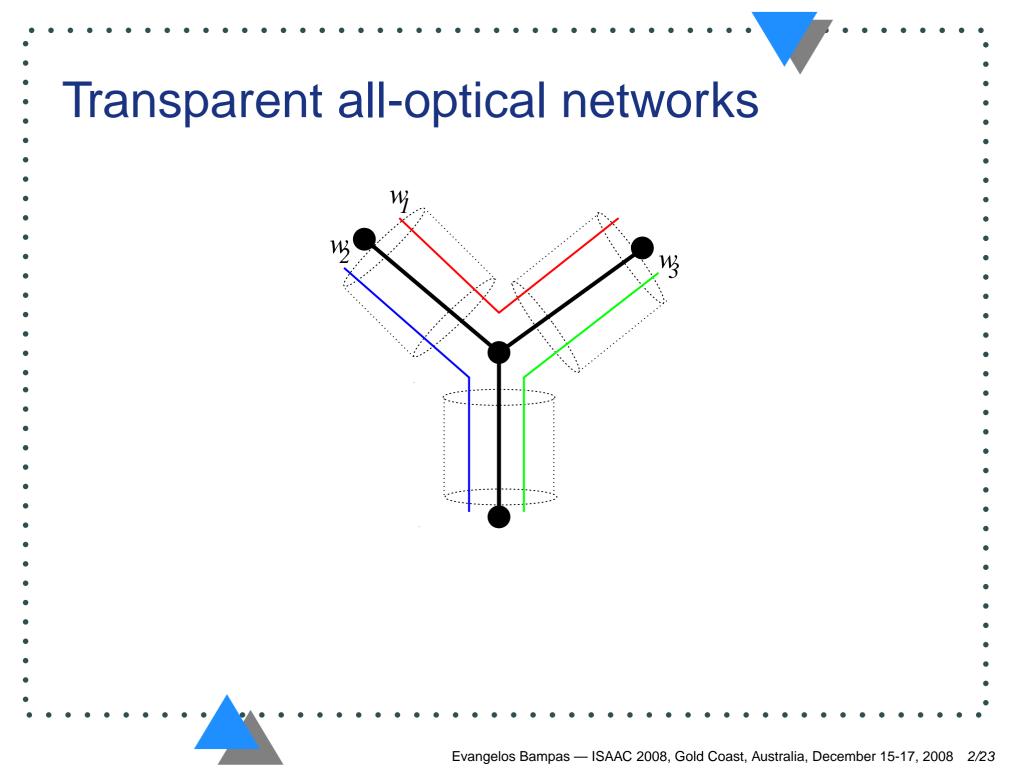
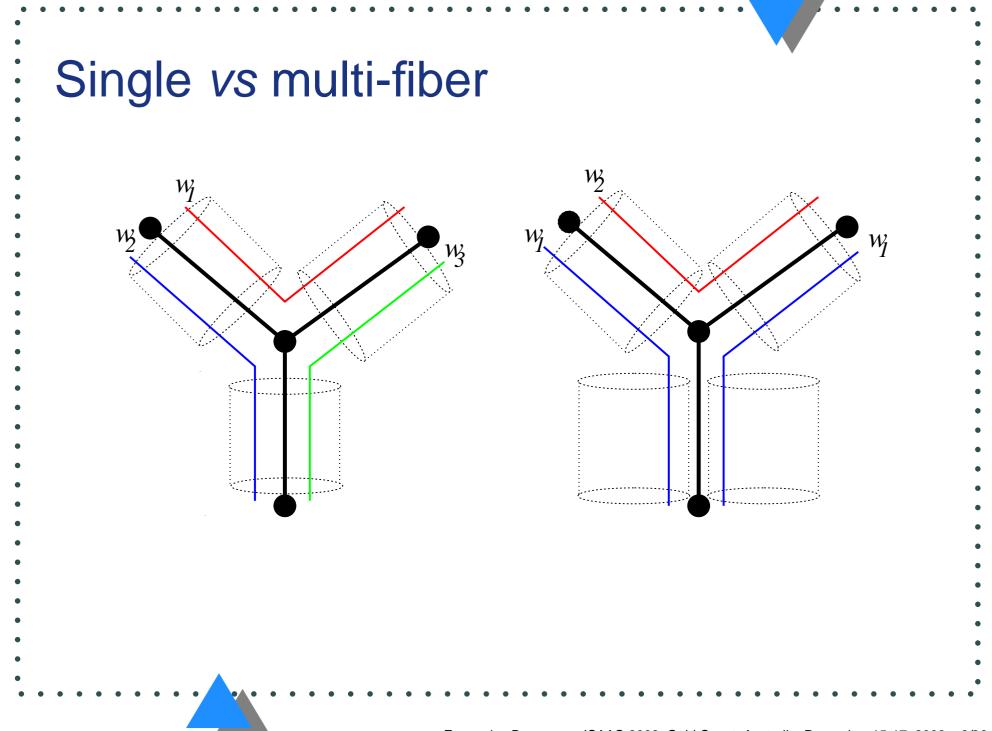
On a Non-Cooperative Model for Wavelength Assignment in Multifiber Optical Networks

