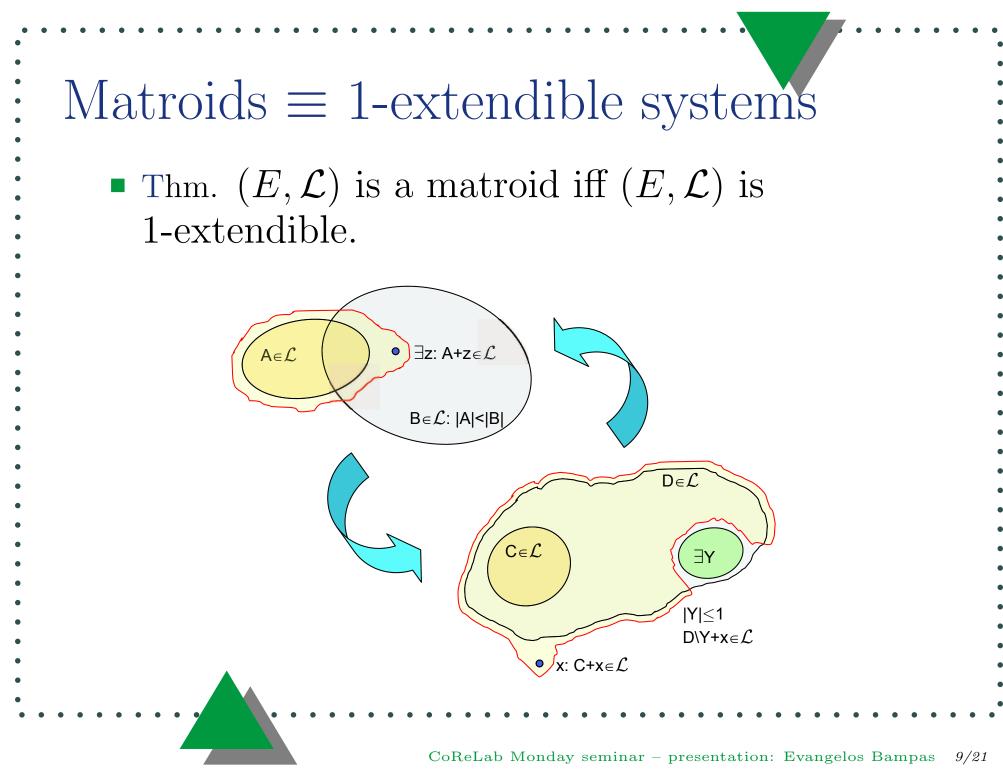


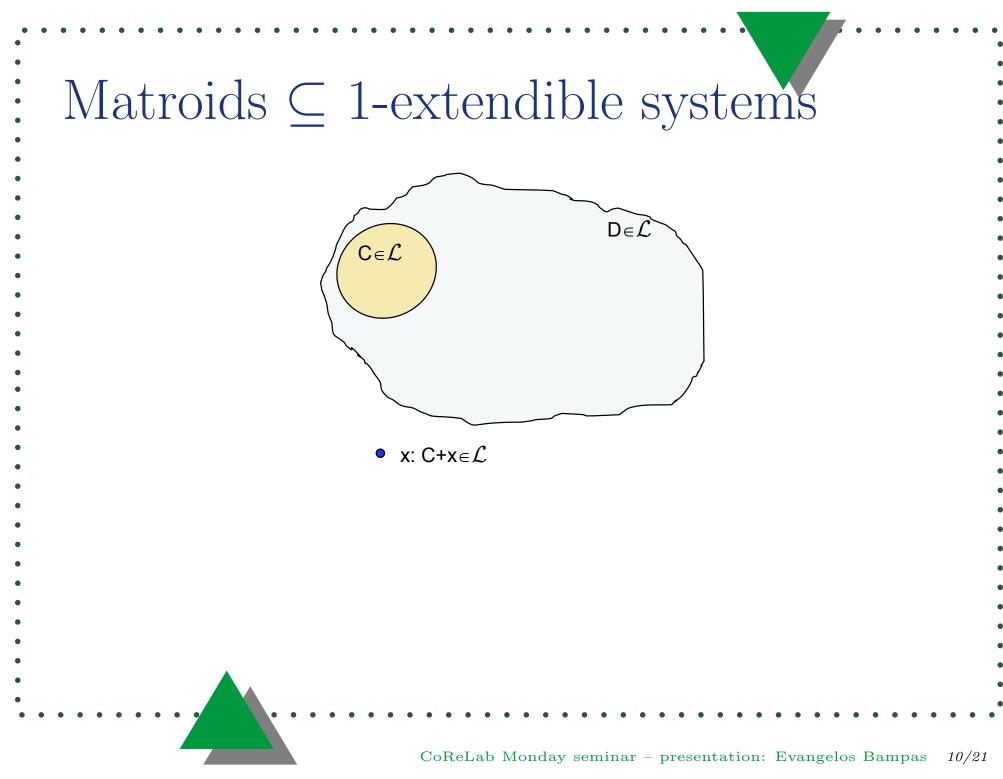


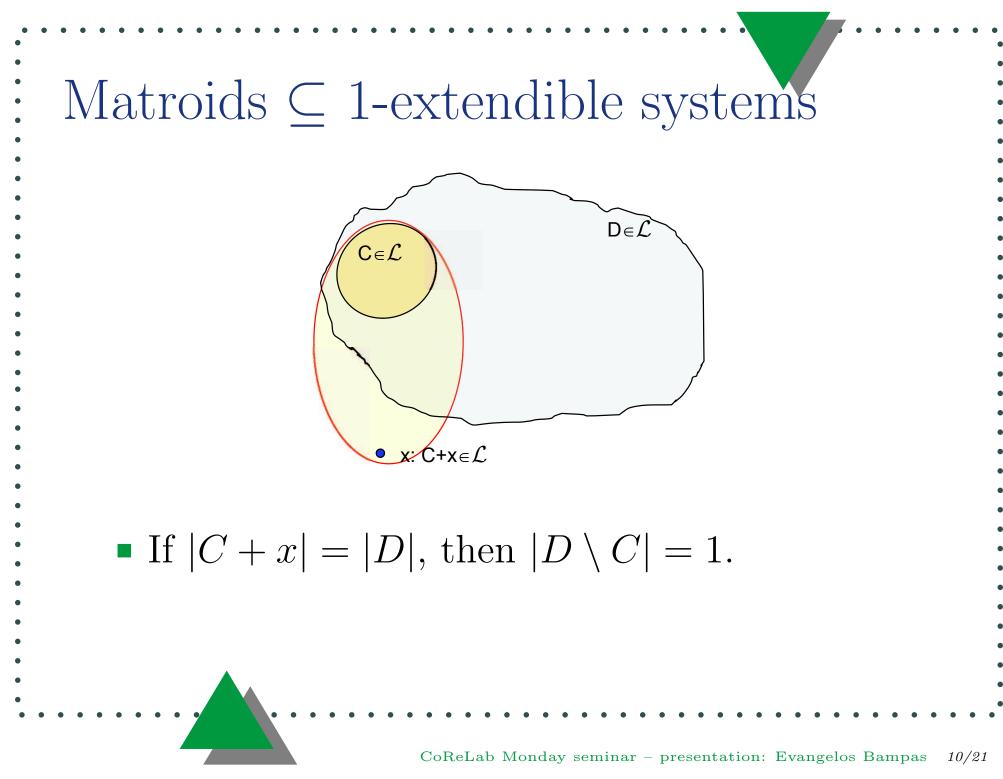


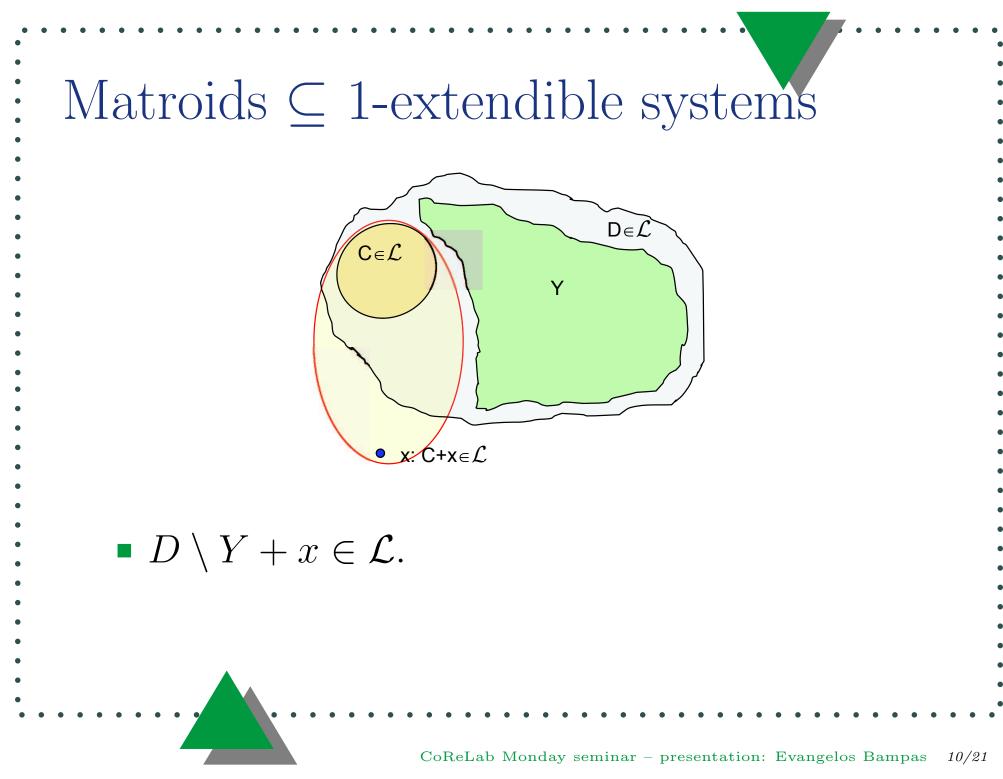


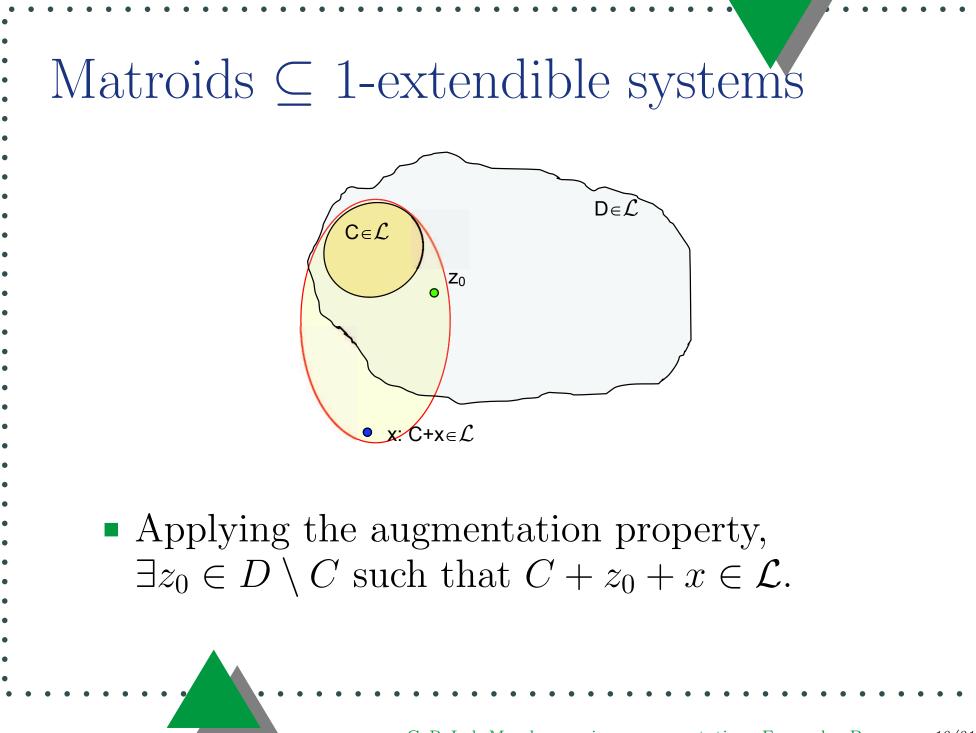
CoReLab Monday seminar – presentation: Evangelos Bampas 8/21

