Programming Languages for XML

Ou
Au dela des standards

Véronique Benzaken

benzaken@lri.fr

LRI (UMR 8623 CNRS) and Université de Paris Sud

e Main Language on the Web is HTML

e HTML used for presenting informations
e Not suited for data exchange.
e Not able to perform data manipulation (except displaying).

e Unable to interpret data provided with HTML format.

B2B: Companies need to exchange informations (not only for
displaying them !)

Search engines : if one is able to interpret transmitted data one
IS able to index it efficiently.

ASP: send data to a server in order to apply them a given
treatment.

Ubiquitous computing: same informations must be displayed
differently (HTML, text, WML).

e Heterogenous network: data must be represented
iIndependently from a given machine to another one.

e Various applications: data must be represented independently
from a given application.

e Each application has its own (propietary) format: data must be
easily transformed from a format to another.

XML

Written in ASCII: eases exchange

Human-readable

Self-explaining

Standardisation (W3C)

Adopted by an increasing number of leading IT companies

<bib>
<book>
<title> Persistent Object Systems</title>
<year> 1994</year>
<author> M. Atkinson</author>
<author> V. Benzaken</author>
<author> D. Maier</author>
</book>
<book>
<title> 00P: a unified foundation</title>
<year> 1997</year>
<author> G. Castagna</author>
</book>
</bib>

e XML is only a mere format (not a language)

e Constitutes the de facto “lingua franca” on the web.

Languages are needed to process XML documents.

e | Presentation
XML — XML-FO, XHTML, BTgX, MathML, ...

e |Search
find all recipes of “Tiramisu”

e | Exchange
prepare a description for search engines

¢ |Integration
“pest recipes on the web”

Three different techniques:

e Libraries for tree manipulation in general purpose languages.

e Extension of type systems for existing languages with “XML
types”.

e Design of XML-specific processing languages.

Library approach

Use of APIs such as SAX (Simple API for XML) or DOM
(Document Object Model) in C++ or Java.

¢ No need to train programmers
¢ Tools, support, stability

& No use of types: correction difficult to enforce and or
guarantee, debugging very hard.

& Syntax not adapted, very verbose, code unreadable and very
unlikely reusable, very low productivity.

Extension of type systems of existing languages

Examples: Relaxer and JAXB (based on Java) HaXML (based on
Haskell), Xtatic (based on C#).

¢ Use of specific types ensures (partial) correction and eases
debbuging.

¢ Tools, support and stability.

© Learning curve slower. Need to train programmers in case of
not very wide-spread languages.

© Syntax not adapted, verbose, code unreadable and unlikely
reusable, low productivity.

XML-specific languages
XML to XML: XSLT, XDuce, YATL, XQuery

General purpose: Xerox’s Circus-DTE, , Microsoft's X#.

D

D

Use of specific types ensures partial correction and eases
debugging.

Syntax very well-adapted, very compact programs, readable,
code reuse. High programmer’s productivity.

Learning curve very slow. Need to train programmers for new
(functional) languages.

XSLT excepted, all those languages are in development phase;
only (pre) prototypes or alpha versions are available. Lack of
support and stability.

CDuce

an XML-Centric General Purpose Language

(www.cduce.org)

e XML provides formats for tree-structured data (or documents)
and,
¢ In addition, types (or schemas), e.g.,
e DTD
e RELAX NG
e W3C XML Schema

e However, existing “processing” languages are un-typed
(XSLT/XPath).

e How can we process XML documents using types ?

e CDuce is a general purpose typed functional programming
language.

e The work on CDuce started from an attempt to overtake some
limitations of XDuce (H. Hosoya, B. Pierce, J. Vouillon).

e Design choice: keeping XML applications in mind.

Formal Foundation: “Semantic Subtyping” in [LICS’02]

Design and Implementation: “CDuce an XML-Centric General-Purpose
Language”in [ICFP’03]

CDuce overview

Type algebra

Core (low level) representation of XML documents, Transformation
typing

Support for XML documents: sequences and elements
XML friendly syntax

Pattern matching
Complex extraction of information with exact typing

Overloaded Functions
Code reusability, OOP style

Higher order functions
Queries

Benchmarks
Current status

Types are pervasives in CDuce:

e | Static validation
e E.g.: does the transformation produce valid XHTML ?

e | Type-driven semantics

e Pattern matching can dispatch on types, overloaded
functions

e | Type-driven compilation and optimizations

e Makes use of static type information to avoid unnecessary
and redundant tests at runtime

e Allows a more declarative style without degrading
performance

e Extremely useful with tag-coupled XML types (e.g.: DTDs)