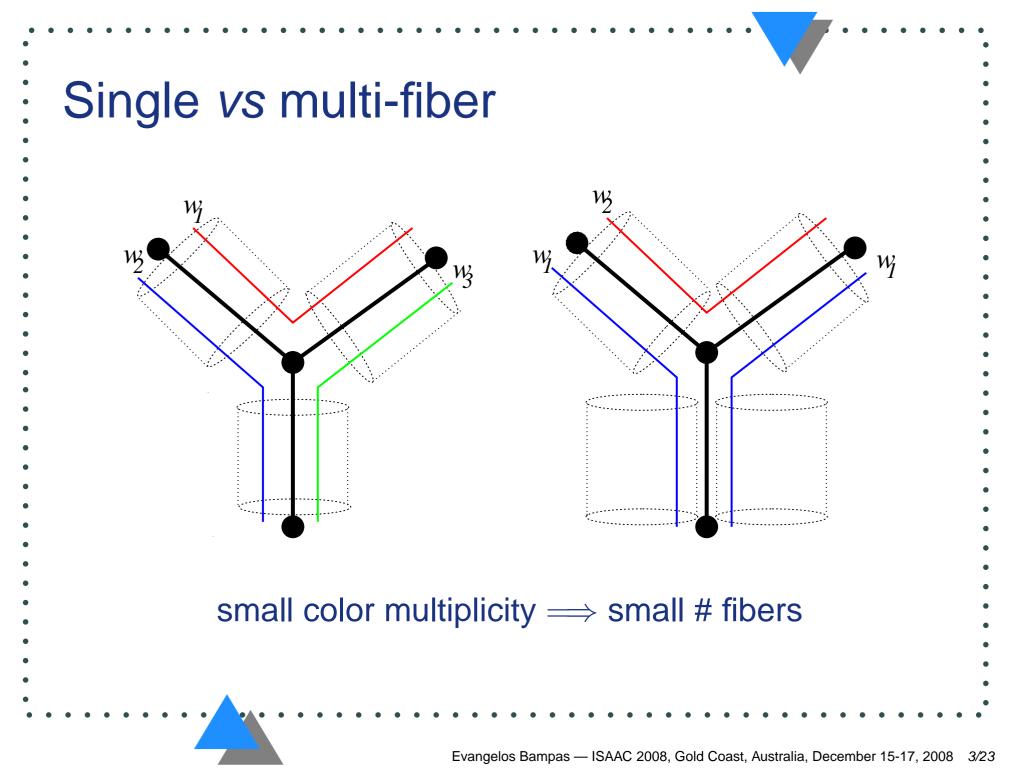
E. Bampas, A. Pagourtzis, G. Pierrakos, K. Potika

{ebamp,pagour,gpier,epotik}@cs.ntua.gr

National Technical University of Athens







Non-cooperative model

- Large-scale networks: shortage of centralized control
 - provide incentives for users to work for the social good
- Social good: minimize fiber multiplicity
- Reasonable policy: charge users according to the maximum fiber multiplicity incurred by their choice of frequency

Non-cooperative model

- Large-scale networks: shortage of centralized control
 - provide incentives for users to work for the social good
- Social good: minimize fiber multiplicity
- Reasonable policy: charge users according to the maximum fiber multiplicity incurred by their choice of frequency
- What will be the impact on social welfare if we allow users
 - to act freely and selfishly?

Problem formulation

Def. PATH MULTICOLORING problem:

• input: graph G(V, E), path set P, # colors w

• solution: a coloring $c: P \to W$, $W = \{\alpha_1, \ldots, \alpha_w\}$

goal: minimize the maximum color multiplicity

$$\mu_{\max} \triangleq \max_{e \in E, \alpha \in W} \mu(e, \alpha)$$

Problem formulation

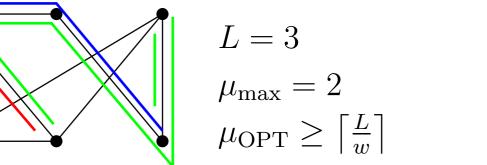
Def. PATH MULTICOLORING problem:

• input: graph G(V, E), path set P, # colors w

• solution: a coloring $c: P \to W$, $W = \{\alpha_1, \ldots, \alpha_w\}$

goal: minimize the maximum color multiplicity

$$\mu_{\max} \triangleq \max_{e \in E, \alpha \in W} \mu(e, \alpha)$$



Game-theoretic formulation

- Def. Given a graph G, path set P and w, define the game $\langle G, P, w \rangle$:
 - players: $p_1, \ldots, p_{|P|} \in P$
 - strategies: each p_i picks a color $c_i \in W$
 - strategy profile: a vector $\vec{c} = (c_1, \dots, c_{|P|})$
 - disutility functions: $f_i(\vec{c}) = \mu(p_i, c_i)$ (maximum multiplicity of c_i along p_i)

• social cost:
$$sc(\vec{c}) \triangleq \mu_{max} = \max_{e \in E, \alpha \in W} \mu(e, \alpha)$$

