Almost optimal asynchronous rendezvous in infinite multidimensional grids

Evangelos Bampas¹ Jurek Czyzowicz² Leszek Gąsieniec³ David Ilcinkas¹ Arnaud Labourel¹

¹LaBRI: INRIA Bordeaux, CNRS, and University of Bordeaux 1

²University of Québec

³University of Liverpool

DISC 2010

The (grid) rendezvous problem

The problem (in the grid)

Two mobile agents must meet in a grid.

- Terrain \rightarrow grid of dimension 2
- Mobile agents → points moving from node to node along the edges choosing at each step a direction (N,S,W,E)
- Rendezvous \rightarrow meeting of the two agents on a node or in an edge
- $\bullet\$ Cost \rightarrow sum of the lengths of the trajectories of the agents until rendezvous

Asynchronous model

The agents

The agents try to choose their routes so they always meet.

The omniscient adversary

- Tries to prevent the rendezvous.
- Knows in advance the route chosen by the agent (rendezvous algorithm).
- Chooses the starting positions of the agents.
- Determines the speed of each agent at any time on its route (the speed can be 0 but only for a finite amount of time).

[1] Czyzowicz, Labourel, and Pelc, *How to meet asynchronously* (almost) everywhere, SODA 2010.

 Asynchronous rendezvous is feasible in (almost) any unknown, anonymous graph when the agents know only their identities.

[2] Collins, Czyzowicz, Gąsieniec, Labourel, *Tell me where I am so I can meet you sooner*, ICALP 2010.

• Asynchronous rendezvous with location information in grids with cost $O(D^{2+\epsilon})$.

D: distance between the starting positions of the agents

Rendezvous in grids with total knowledge

Claim

There is a rendezvous algorithm at cost D if each of the agents knows its starting position and the starting position of the other agent.

D: distance between the two starting positions of the agents

Theorem [1]

There is a rendezvous algorithm if the agents do not know their starting positions but have distinct identities. The cost of the rendezvous is exponential in D and in the identities of the agents.

D: distance between the two starting positions of the agents

Identities : binary words needed to break symmetry in the grid for a deterministic algorithm. The agents must meet for any pair of identities chosen by the adversary.

Rendezvous in the grid with partial knowledge

There is a rendezvous algorithm at cost $O(D^2 \log^7 D)$ if each agent knows its initial position (same system of coordinates for both agents).

Almost optimal since there is a lower bound of $\Omega(D^2)$.

- The *D*-neighborhood of any node contains Θ(*D*²) nodes.
- The adversary may stall one of the agents arbitrarily long at its starting position.
- Therefore, the other agent eventually has to explore its *D*-neighborhood.

Generalization to higher dimensions

Rendezvous in the grid of dimension δ

There is a rendezvous algorithm at cost $O(D^{\delta} \log^{\delta^2 + \delta + 1} D)$ if each agent knows its initial position (same system of coordinates for both agents).

Almost optimal since there is a lower bound of $\Omega(D^{\delta})$.

Go to O

Go to the origin and wait for the other agent.

Problem: the cost depends on the distance of the agents from the origin and not on the distance between their initial positions (no match with the lower bound).

Use algorithm for the line

Construct a simple space filling curve in the grid and use a known polynomial-cost algorithm on the line to achieve rendezvous.

Problem: for any simple space-filling curve, there exists a pair of close points in the plane, such that their distance along the space-filling curve is arbitrarily large [3].

[3] Gotsman and Lindenbaum, *On the metric properties of discrete space-filling curves*, IEEE Transactions on Image Processing, 5(5), pp. 794-797, 1996.

Space-covering sequence*

Construct a space-covering sequence (non-simple curve) covering the infinite grid.

 Recursive construction using an infinite hierarchy of partitions (levels) of the grid into squares of increasing sizes.