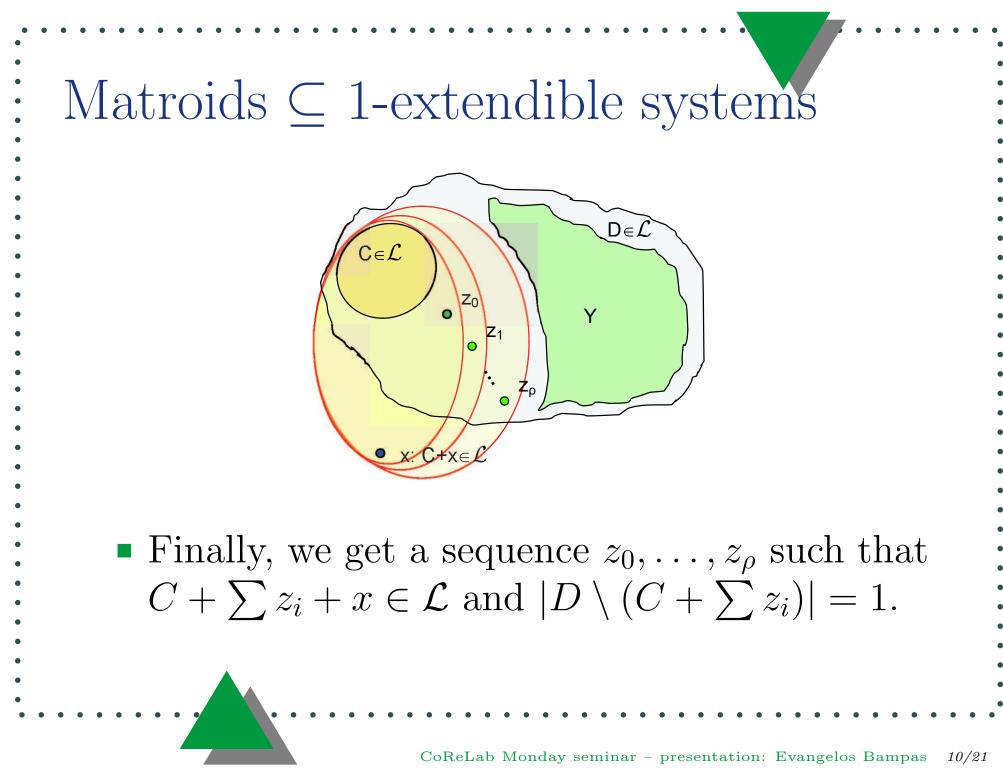


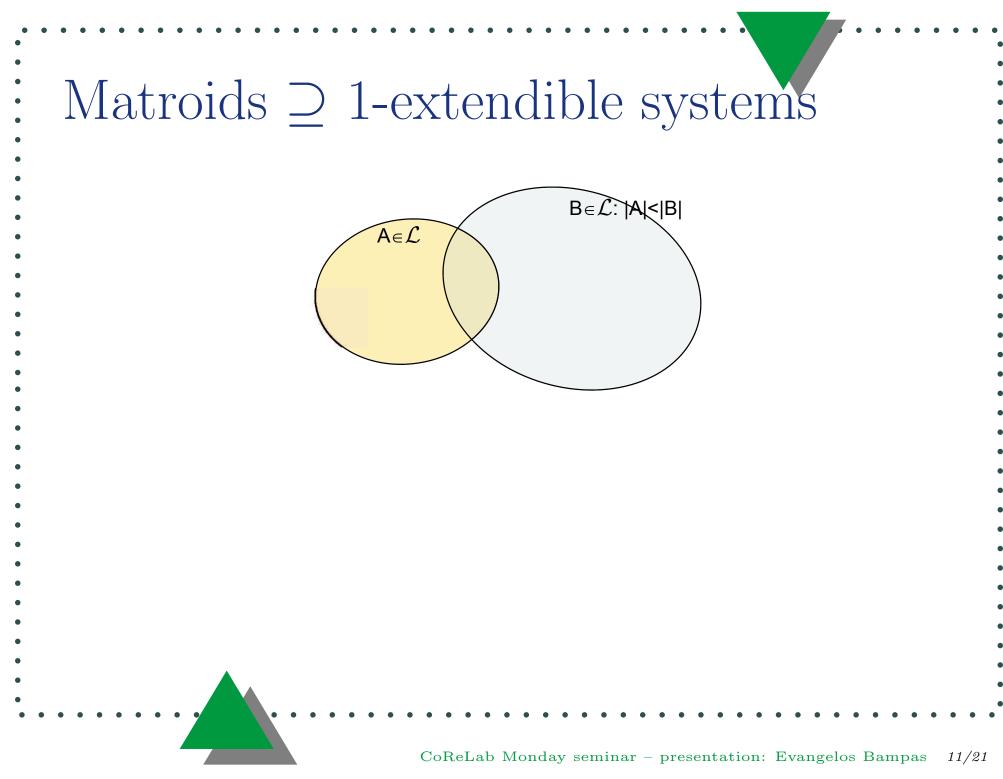


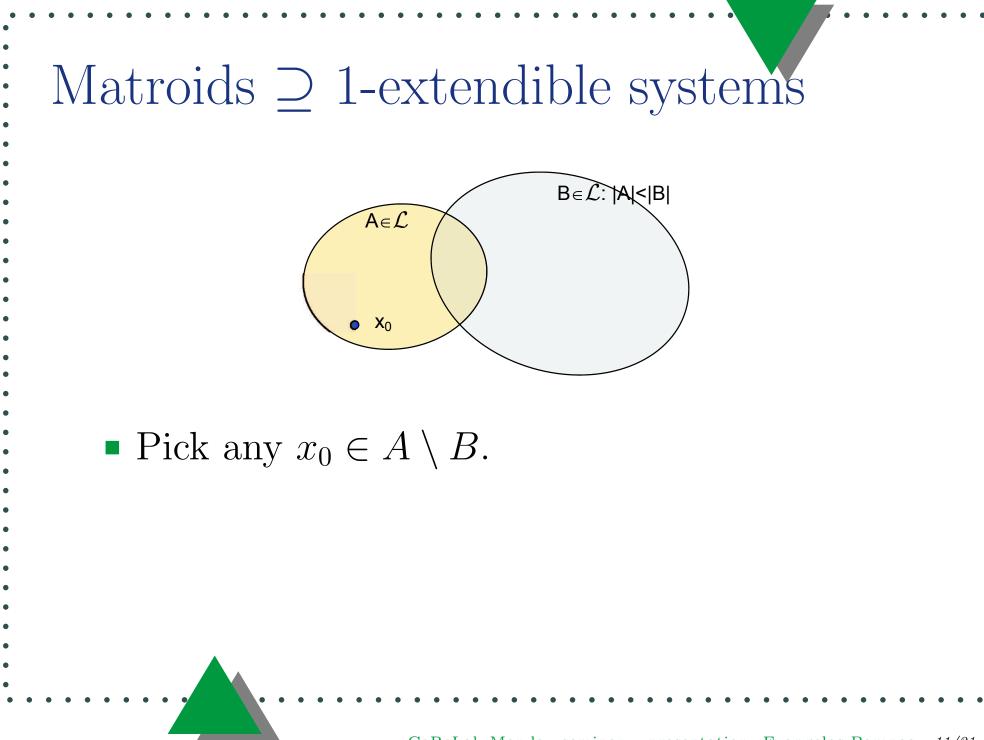


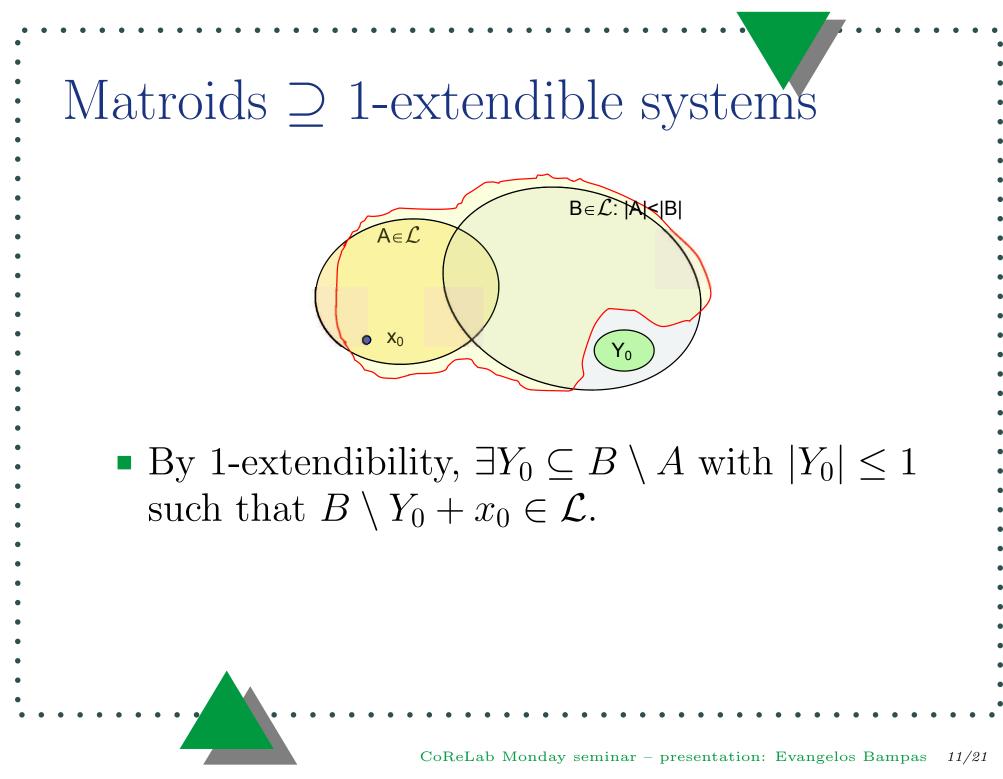


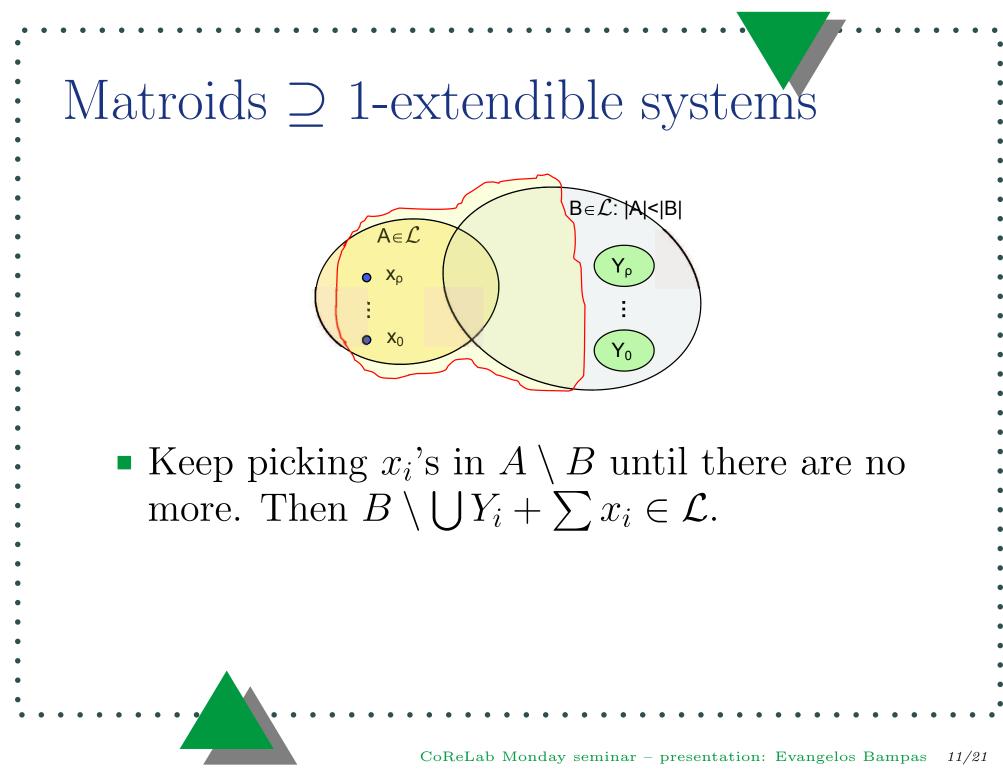


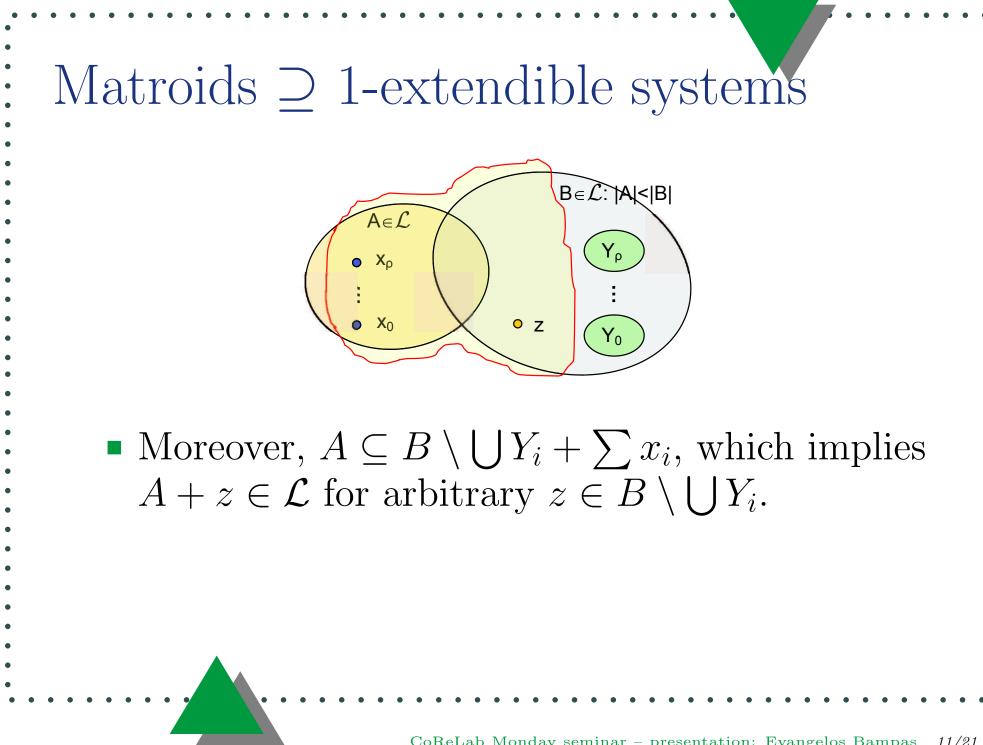


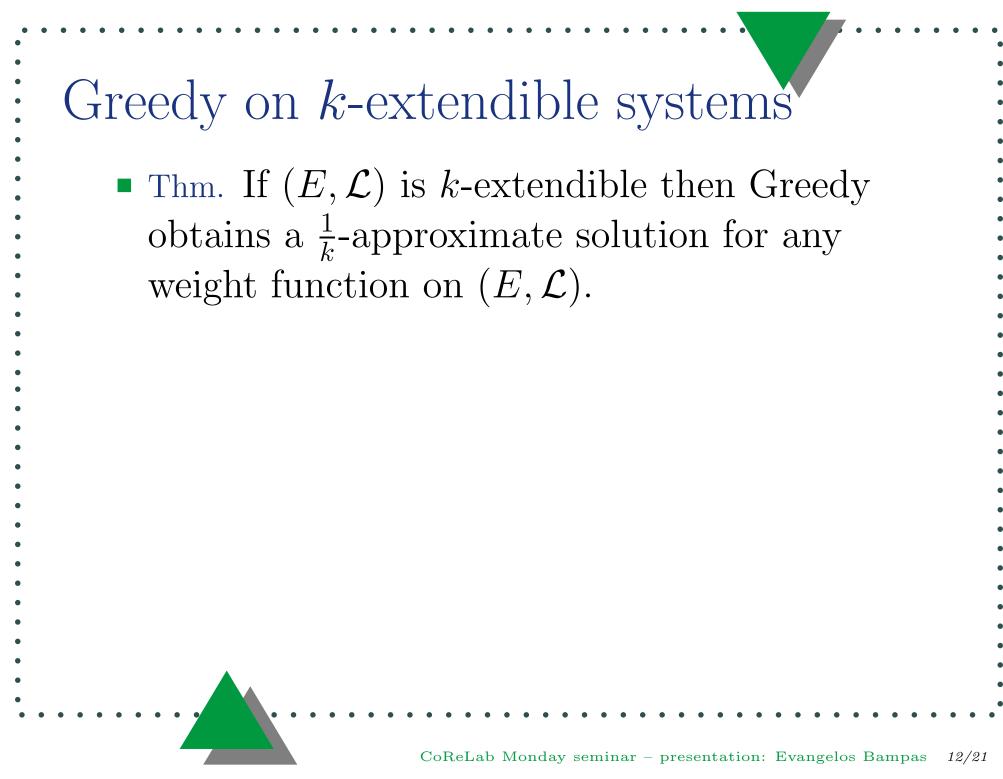












Greedy on k-extendible systems