Game-theoretic formulation

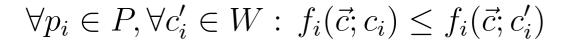
- Def. Given a graph G, path set P and w, define the game $\langle G, P, w \rangle$:
 - players: $p_1, \ldots, p_{|P|} \in P$
 - strategies: each p_i picks a color $c_i \in W$
 - strategy profile: a vector $\vec{c} = (c_1, \dots, c_{|P|})$
 - disutility functions: $f_i(\vec{c}) = \mu(p_i, c_i)$ (maximum multiplicity of c_i along p_i)

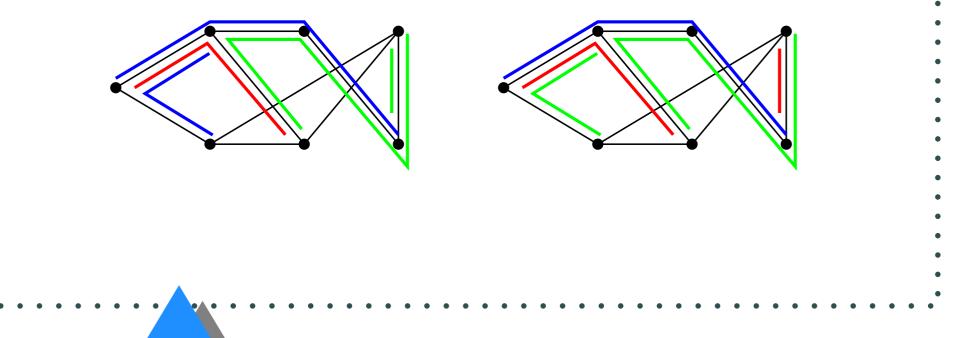
• social cost:
$$sc(\vec{c}) \triangleq \mu_{max} = \max_{e \in E, \alpha \in W} \mu(e, \alpha)$$

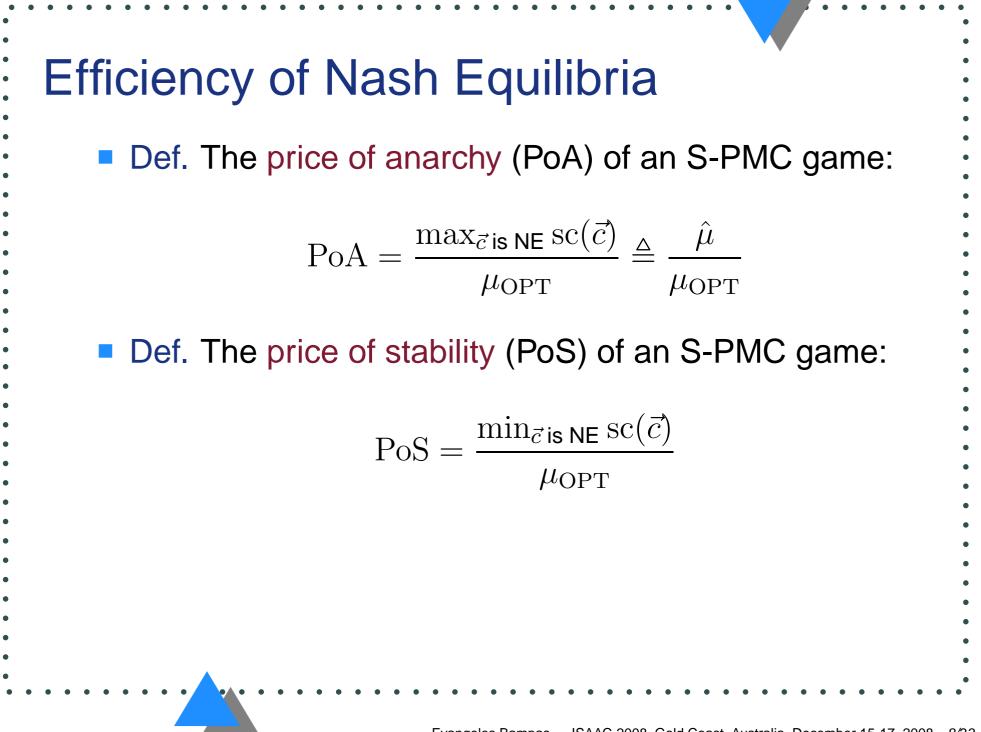
Def. S-PMC: the class of all $\langle G, P, w \rangle$ games