Int, String, Atom
(an atom is a constant of the form “id where id is an arbitrary

identifier)

product types (t;,t5)
recordtypes { a;=t1; ... ; a,=t, }
functional types t; —> 5

empty and universal types Empty and Any
Intersection t; & ts

uniont; | to

and difference t;\t,

integer interval i. .5 (e.g.: 0..9)
string regexp /regexp/ (€.9.: /["a’'="z"1x/)

for any scalar or constructed value v, v is itself a type (for
iInstance ‘nil Is the type of empty sequences, and 18 is the
type of the integer 18)

e.g.: integer lists:
ITlist where Ilist = (Int, Ilist) | ‘nil

e [0 handle complexity of the type algebra, we need a simple
Interpretation of types:

A type is a set of values.

o Intistheset{...,-1,0,1,2,3,...};
o (t1,t2) is the set of all expressions (v, v2)
where v; is a value of type t;;
o t1—>to 1S the set of all expressions fun £ (s1;...;s,)e that

applied to a value in ¢; return a result (if any) in ..

e Natural set-theoretic interpretation of boolean connectives and
subtyping relation.

Formal foundations in [LICS’02]

Sequences are encoded a /a Lisp by pairs and a terminator ‘nil.

A sequence of values vq, ..., v, Is written

[Vi...V,]
which is syntactic sugar for

(W1,(. . (U, nl). .).

Define sequence types by
[tyregexp]
where tyregexp IS a regular expression built from types.
E.g.: [Int*] , [Int* String+ Int?]
An XML element
<tag a1=v1 ... a,=v,> elem.seq </tag>

Is written in CDuce as
<tag a1=v1 ... a,=v,>[e€elem_seq]

<bib> let bib0 = <bib>[

<book> <book> [
<title>Persistent Object Systems</title> <title>["Persistent Object Systems
<year>1994</year> <year>["1994"]
<author>M. Atkinson</author> <author>["M. Atkinson"]
<author>V. Benzaken</author> <author>["V. Benzaken"]
<author>D. Maier</author> <author>["D. Maier"]]

</book>

<book> <book>[
<title>00P: a unified foundation</title> <title>["0O0OP: a unified foundation
<year>1997</year> <year>["1997"]
<author>G. Castagna</author> <author>["G. Castagna"]l]

</book>]

</bib>

XML CDuce

Loading XML documents

type IntStr = /[’0°-°9°1+/;;

type Bib = <bib>[Book*];;

type Book = <book>[Title Year Author+];;
type Year = <year>[IntStrl];;

type Title = <title>[Stringl;;

type Author= <author>[String];;

An XML document can be loaded with 10ad _xm1 and checked to
be of the correct type by pattern matching:

let bib0 =
match (load_xml "bib.xml") with

| (x & Bib) -> x
| _ -> error "Wrong type !";;

|- bib0 : Bib

One of CDuce’s key features.
match e with p; ->¢e; | ... | p, > €,
funf (t; -> s1;...) p1 >e€e1 | ... | pn > e
A pattern may either match or reject a value. When it matches:

e Binds its capture variables to the corresponding parts of the
value and the computation can continue with the body of the
branch.

Otherwise: Control is passed to the next branch.

e ML-like flavor, but much more powerful

e EXxpress in a single pattern a computation that dynamically
checks both the of the
matched values, and extracts deep information.

x capture, x € V

t type constraint,t € T
p1 A py conjunction

pi|p. alternative

(pLp2) pair
(x:=c¢) constant, c € C with [t.] = {c}

Formal foundations in [LICS’02]

Multiple occurrences of the same variable are useful in recursive
patterns:

o pwherep=(x&Int,)|, p)
extracts the first element of type Int from a sequence.
o pwherep=(,p)| (x&Int,)

extracts the /last element of type Int.

Order is important

p where ((x & Int),p) | (_,p) | (X:="nil)
when L is matched against p, then x binds the list of all
integers occuring in L.

Syntactic sugar: [(x:Int |)*]

o . (t/p) = type environment for the variables in p
when matching a value in ¢

t (t/p)(x)
Int String Int] Int Int]
Int|String] Int?]

Int* String Int] | [Int+]
Int+ String Int] | [Int+ Int]
(0..10)+ String] | [(0..10)+]
(Int String)+] INt+]

type
type
type
type
type
type

IntStr

Bib =
Book =
Year =
Title =
Author=

let fun book
<book>[<title>[t]; _ 1 -> t;;

XML-friendly Patterns

/[:O:_aga]+/;;
<bib>[Book*] ;;

<book>[Title Year Author+];;
<year>[IntStr];;
<title>[Stringl;;
<author>[String];;

title (Book -> String)

let fun book_author (Book -> [String+])
<book>1 -> transform 1 with <author>[al -> [al;;

e 1, t and a are capture variables

o Key issue to execute CDuce programs efficiently

e New kind of deterministic tree automata: Non Uniform Tree
Automata (combination of top-down and bottom-up automata).

e Compilation schema (from patterns to automata) which uses
static type info to avoid unecessary run-time checks.