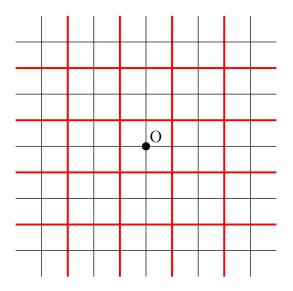
★ introduced in [2]

The hierarchy of partitions \mathcal{C}

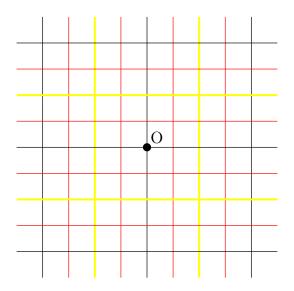
Hierarchy ${\cal C}$

Central-square hierarchy C: centered square partition. C_i : partition into squares of side length 2^i with the origin at the center of a square ($\forall i \geq 1$).

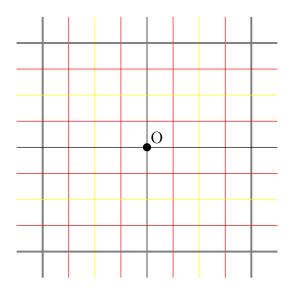
The first level of C : C_1



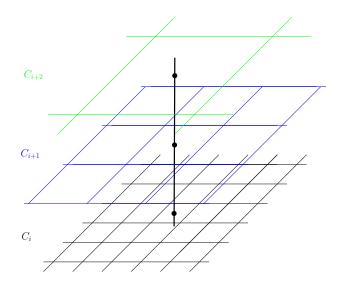
The second level of C : C_2



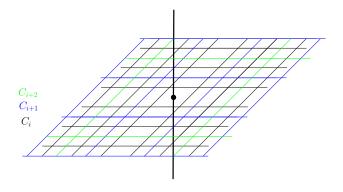
The third level of C : C_3



Levels in \mathcal{C}



Levels in \mathcal{C}



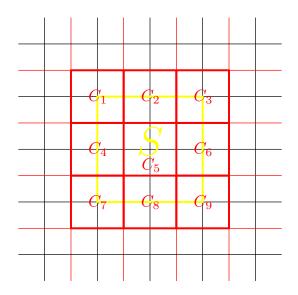
Tree-like structure

A square in level C_i is a child of a square in level C_{i+1} if their intersection is non-empty.

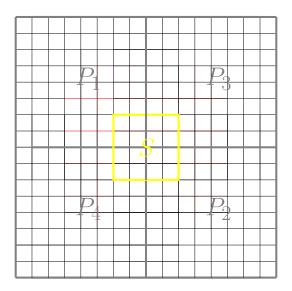
Remark 1: a square has 9 children.

Remark 2: a square can be the child of multiple squares (at most four).

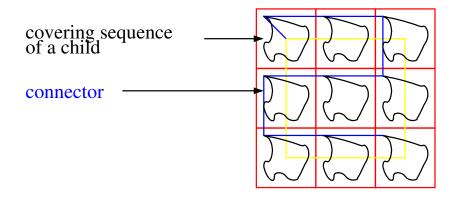
Children of a square S



Parents of a square S

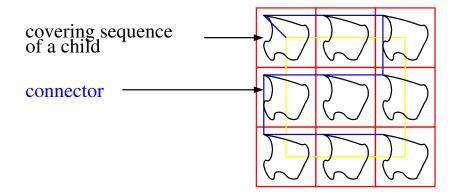


Covering sequence of a square



- 0. Cover the starting square of C_1
- 1. Having just covered square S, go to its parent P by following backwards the covering sequence of P2. Cover P
- 3. Repeat from 1

Rendezvous algorithm



Size of rendezvous square

For any two points at distance D and any three consecutive partitions of size at least 4D, there exists a square of one of the three partitions that contains both points.

Skipping levels

Instead of using all levels of C, we use only levels i_j defined by: $i_1 = 1$ $i_{j+1} = i_j + \max\{\lceil \log i_j \rceil, 1\}$

Rendezvous in dimension δ

The rendezvous algorithm ensures rendezvous in the δ -dimensional grid with cost $O(D^{\delta} \log^{\delta^2 + \delta + 1} D)$.

Can we close the polylog gap?

Open problem: partial knowledge

Does there exist an asynchronous deterministic algorithm in the grid such that the cost of rendezvous is $\Theta(D^2)$ if each agent knows its initial position?

Generalization to graphs other than grids

Open problem: location information

Does there exist an asynchronous deterministic algorithm in any graph such that the cost of rendezvous is polynomial in D if each agent knows the graph and its initial position?

Thank you