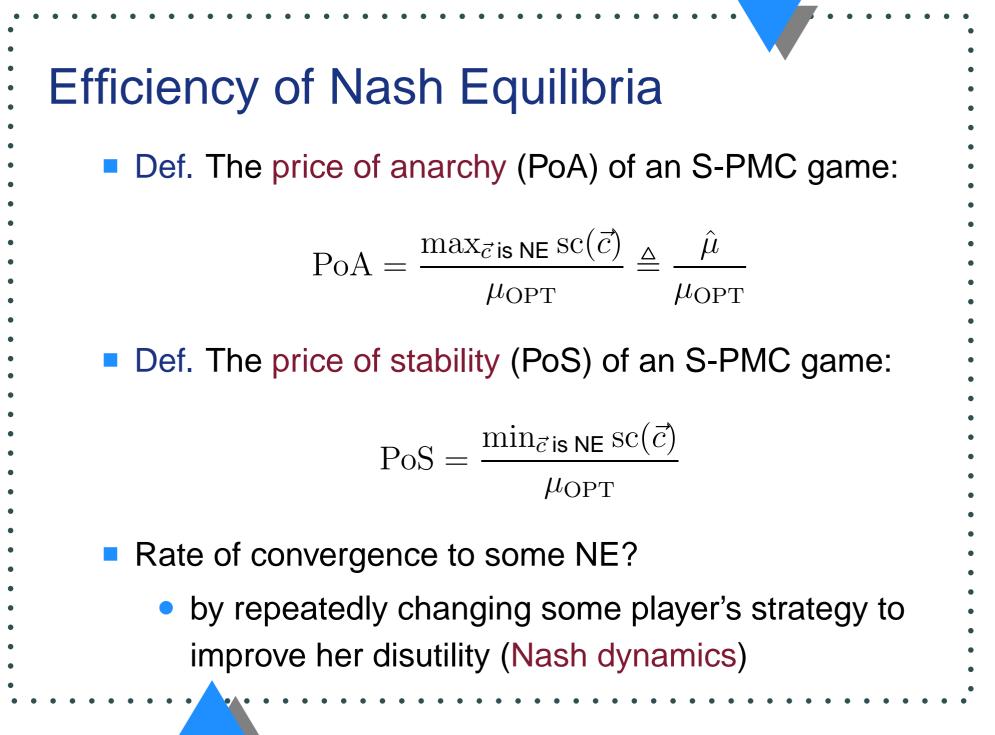
Nash Equilibria

Def. A strategy profile is a Nash Equilibrium (NE) if no player can reduce her disutility by changing strategy unilaterally:



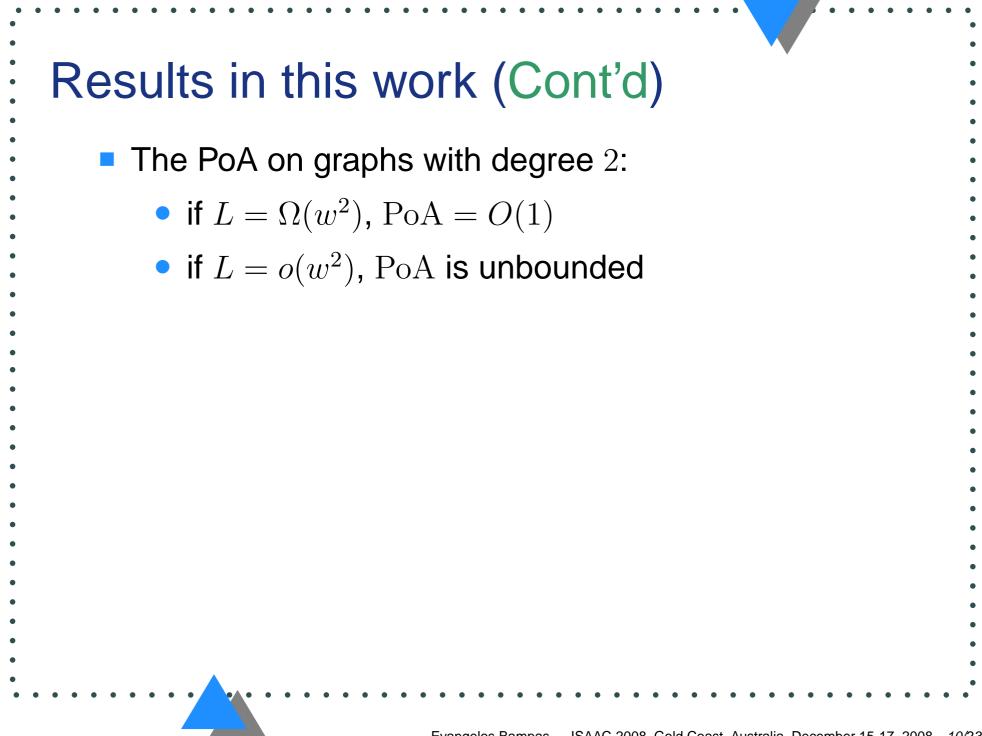






Results in this work

- Any Nash dynamics converges in at most $4^{|P|}$ steps
- Efficient computation of NE:
 - optimal NE for S-PMC(ROOTED-TREE)
 - $\frac{1}{2}$ -approximate NE for S-PMC(STAR)
- Upper and lower bounds for the PoA:
 - # colors
 - minimum length of any path that contributes to the cost of some worst-case NE
 - matching lower bounds for graphs with $\Delta \geq 3$



Related work

- Minimization problem with the μ_{max} objective [AZ04]
- Minimization problem with the $\sum_{e \in E} \max_{\alpha \in W} \mu(e, \alpha)$ objective [NPZ01]
- Bottleneck network games
 - player cost: MAX of delays along her path
 - players pick among several possible routings [BM06]
 - latency functions on edges [BO06]
- Congestion games [MS96, Ros73]

Convergence to NE

Thm. Any Nash dynamics converges in at most $4^{|P|}$ steps

consider the vector

$$(d_L(\vec{c}), d_{L-1}(\vec{c}), \dots, d_1(\vec{c}))$$

Iexicographic-order argument (attributed to Mehlhorn in [FKK⁺02])

