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Subset systems

= Let E be a finite set. Let £ be a non-empty
family of subsets of E (independent sets).

= Def. (F, L) is called a subset system if:

VAe L, VA CA Ael
hereditary property|

= A (positive) weight function w defined on E
induces a weight function defined on L:




= Prob. Given a subset system (F, L) and a
weight function w : E — R™, pick a
maximum-weight element of L.




= Prob. Given a subset system (F, L) and a
weight function w : E — R™, pick a
maximum-weight element of L.

= Alg. Greedy:
SOL « ()
for each e € E in non-increasing order of w (e)
if SOL + e € £ then SOL «+ SOL + ¢
return SOL




= Prob. Given a subset system (F, L) and a
weight function w : E — R™, pick a
maximum-weight element of L.

= Alg. Greedy:
SOL « ()
for each e € E in non-increasing order of w (e)
if SOL + e € £ then SOL « SOL + e
return SOL

= Thm. Greedy is optimal for any weight
function on (E, L) iff (E, £) is a matroid.




What on earth is a matroid?

= Def. A subset system (F, L) is a matroid if:

VAe L, VB e L with |A| < |B],
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What on earth is a matroid?

= Def. A subset system (F, L) is a matroid if:

VAe L, VB e L with |A| < |B|,
dz € B\ A such that A4z € L

laugmentation property]

dz: A+ze L

BeL: |A|<|B|
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Matroid examples

® Ex. 1 Subsets of at most k£ elements.

e kL € N.
e [: finite set.
e L=AXCFE:|X| <k}

augmentation:

if |A| < |B|, then for arbitrary z € B\ A:
A4z =|Al+1<[B|-1+1<k
thus, |A+z| € L




Matroid examples

= Bx. 1 Subsets of at most £ elements.
e kL € N.
e F: finite set.
e L=AXCFE:|X| <k}

® Cor. We can find a heaviest subset of &
elements using the Greedy algorithm.
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Matroid examples (cont’d

= Ex. 2 Column matroids.
e A: matrix with elements from a field.
e K ={7:%is a column of A}.
e L={X C FE: X is linearly independent}.

non-empty:

the empty set is vacuously linearly
independent




Matroid examples (cont’d

= Ex. 2 Column matroids.
e A: matrix with elements from a field.
e K ={7:%is a column of A}.
e L={X C FE: X is linearly independent}.

hereditary:

linear dependency cannot be introduced by
removing vectors




Matroid examples (cont’d

= Ex. 2 Column matroids.
e A: matrix with elements from a field.
e K ={7:%is a column of A}.
e L={X C FE: X is linearly independent}.

augmentation:

if Vz€ B\ A, A+ z & L, then each vector of
B is linearly dependent on the vectors of A
which implies |B| < |A|




Matroid examples (cont’d

= Ex. 2 Column matroids.
e A: matrix with elements from a field.
e K ={7:%is a column of A}.
e L={X C FE: X is linearly independent}.

= Cor. We can find a heaviest base among the
vectors of A using the Greedy algorithm.




Matroid examples (cont’d

= Ex. 3 Cycle/Graphic matroids.
e G = (V, F): undirected graph.
o |/ = edge set of G.
e L=AXCFE:Gx=(V,X) is a forest}.




Matroid examples (cont’d

= Ex. 3 Cycle/Graphic matroids.
e G = (V, F): undirected graph.
o |/ = edge set of G.
e L=AXCFE:Gx=(V,X) is a forest}.

non-empty:

Gy = (V,0) is a forest




Matroid examples (cont’d

= Ex. 3 Cycle/Graphic matroids.
e G = (V, F): undirected graph.
o |/ = edge set of G.
e L=AXCFE:Gx=(V,X) is a forest}.

hereditary:

any subset of a forest is a forest




Matroid examples (cont’d

= Ex. 3 Cycle/Graphic matroids.
e G = (V, F): undirected graph.
o |/ = edge set of G.
e L=AXCFE:Gx=(V,X) is a forest}.

augmentation:

if |A| < |B|, then
#trees in G4 > F#trees in Gp




Matroid examples (cont’d

= Ex. 3 Cycle/Graphic matroids.
e G = (V, F): undirected graph.
o |/ = edge set of G.
e L=AXCFE:Gx=(V,X) is a forest}.

augmentation:
Gs




Matroid examples (cont’d

= Ex. 3 Cycle/Graphic matroids.
e G = (V, F): undirected graph.
o |/ = edge set of G.
e L=AXCFE:Gx=(V,X) is a forest}.

augmentation:
GB GA




Matroid examples (cont’d

= Ex. 3 Cycle/Graphic matroids.
e G = (V, F): undirected graph.
o |/ = edge set of G.
e L=AXCFE:Gx=(V,X) is a forest}.

augmentation:
Gg GA+(U,V)€L




Matroid examples (cont’d

= Ex. 3 Cycle/Graphic matroids.
e G = (V, F): undirected graph.
o |/ = edge set of G.
e L=AXCFE:Gx=(V,X) is a forest}.

= Cor. We can find a heaviest spanning tree of GG
using the Greedy algorithm.




k-extendible systems

= Def. A subset system (F, L) is k-extendible if:

VC e L, Vo ¢ C with C+x € L,
VD extension of C, Y C D \ C such that
Yi<kand D\Y +zxz €L
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k-extendible systems

= Def. A subset system (F, L) is k-extendible if:

Y <k
D\Y+xe [l




= Thm. (F, L) is a matroid iff (F, L) is
l-extendible.

‘ dz: A+ze L

BeL: |A|<|B]|




@ B

® x:Ct+xel










= Applying the augmentation property,
dz9 € D\ C such that C' + zp + x € L.