• Thm. If (E, \mathcal{L}) is k-extendible then Greedy obtains a $\frac{1}{k}$ -approximate solution for any weight function on (E, \mathcal{L}) .

Proof.

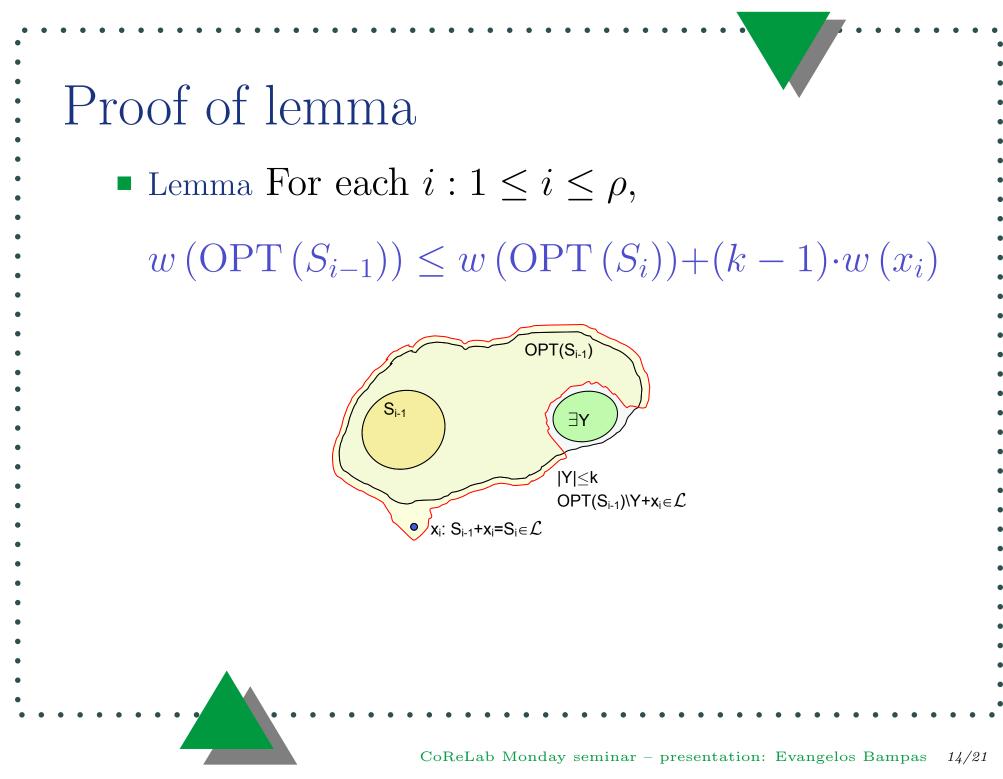
- $x_1, x_2, \ldots, x_{\rho}$: successive choices of Greedy
- $\emptyset = S_0, S_1, S_2, \dots, S_{\rho} = \text{SOL: successive}$ partial solutions with