•
$$PoS = 1$$

Convergence to NE

Thm. Any Nash dynamics converges in at most $4^{|P|}$ steps

consider the vector

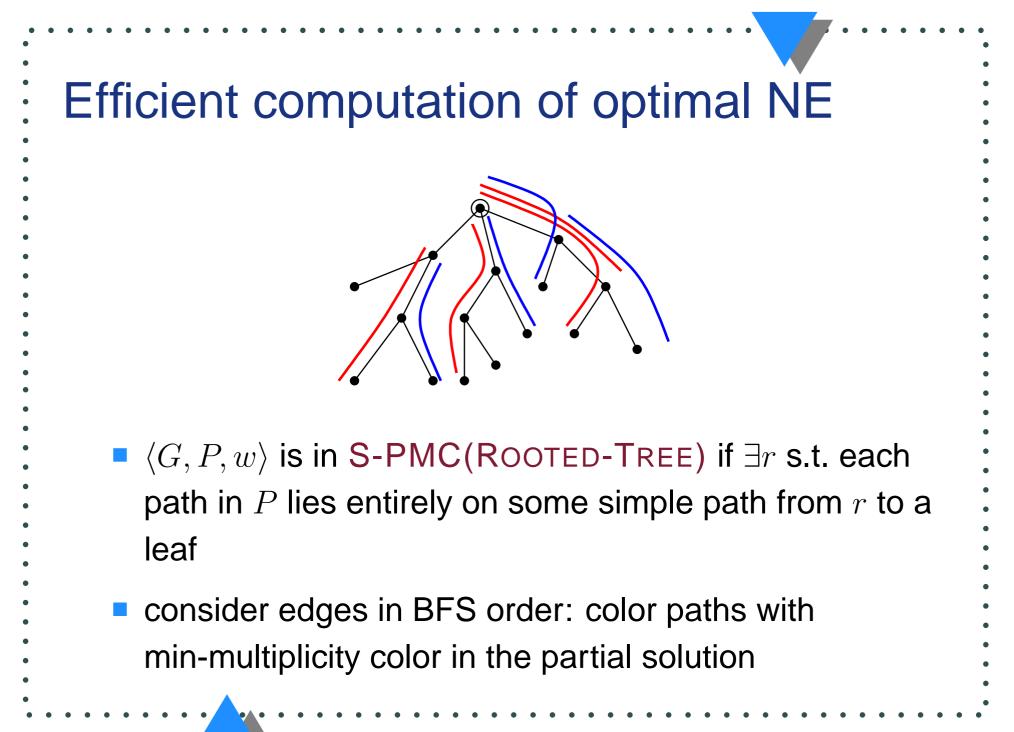
$$(d_L(\vec{c}), d_{L-1}(\vec{c}), \ldots, d_1(\vec{c}))$$

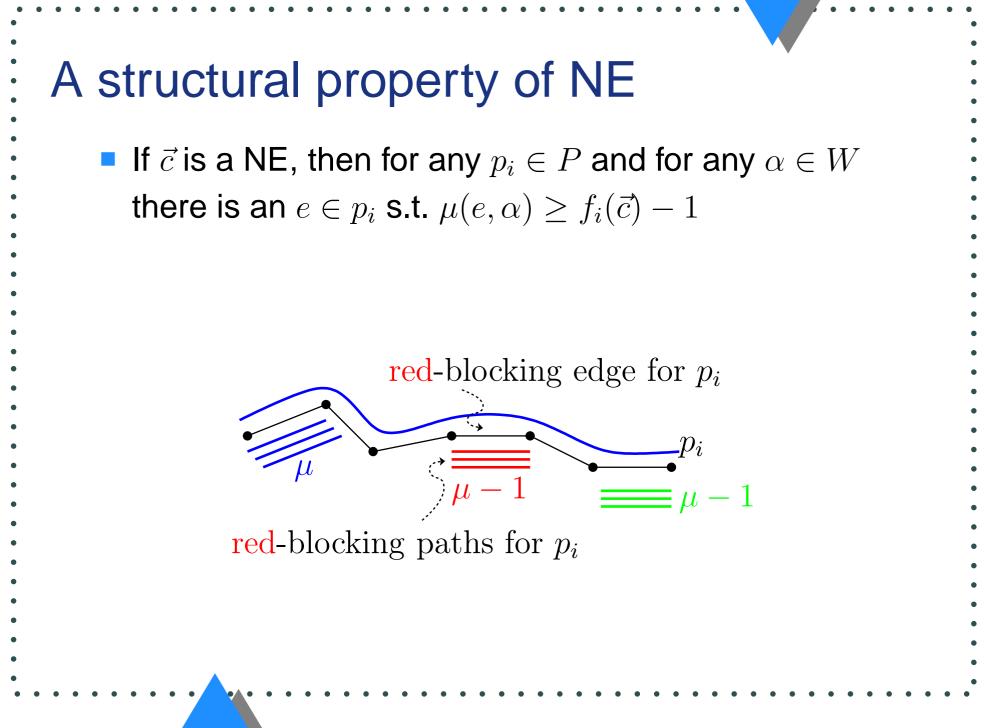
 lexicographic-order argument (attributed to Mehlhorn in [FKK⁺02])