= Finally, we get a sequence zy, ..., 2z, such that

C+> zi+xeLand |[D\(C+)> z)| =1
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= By l-extendibility, 3Yy C B\ A with |Yp| < 1
such that B\ Yy + 2 € L.




s Keep picking z;’s in A \ B until there are no
more. Then B\ | JY; + > x; € L.




s Moreover, A C B\ JY; + ) x;, which implies
A+ z € L for arbitrary z € B\ |J V.




Greedy on k-extendible systems

= Thm. If (F, L) is k-extendible then Greedy
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Greedy on k-extendible systems

= Thm. If (F, L) is k-extendible then Greedy

obtains a %—approximate solution for any

weight function on (F, L).
= Proof.

® T1,T,...,T, successive choices of Greedy

e ) =Sy, 5,5,...,5,=SO0OL: successive

partial solutions with
Si=9_1+z,, Vi:1<1<p




® Lemma For each 7:1 <1 < p,

w (OPT (S;21)) <w (OPT (S;))+(k — 1)-w (x;)




® Lemma For each 7:1 <1 < p,

= Apply lemma p times:
OPT

w (OPT (5)))+(k—1) -w(S5,)
k- SOL

I IA
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® Lemma For each 7:1 <1 < p,

OPT(Si)
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e G = (V, F): undirected graph, b: V — N,
w: B — R.

o F: edge set of (.
o L={MCE:VueV, degy (u) <b(u)}.
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o F: edge set of (.
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non-empty:

Vu eV, degy(u) =0<0(u)




s Maximum-weight b-matching.
e G = (V, F): undirected graph, b: V — N,
w: B — R
o F: edge set of (.
o L=AMCE :YueV, degy (u) <b(u)}.

hereditary:

if M € £L and M' C M, then for any u € V:
degy (u) < degyy (u) < b(u)
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e G = (V, F): undirected graph, b: V — N,
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s Maximum-weight b-matching.
e G = (V, F): undirected graph, b: V — N,
w: B — R
o F: edge set of (.
o L={MCE:VueV, degy (u) <b(u)}.

1

= Cor. Greedy 1s a 5-approximation algorithm

for Maximum-weight 6-matching.




Other k-extendible systems

= Maximum profit scheduling (2-extendible).

s Maximum asymmetric TSP (3-extendible).

= Intersection of k matroids (k-extendible).
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Tradeofls for b-matching

= Maximum-weight b-matching can be solved
exactly in time O (3 b (u) - min (mlogn, n?)).

= Therefore the Greedy algorithm should be
regarded as a tradeoft: %—approximation in
time O (mlogn).

= [mprovement: %—approximation In time
O (bm).

= Further improvement: randomized
2

(§ — e)-approximation in time O (bm log %)




b-matching by greedy walks

= Alg. Find-Walk(u)
b(u) «— b(u)—1
if deg (u) = 0 then return ()
let (u,v) be the heaviest edge out of u

remove (u,v) from G

if b(u) = 0 then remove all edges incident to u
return (u,v) 4+ Find-Walk(v)
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= Alg. Find-Walk(u)
b(u) «— b(u)—1
if deg (u) = 0 then return ()
let (u,v) be the heaviest edge out of u
remove (u,v) from G

if b(u) = 0 then remove all edges incident to u
return (u,v) 4+ Find-Walk(v)

® while Ju € V s.t. b(u) > 0 and deg (u) > 0 do
M «— M+ Find-Walk(u)




b-matching by greedy walks

= Alg. Find-Walk(u)
b(u) «— b(u)—1
if deg (u) = 0 then return ()
let (u,v) be the heaviest edge out of u
remove (u,v) from G

if b(u) = 0 then remove all edges incident to u
return (u,v)+ Find-Walk(v)

® while Ju € V s.t. b(u) > 0 and deg (u) > 0 do
M «— M+ Find-Walk(u)

= Only guarantees that deg;, (u) < 2b (u).




S-approximation for b-matching

= Split M into M; and M, by taking alternative

edges of individual walks. Pick the heaviest of
M17 MQ-




S-approximation for b-matching

= Split M into M; and M, by taking alternative

edges of individual walks. Pick the heaviest of
M17 MQ-

= SOL > Y0 > willorr) ~ vy,

2




-approximation for b-matching

DO | —

= Split M into M; and M, by taking alternative

edges of individual walks. Pick the heaviest of
M17 M2

s SOL > ¥ ( wM) - w (MOPT) . Why?

= To each edge (u, v) picked by Find-Walk,
assign some edge e € Mopr.

o If (u,v) € Mopr, assign it to itself.

® Otherwise, pick any e € Mppr incident to wu.
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-approximation for b-matching

DO | —

= Split M into M; and M, by taking alternative

edges of individual walks. Pick the heaviest of
M17 M2

s SOL > ¥ ( wM) - w (MOPT) . Why?

= To each edge (u, v) picked by Find-Walk,
assign some edge e € Mopr.

o If (u,v) € Mopr, assign it to itself.

® Otherwise, pick any e € Mppr incident to wu.

» Fach edge in Mopt 1s assigned to a unique
edge,in M. Moreover, w (e¢) < w (u, v).

CoReLab Monday seminar — presentation: Evangelos Bampas 19/21



Arms and pieces

CoRelLab Monday seminar — presentation: Evangelos Bampas
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: An Arm out of node u )
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matching
s Alg. Linear-Random(G, w)
M «— ()

repeat k times

pick a vertex u uniformly at random

with probablhty ) do
pick (u,v) € M umformly at random
find max-benefit compatible piece P about (u,v)
M— M®P

with probability 2w =den® g,

b
find max-benefit compatible arm A out of u

CoReLab Monday seminar — presentation: Evangelos Bampas 21/21
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