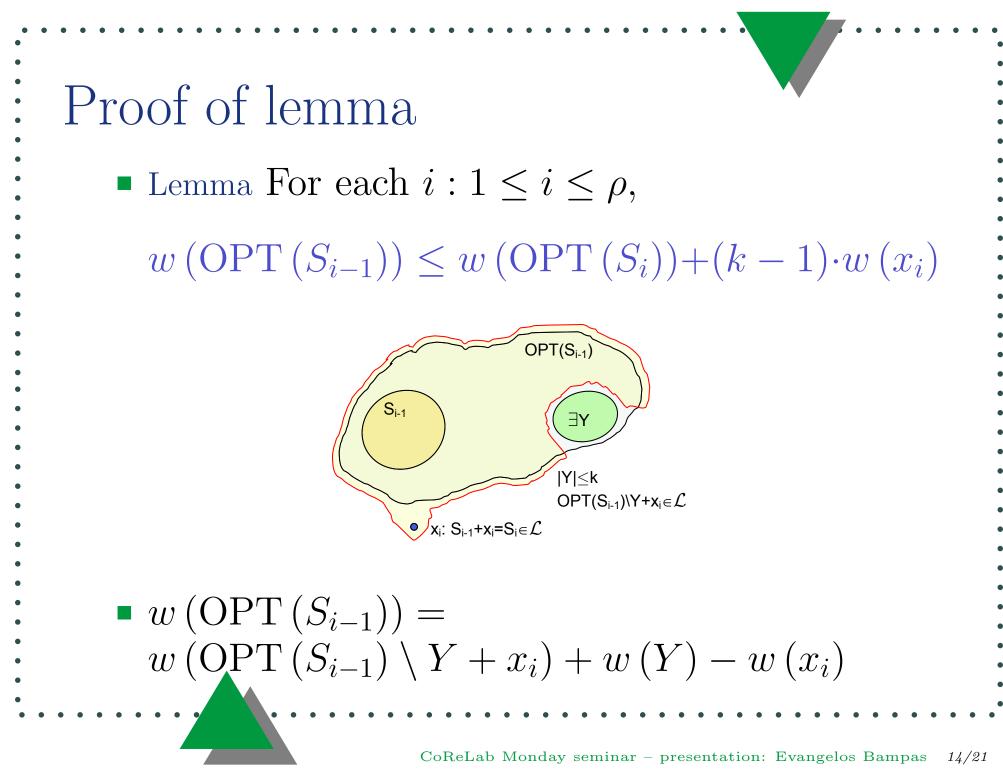
$$S_i = S_{i-1} + x_i \quad , \quad \forall i : 1 \le i \le \rho$$

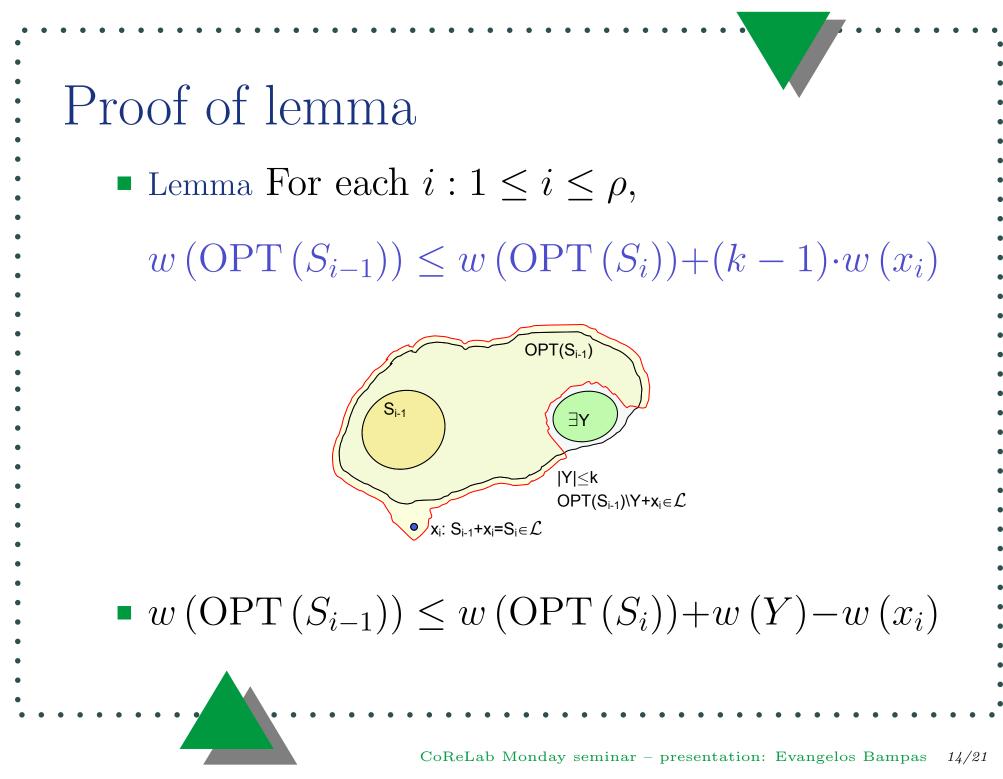
Obtaining the approximation ratio • Lemma For each $i : 1 \leq i \leq \rho$, $w\left(\operatorname{OPT}\left(S_{i-1}\right)\right) \leq w\left(\operatorname{OPT}\left(S_{i}\right)\right) + (k-1) \cdot w\left(x_{i}\right)$

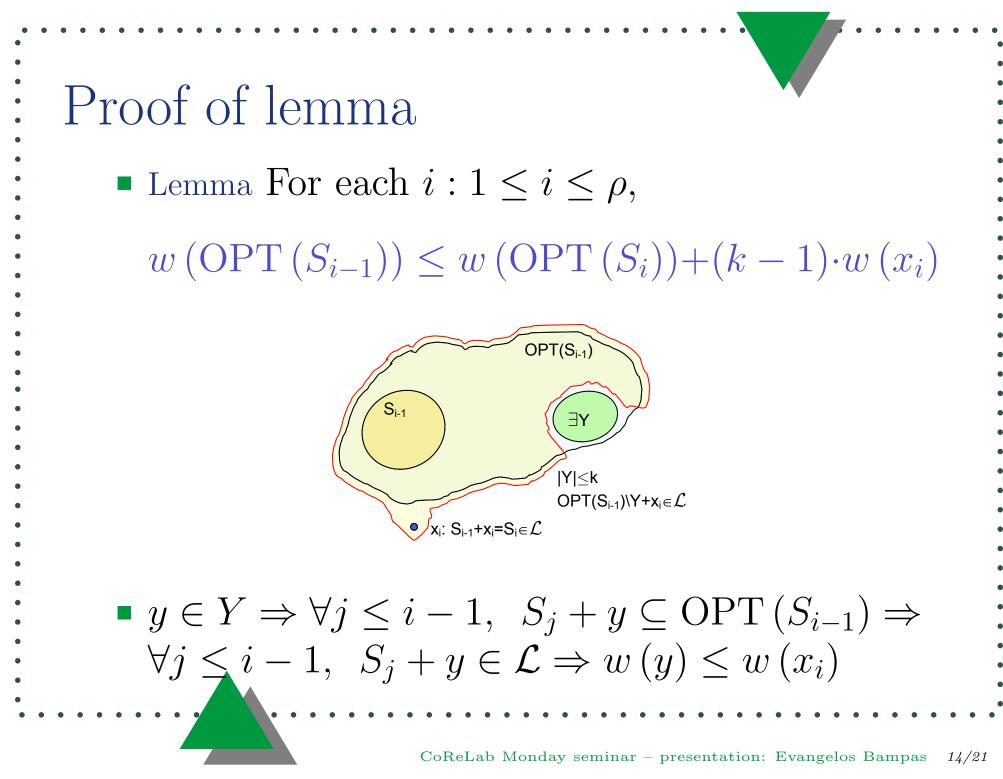
Obtaining the approximation ratio • Lemma For each $i: 1 \leq i \leq \rho$, $w\left(\operatorname{OPT}\left(S_{i-1}\right)\right) \leq w\left(\operatorname{OPT}\left(S_{i}\right)\right) + (k-1) \cdot w\left(x_{i}\right)$ • Apply lemma ρ times: $OPT = w(OPT(S_0))$ $< w (OPT(S_{\rho})) + (k-1) \cdot w (S_{\rho})$ $= k \cdot SOL$

