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Transparent all-optical networks
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Single vs multi-fiber
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Single vs multi-fiber
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small color multiplicity =⇒ small # fibers
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Non-cooperative model

Large-scale networks: shortage of centralized control

provide incentives for users to work for the social
good

Social good: minimize fiber multiplicity

Reasonable policy: charge users according to the
maximum fiber multiplicity incurred by their choice of
frequency
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Non-cooperative model

Large-scale networks: shortage of centralized control

provide incentives for users to work for the social
good

Social good: minimize fiber multiplicity

Reasonable policy: charge users according to the
maximum fiber multiplicity incurred by their choice of
frequency

What will be the impact on social welfare if we allow users
to act freely and selfishly?
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Problem formulation
Def. PATH MULTICOLORING problem:

input: graph G(V,E), path set P , # colors w

solution: a coloring c : P → W , W = {α1, . . . , αw}

goal: minimize the maximum color multiplicity

µmax , max
e∈E,α∈W

µ(e, α)
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Problem formulation
Def. PATH MULTICOLORING problem:

input: graph G(V,E), path set P , # colors w

solution: a coloring c : P → W , W = {α1, . . . , αw}

goal: minimize the maximum color multiplicity

µmax , max
e∈E,α∈W

µ(e, α)

µOPT ≥
⌈

L
w

⌉

L = 3

µmax = 2
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Game-theoretic formulation
Def. Given a graph G, path set P and w, define the
game 〈G,P,w〉:

players: p1, . . . , p|P | ∈ P

strategies: each pi picks a color ci ∈ W

strategy profile: a vector ~c = (c1, . . . , c|P |)

disutility functions: fi(~c) = µ(pi, ci) (maximum
multiplicity of ci along pi)

social cost: sc(~c) , µmax = max
e∈E,α∈W

µ(e, α)
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Game-theoretic formulation
Def. Given a graph G, path set P and w, define the
game 〈G,P,w〉:

players: p1, . . . , p|P | ∈ P

strategies: each pi picks a color ci ∈ W

strategy profile: a vector ~c = (c1, . . . , c|P |)

disutility functions: fi(~c) = µ(pi, ci) (maximum
multiplicity of ci along pi)

social cost: sc(~c) , µmax = max
e∈E,α∈W

µ(e, α)

Def. S-PMC: the class of all 〈G,P,w〉 games
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Nash Equilibria

Def. A strategy profile is a Nash Equilibrium (NE) if no
player can reduce her disutility by changing strategy
unilaterally:

∀pi ∈ P,∀c′i ∈ W : fi(~c; ci) ≤ fi(~c; c
′
i)
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Efficiency of Nash Equilibria

Def. The price of anarchy (PoA) of an S-PMC game:

PoA =
max~c is NE sc(~c)

µOPT
,

µ̂

µOPT

Def. The price of stability (PoS) of an S-PMC game:

PoS =
min~c is NE sc(~c)

µOPT
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Efficiency of Nash Equilibria

Def. The price of anarchy (PoA) of an S-PMC game:

PoA =
max~c is NE sc(~c)

µOPT
,

µ̂

µOPT

Def. The price of stability (PoS) of an S-PMC game:

PoS =
min~c is NE sc(~c)

µOPT

Rate of convergence to some NE?

by repeatedly changing some player’s strategy to
improve her disutility (Nash dynamics)
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Results in this work

Any Nash dynamics converges in at most 4|P | steps

Efficient computation of NE:

optimal NE for S-PMC(ROOTED-TREE)
1
2
-approximate NE for S-PMC(STAR)

Upper and lower bounds for the PoA:

# colors

minimum length of any path that contributes to the
cost of some worst-case NE

matching lower bounds for graphs with ∆ ≥ 3
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Results in this work (Cont’d)

The PoA on graphs with degree 2:

if L = Ω(w2), PoA = O(1)

if L = o(w2), PoA is unbounded
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Related work
Minimization problem with the µmax objective [AZ04]

Minimization problem with the
∑

e∈E maxα∈W µ(e, α)

objective [NPZ01]

Bottleneck network games

player cost: MAX of delays along her path

players pick among several possible routings
[BM06]

latency functions on edges [BO06]

Congestion games [MS96, Ros73]
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Convergence to NE