• PoS = 1

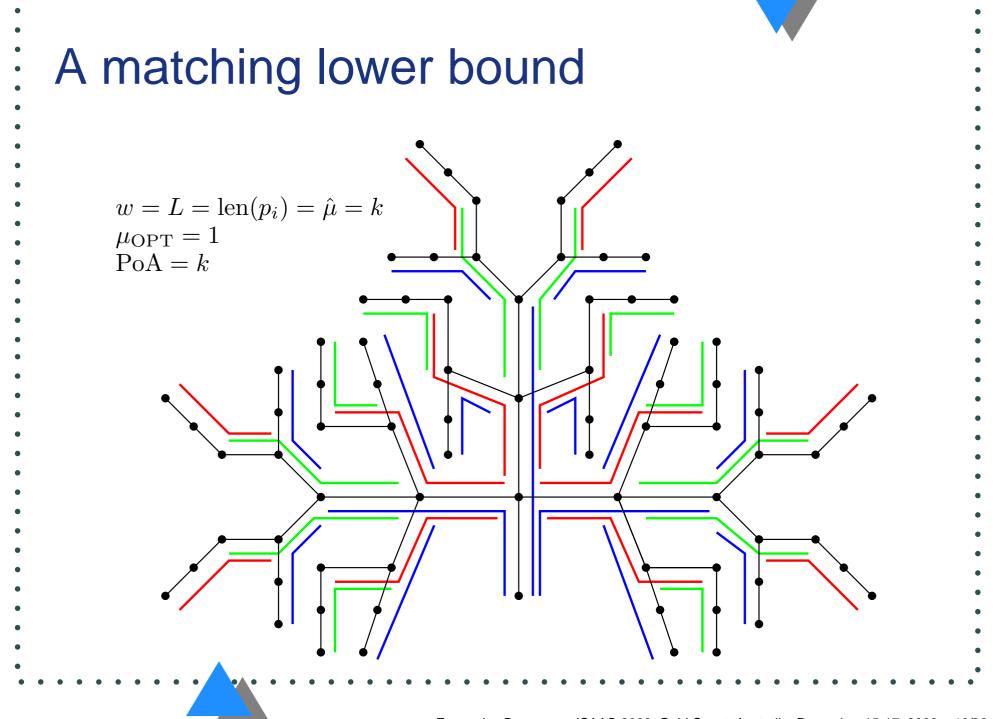
how many such vectors?

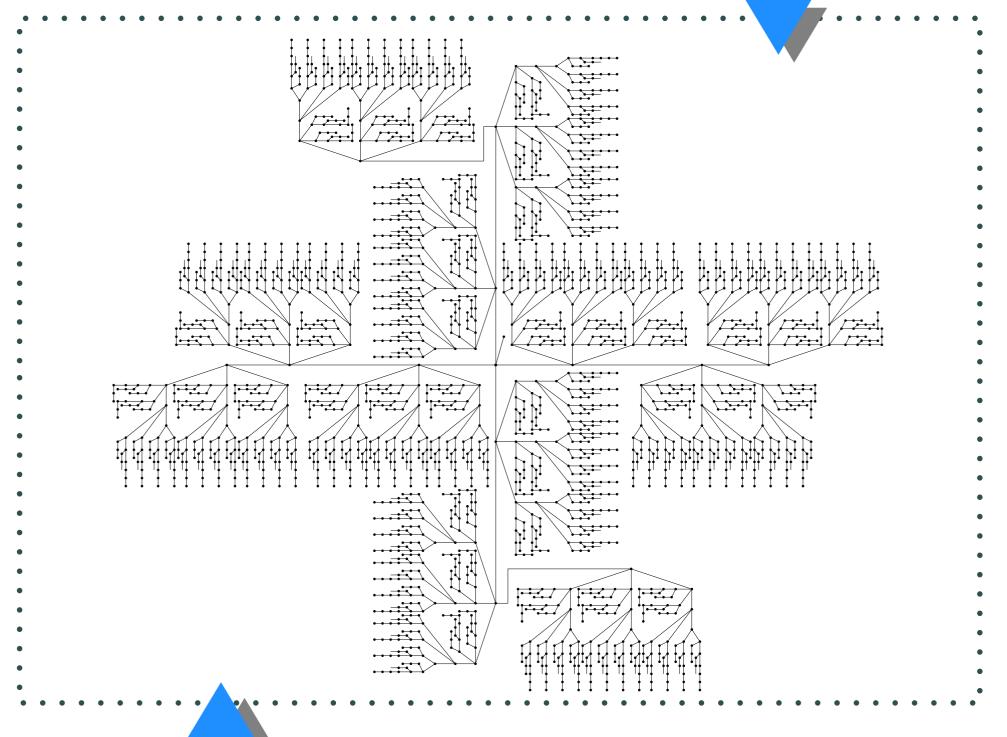
$$\binom{|+L-1|}{|P|} \le 2^{|P|+L-1} < 4^{|P|}$$