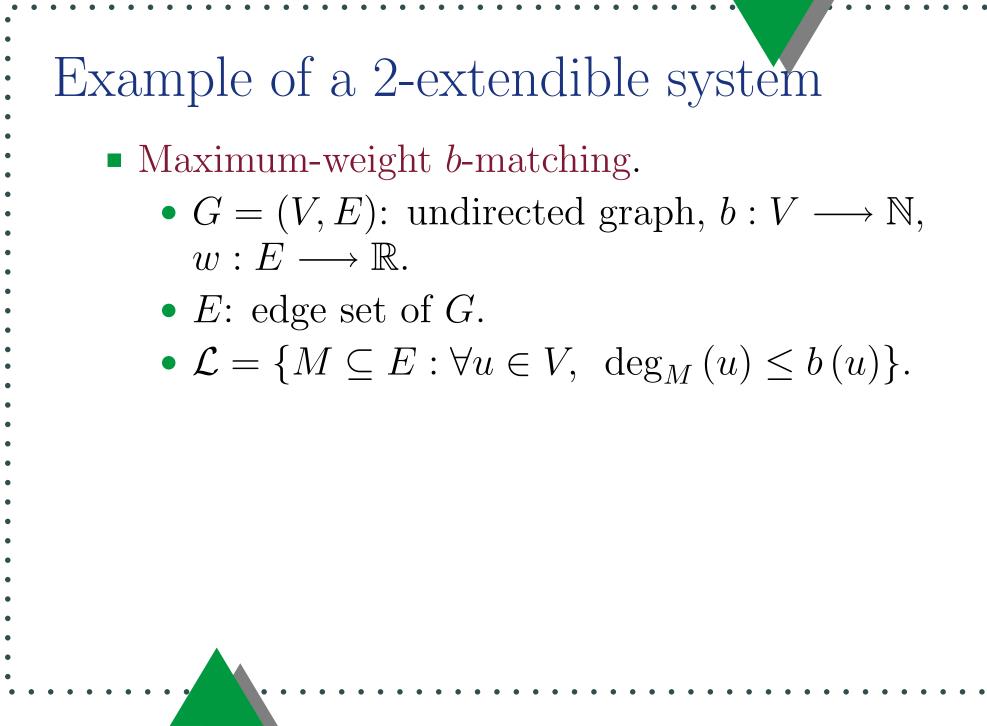
Proof of lemma • Lemma For each $i : 1 \leq i \leq \rho$, $w\left(\operatorname{OPT}\left(S_{i-1}\right)\right) \leq w\left(\operatorname{OPT}\left(S_{i}\right)\right) + (k-1) \cdot w\left(x_{i}\right)$ CoReLab Monday seminar – presentation: Evangelos Bampas 14/21