Thm. Any Nash dynamics converges in at most 4|P | steps
consider the vector

(dL(~c), dL−1(~c), . . . , d1(~c))

lexicographic-order argument (attributed to Mehlhorn
in [FKK+02])

PoS = 1
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Convergence to NE

Thm. Any Nash dynamics converges in at most 4|P | steps
consider the vector

(dL(~c), dL−1(~c), . . . , d1(~c))

lexicographic-order argument (attributed to Mehlhorn
in [FKK+02])

PoS = 1

how many such vectors?
(

|P | + L − 1

|P |

)

≤ 2|P |+L−1 < 4|P |
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Efficient computation of optimal NE

〈G,P,w〉 is in S-PMC(ROOTED-TREE) if ∃r s.t. each
path in P lies entirely on some simple path from r to a
leaf

consider edges in BFS order: color paths with
min-multiplicity color in the partial solution
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A structural property of NE

If ~c is a NE, then for any pi ∈ P and for any α ∈ W

there is an e ∈ pi s.t. µ(e, α) ≥ fi(~c) − 1

red-blocking edge for pi

pi

µ − 1
µ

µ − 1

red-blocking paths for pi
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An upper bound on the PoA

Thm. If ~c is a NE and sc(~c) = fi(~c) = µ̂ then PoA ≤ len(pi)

Proof.

all w colors are blocked along pi

some edge of pi must block at least
⌈

w
len(pi)

⌉

colors

max load is L ≥ 1 +
⌈

w
len(pi)

⌉

(µ̂ − 1)

µOPT ≥
⌈

L
w

⌉

PoA = µ̂

µOPT
≤ µ̂

2

6

6

6

1+

‰

w
len(pi)
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(µ̂−1)

w
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≤ len(pi)
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A matching lower bound

w = L = len(pi) = µ̂ = k
µOPT = 1
PoA = k

Evangelos Bampas — ISAAC 2008, Gold Coast, Australia, December 15-17, 2008 16/23



Evangelos Bampas — ISAAC 2008, Gold Coast, Australia, December 15-17, 2008 17/23



What about graphs with degree 2?

A more involved structural property:

P (e, αi): the set of paths using edge e that are colored
with αi.

Lem. In a NE of an S-PMC(RING) game, ∀ edge e and ∀αi

there is an arc s.t.:

∀αj 6= αi the arc contains an edge which is an
αj-blocking edge for at least half of the paths in
P (e, αi), and

∀e′ in the arc, |P (e′, αi) ∩ P (e, αi)| ≥
⌈

|P (e,αi)|
2

⌉
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Establishing an edge with high load

Repeated application of the previous Lemma yields:

Lem. In every S-PMC(RING) game 〈G,P,w〉 with µ̂ ≥ w

there is an edge with load at least µ̂w

4
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Constant PoA for L = Ω(w2)

Thm. For any S-PMC(RING: L = Ω(w2)) game,
PoA = O(1)

Proof.

If µ̂ ≥ w, then L ≥ µ̂w

4
⇒ µOPT ≥ µ̂

4
⇒ PoA ≤ 4

If µ̂ < w, then:

PoA =
µ̂

µOPT
≤

µ̂w

L
<

w2

L
= O(1)
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Unbounded PoA for L = o(w2)

Thm. For any ε > 0 there is an infinite family of
S-PMC(CHAIN: L = Θ(w2−ε)) games with PoA = Ω(w

ε
2 ).
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Unbounded PoA for L = o(w2)

Thm. For any ε > 0 there is an infinite family of
S-PMC(CHAIN: L = Θ(w2−ε)) games with PoA = Ω(w

ε
2 ).

Proof (sketch). For any ε > 0 and any ρ ≥ 4, we can
construct a game and a strategy profile thereof with:

w =
⌈

ρ1+ ε
2−ε

⌉

, L = Θ(ρ2), µmax = ρ .

The PoA of this game is therefore:

PoA =
µ̂

µOPT

>
µ̂

L
w

+ 1
=

w · µmax

L + w
= Ω(w

ε
2 ) .
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Further work
Bounds for convergence

Complexity of computing Nash Equilibria

Selfish routing and wavelength assignment
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Further work
Bounds for convergence

Complexity of computing Nash Equilibria

Selfish routing and wavelength assignment

... Thank you!
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