An upper bound on the PoA Thm. If \vec{c} is a NE and $\operatorname{sc}(\vec{c}) = f_i(\vec{c}) = \hat{\mu}$ then $\operatorname{PoA} \leq \operatorname{len}(p_i)$ Proof. all w colors are blocked along p_i some edge of p_i must block at least $\left|\frac{w}{\operatorname{len}(p_i)}\right|$ colors • max load is $L \ge 1 + \left\lceil \frac{w}{\operatorname{len}(p_i)} \right\rceil (\hat{\mu} - 1)$ • $\mu_{\text{OPT}} \geq \left| \frac{L}{m} \right|$ • PoA = $\frac{\hat{\mu}}{\mu_{\text{OPT}}} \le \frac{\mu}{\left\lceil \frac{1 + \left\lceil \frac{w}{\ln(p_i)} \right\rceil(\hat{\mu} - 1)}{w} \right\rceil} \le \ln(p_i)$ Evangelos Bampas — ISAAC 2008, Gold Coast, Australia, December 15-17, 2008 15/23

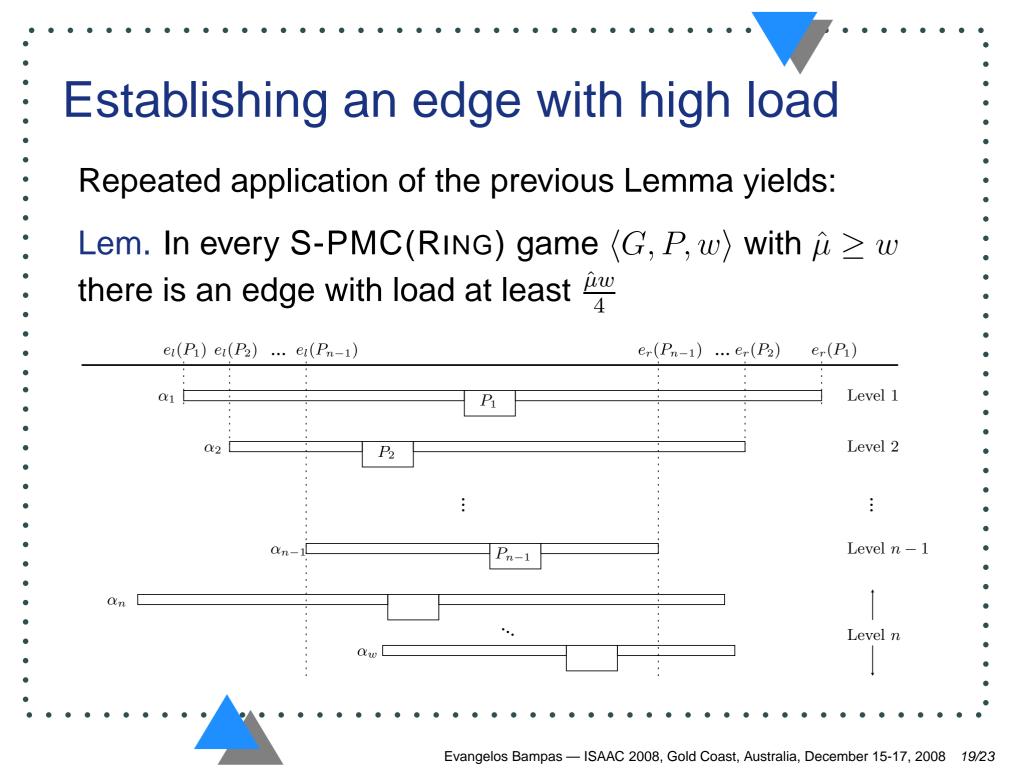




Evangelos Bampas — ISAAC 2008, Gold Coast, Australia, December 15-17, 2008 17/23

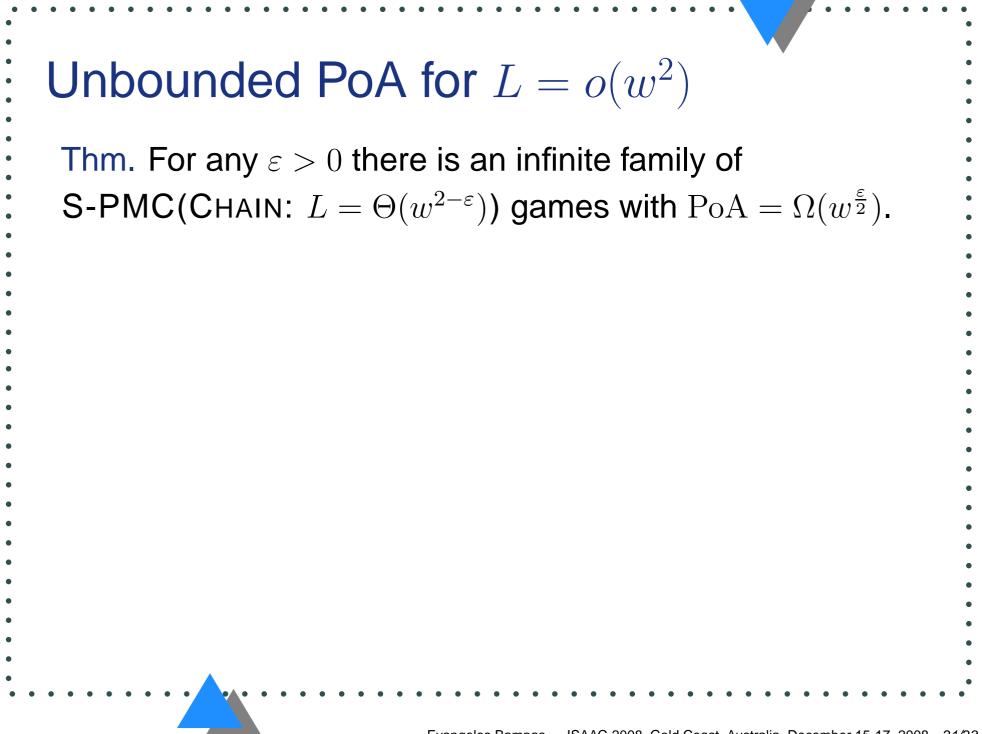
What about graphs with degree 2? A more involved structural property: $P(e, \alpha_i)$: the set of paths using edge e that are colored with α_i . Lem. In a NE of an S-PMC(RING) game, \forall edge e and $\forall \alpha_i$ there is an arc s.t.: • $\forall \alpha_i \neq \alpha_i$ the arc contains an edge which is an α_i -blocking edge for at least half of the paths in $P(e, \alpha_i)$, and • $\forall e' \text{ in the arc, } |P(e', \alpha_i) \cap P(e, \alpha_i)| \geq \left| \frac{|P(e, \alpha_i)|}{2} \right|$