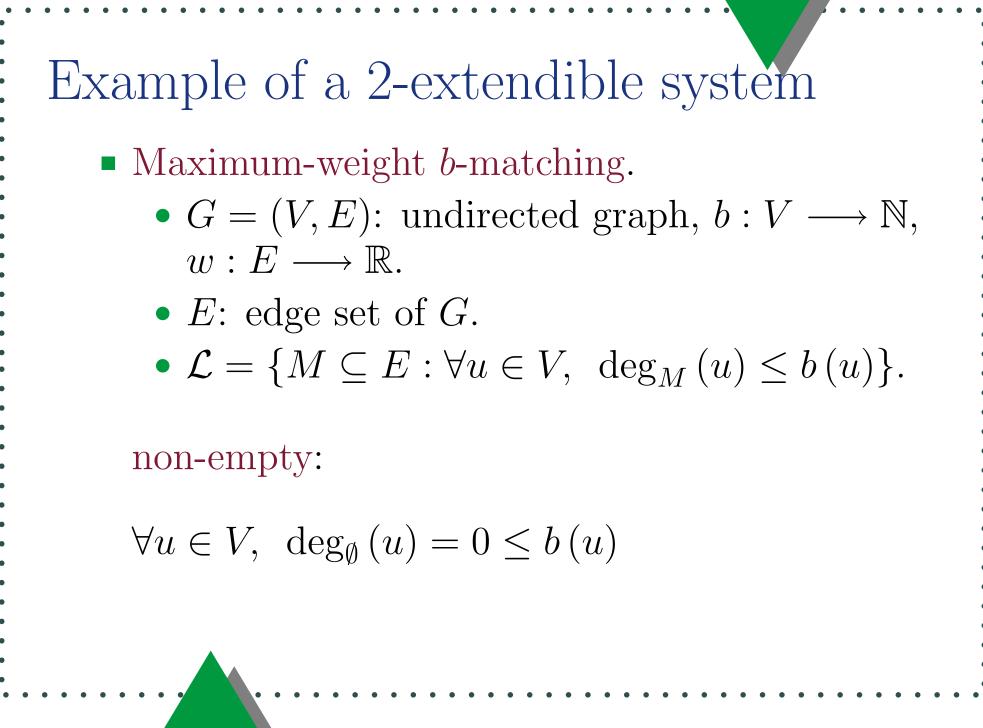


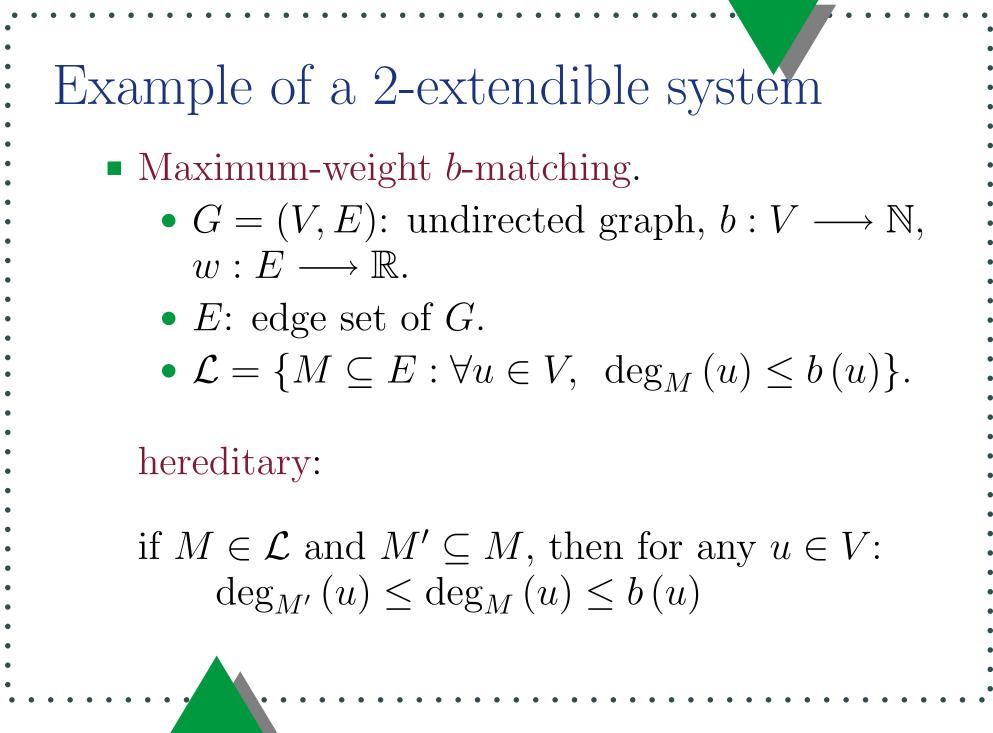


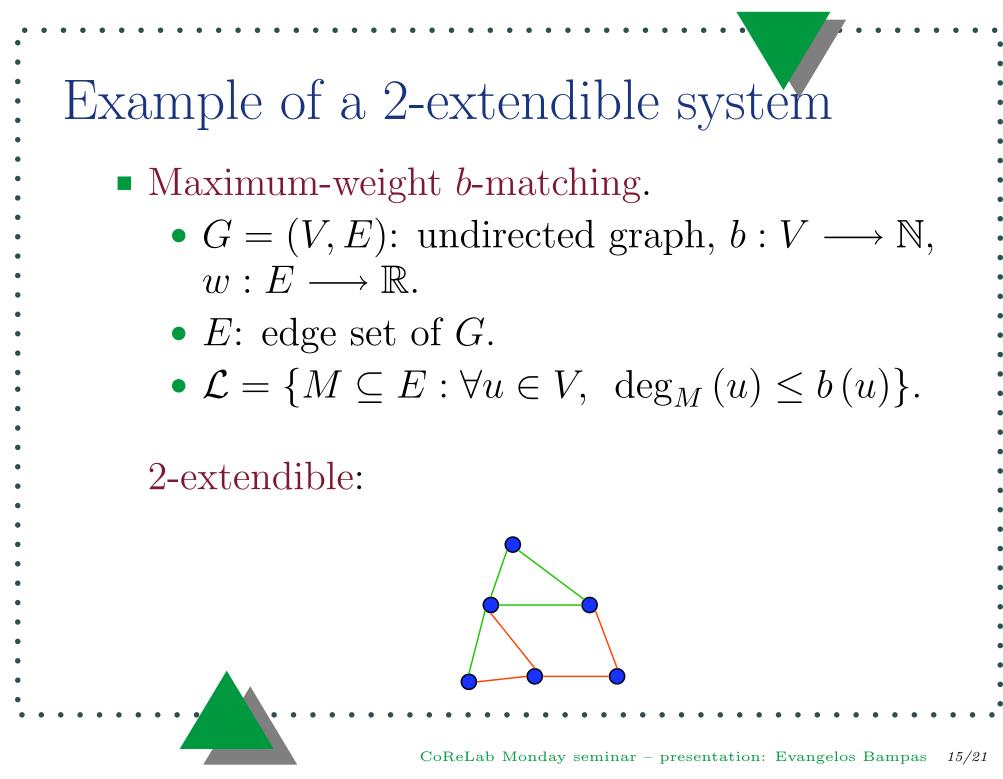


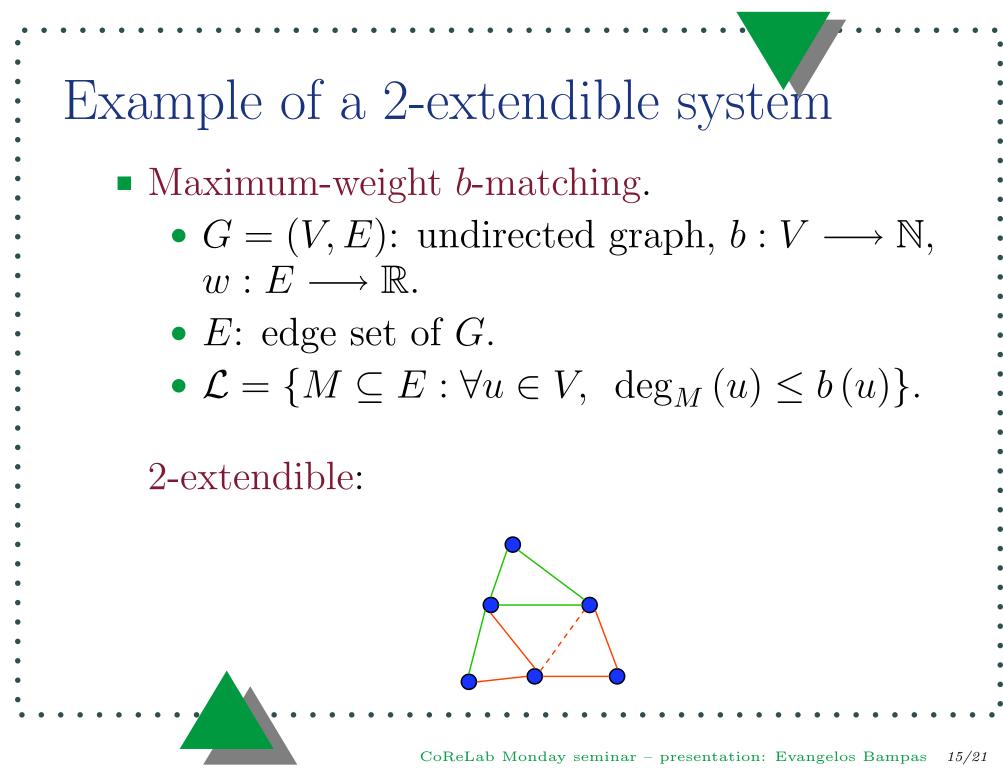


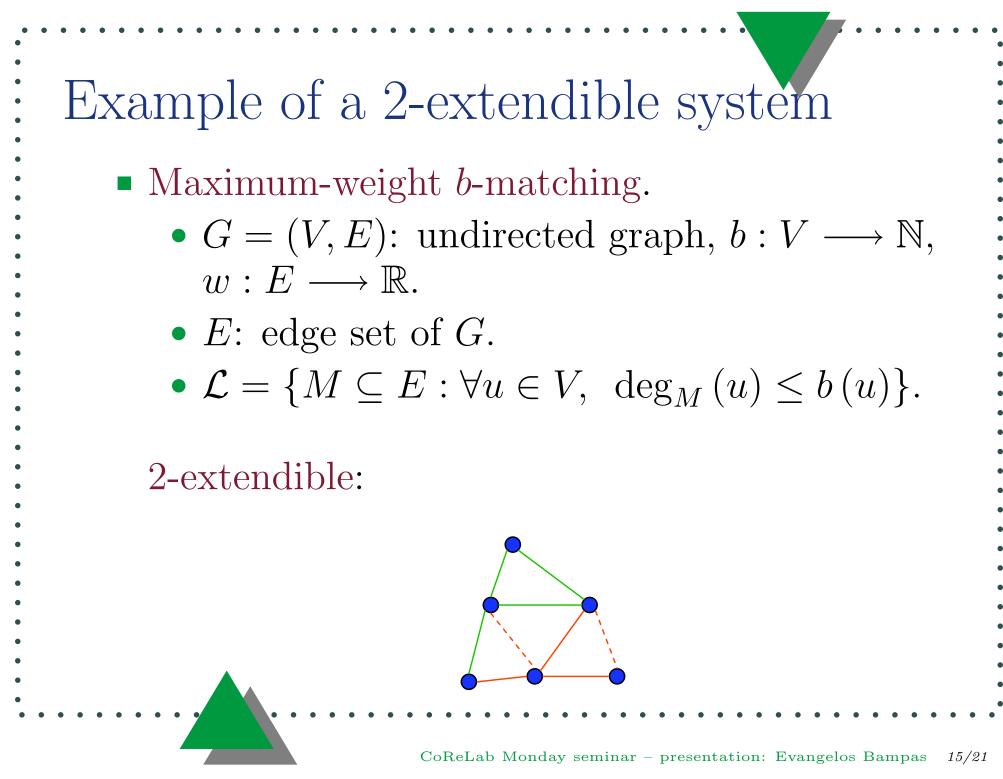


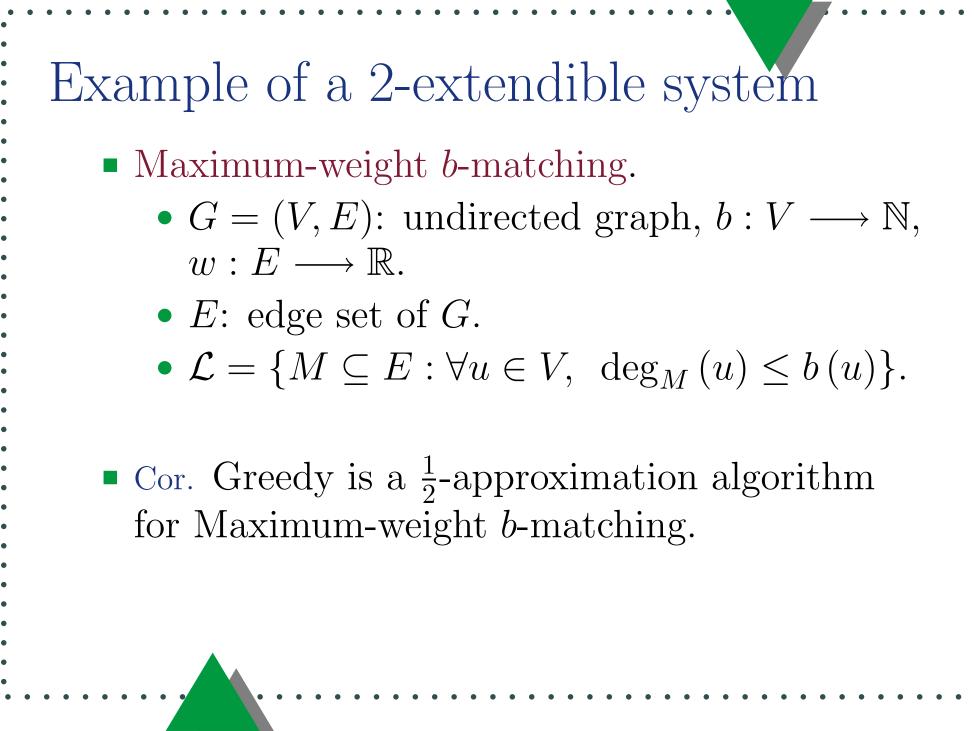












Other k-extendible systems

- Maximum profit scheduling (2-extendible).
- Maximum asymmetric TSP (3-extendible).
- Intersection of k matroids (k-extendible).

• Maximum-weight *b*-matching can be solved exactly in time $O\left(\sum b(u) \cdot \min\left(m \log n, n^2\right)\right)$.

- Maximum-weight *b*-matching can be solved exactly in time $O\left(\sum b(u) \cdot \min\left(m \log n, n^2\right)\right)$.
- Therefore the Greedy algorithm should be regarded as a tradeoff: ¹/₂-approximation in time O (m log n).

- Maximum-weight *b*-matching can be solved exactly in time $O\left(\sum b(u) \cdot \min\left(m \log n, n^2\right)\right)$.
- Therefore the Greedy algorithm should be regarded as a tradeoff: ¹/₂-approximation in time O (m log n).
- Improvement: $\frac{1}{2}$ -approximation in time O(bm).

- Maximum-weight *b*-matching can be solved exactly in time $O\left(\sum b(u) \cdot \min\left(m \log n, n^2\right)\right)$.
- Therefore the Greedy algorithm should be regarded as a tradeoff: ¹/₂-approximation in time O (m log n).
- Improvement: ¹/₂-approximation in time O (bm).
- Further improvement: randomized $\left(\frac{2}{3} \epsilon\right)$ -approximation in time $O\left(bm \log \frac{1}{\epsilon}\right)$.

b-matching by greedy walks
• Alg. Find-Walk(
$$u$$
)
 $b(u) \leftarrow b(u) - 1$
if deg (u) = 0 then return \emptyset
let (u, v) be the heaviest edge out of u
remove (u, v) from G
if $b(u) = 0$ then remove all edges incident to u
return (u, v) + Find-Walk(v)

Split M into M₁ and M₂ by taking alternative edges of individual walks. Pick the heaviest of M₁, M₂.

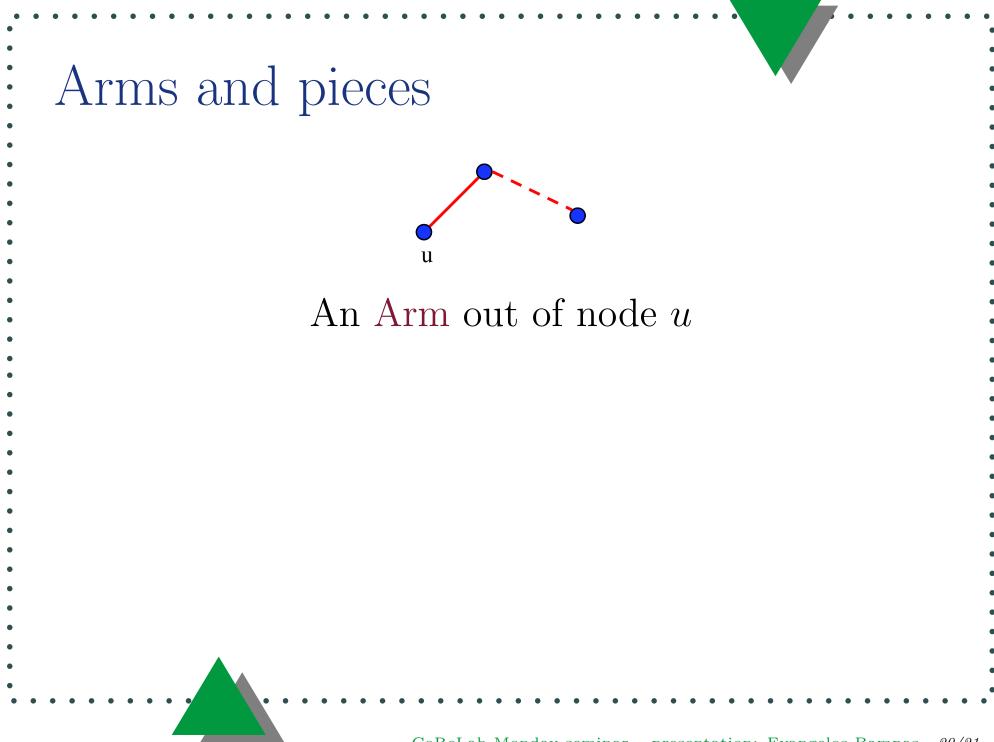
Split M into M₁ and M₂ by taking alternative edges of individual walks. Pick the heaviest of M₁, M₂.

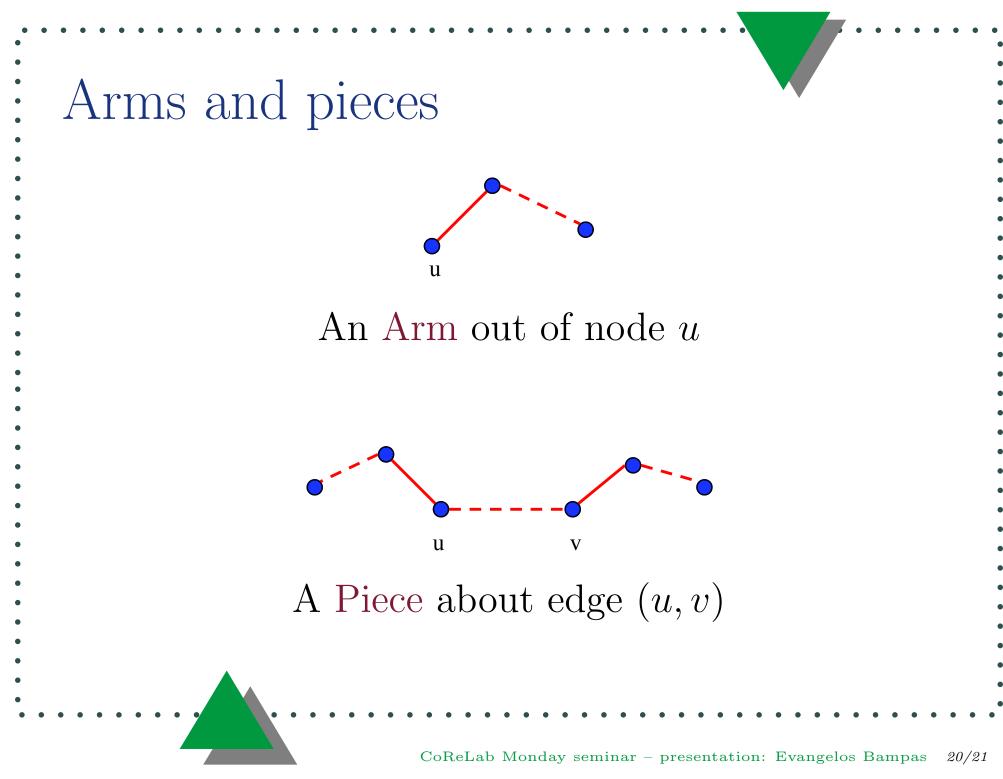
• SOL $\geq \frac{w(M)}{2} \geq \frac{w(M_{\text{OPT}})}{2}$. Why?

- Split M into M₁ and M₂ by taking alternative edges of individual walks. Pick the heaviest of M₁, M₂.
- SOL $\geq \frac{w(M)}{2} \geq \frac{w(M_{\text{OPT}})}{2}$. Why?
- To each edge (u, v) picked by Find-Walk, assign some edge $e \in M_{\text{OPT}}$.
 - If $(u, v) \in M_{\text{OPT}}$, assign it to itself.
 - Otherwise, pick any $e \in M_{\text{OPT}}$ incident to u.

- Split M into M₁ and M₂ by taking alternative edges of individual walks. Pick the heaviest of M₁, M₂.
- SOL $\geq \frac{w(M)}{2} \geq \frac{w(M_{\text{OPT}})}{2}$. Why?
- To each edge (u, v) picked by Find-Walk, assign some edge $e \in M_{\text{OPT}}$.
 - If $(u, v) \in M_{\text{OPT}}$, assign it to itself.
 - Otherwise, pick any $e \in M_{\text{OPT}}$ incident to u.
- Each edge in M_{OPT} is assigned to a unique edge in M. Moreover, $w(e) \leq w(u, v)$.

Arms and pieces





A randomized algorithm for bmatching • Alg. Linear-Random(G, w) $M \leftarrow \emptyset$ repeat k times pick a vertex u uniformly at random with probability $\frac{\deg_M(u)}{k}$ do pick $(u, v) \in M$ uniformly at random find max-benefit compatible piece P about (u, v) $M \leftarrow M \oplus P$ with probability $\frac{b(u) - \deg_M(u)}{b}$ do find max-benefit compatible arm A out of u $M \leftarrow M \oplus A$