Establishing an edge with high load
Repeated application of the previous Lemma yields:
Lem. In every S-PMC(RING) game $\langle G, P, w \rangle$ with $\hat{\mu} \ge w$ there is an edge with load at least $\frac{\hat{\mu}w}{4}$
•
Evangelos Bampas — ISAAC 2008, Gold Coast, Australia, December 15-17, 2008 19/23



Constant PoA for
$$L = \Omega(w^2)$$

Thm. For any S-PMC(RING: $L = \Omega(w^2)$) game,
PoA = $O(1)$
Proof.
If $\hat{\mu} \ge w$, then $L \ge \frac{\hat{\mu}w}{4} \Rightarrow \mu_{OPT} \ge \frac{\hat{\mu}}{4} \Rightarrow PoA \le 4$
If $\hat{\mu} < w$, then:
 $PoA = \frac{\hat{\mu}}{\mu_{OPT}} \le \frac{\hat{\mu}w}{L} < \frac{w^2}{L} = O(1)$



Unbounded PoA for
$$L = o(w^2)$$

Thm. For any $\varepsilon > 0$ there is an infinite family of
S-PMC(CHAIN: $L = \Theta(w^{2-\varepsilon})$) games with $\operatorname{PoA} = \Omega(w^{\frac{\varepsilon}{2}})$.
Proof (sketch). For any $\varepsilon > 0$ and any $\rho \ge 4$, we can
construct a game and a strategy profile thereof with:
 $w = \left[\rho^{1+\frac{\varepsilon}{2-\varepsilon}}\right], \ L = \Theta(\rho^2), \ \mu_{\max} = \rho$.
The PoA of this game is therefore:
 $\operatorname{PoA} = \frac{\hat{\mu}}{\mu_{\mathrm{OPT}}} > \frac{\hat{\mu}}{\frac{L}{w} + 1} = \frac{w \cdot \mu_{\max}}{L + w} = \Omega(w^{\frac{\varepsilon}{2}})$.

.

Further work

- Bounds for convergence
- Complexity of computing Nash Equilibria
- Selfish routing and wavelength assignment

Further work

- Bounds for convergence
- Complexity of computing Nash Equilibria
- Selfish routing and wavelength assignment

... Thank you!

	• • •
 [NPZ01] C. Nomikos, A. Pagourtzis, S. Zachos: Routing and path multicoloring. Inf. Process. Lett. 80(5): 249-256 (2001) 	•
 [AZ04] M. Andrews, L. Zhang: Wavelength Assignment in Optical Networks with Fixed Fiber Capacity. ICALP 2004: 134-145 	•
 [KP99] E. Koutsoupias, C.H. Papadimitriou: Worst-case Equilibria. STACS 1999: 404-413 	•
 [ADK⁺04] E. Anshelevich, A. Dasgupta, J.M. Kleinberg, É. Tardos, T. Wexler, T. Roughgarden: The Price of Stability for Network Design with Fair Cost Allocation. FOCS 2004: 295-304 	• • •
 [MS96] D. Monderer, L.S. Shapley: Potential games. Games and Economic Behavior 14 (1996) 124-143 	•
 [Ros73] R.W. Rosenthal: A class of games possessing pure-strategy nash equilibria. Int. J. Game Theory 2 (1973) 65-67 	•
 [BM06] C. Busch, M. Magdon-Ismail: Atomic Routing Games on Maximum Congestion. AAIM 2006: 79-91 	•
 [BO06] R. Banner, A. Orda: Bottleneck Routing Games in Communication Networks. INFOCOM 2006 	•
 [FKK⁺02] D. Fotakis, S.C. Kontogiannis, E. Koutsoupias, M. Mavronicolas, P.G. Spirakis: The Structure and Complexity of Nash Equilibria for a Selfish Routing Game. ICALP 2002: 123-134 	
	• • •