4

Allows for a declarative programming style

map e with p; ->e; | ... | p, > €,

transform e with p; -> e | ... | pn, -> €,
xtransform e with p; ->e; | ... | p,, -> €,
o applies some transformation to each element of a

sequence.(implicit default branch: x —> x)

o each branch of the pattern is supposed to return a
sequence, and all the returned sequences are concatenated
together. (implicit default branch: x —> [1)

o works on (sequences of) XML-trees. Match the
patterns on each root of each tree and if it fails recursively
apply to the sequence of sons.

e Thanks to xtransform a function that puts in boldface all the
links of an Xhtml document can be defined

let bold(x:[Xhtml]):[Xhtml]=
xtransform x with <a,(x)>t -> [<a,(X)>[t]]

e Without xtransform we would be obliged to iterate on the whole
DTD of XHTML.

e (xtransform |combines the flexibility as XSLT template

programming, with the precise static typing and efficient
compilation of CDuce’s transform.

Static overloading:

types.

Dynamic dispatch:

same name for a similar action in different

reminiscent of OO programming.

e Separation of overloading in function interface and in
iImplementation (pattern matching) allows code sharing
between different "classes".

e Combine advantage of pattern-matching and multi-methods
(dispatch according to the run-time type of several

arguments)

With higher-order:

pass a single overloaded function

argument to a function instead of several functions.

e CDuce was designed as a

e A small set of extra constructions (or syntactic sugar) can
endow it with query-like facilities: projection, selection, join.

e Core CDuce contribution to this query language is: static
typing + efficient compilation schema.

Highly Declarative Programming Interface

e projection can be defined from the transform construction.
e If e is a CDuce expression representing a sequence of
elements and t is a type,

elt
IS syntactic sugar for:

transform e with < >c —-—>
transform ¢ with (x & t) —> [x]

Note that c is bound to the content of each element in the sequence

€

Consider

type AddrBook = <book>content;;

type content = [(Name Addr Tel?)=*];;

type Name = <name>[String];;

type Addr = <addr kind =7 "home"|"work">[Street Town];;
type Street = <street>[String];;

type Town = <town>[String];;

type Tel = <tel>[String];;

If addr_book is of type AddrBook, then
[addr_book]/<addr kind="home">_/<town>_

denotes the sequence of all town elements that occur in a “home”
address in addr_book.

This corresponds to the XPath expression
/addr[@kind="home"]/town.

e A select construction can then be defined:
select e from p; in eq,...,p,, INn €, where ¢’

e can be defined to be the same as:

transform el with pl -> ...
transform en with pn ->

if e’ then -> e else []

¢ | Important

Order is unspecified to exploit usual query optimization
techniques.

CbDuce Style

select [<resultatsl>[<letitre>[t] <lacrit>[r] 1]

from

<bibliography>[<heading>_ p::Paper*]
<paper>[a::Author+ <title>t _*]
<author>"Honore de Balzac"
<reviews>[b: :BibRevx*]

<book> [<title>tl <review>r]

where t1 = t ;;

in
in
in
in
in

[bib]

[revO]

select <resultat2>[<letitre>([t]/_.) <lacrit>([rl/.)]

Xquery Style

from
p 1in
t in
a in
b in
tl in
T in

where tl1=t and

[bib] /<paper>_ ,
[pl/<title>_ ,

[p]/<author>_ ,

[rev0] /<book>_ ,
[b]l/<title>_ ,

[b] /<review>_
a=<author>"Honore de Balzac"

H

b

xsltproc parser for XSLT.
60Kb | 0.3 Mb | 0.6 Mb | 2.5 Mb | 5.2 Mb

CDuce1 | 0.10 0.30 0.52 1.92 3.95
CDuce2 | 0.11 0.30 0.50 1.92 3.92
CDuce3 | 0.10 0.29 0.49 1.85 3.81

XSLT 1 0.15 0.79 1.42 5.95 | 12.85
XSLT 2 0.18 0.93 1.68 6.90 | 14.33

e The first CDuce version uses the pattern <person gender=g>[<name>n
<children>[(mc::MPerson | fc::FPerson)*]].

e The second one uses the hand-optimized pattern < gender=g>[< >n < >[(mc:<_
gender="M">_ | fc::)]].

e The third CDuce version duplicates the main function to avoid overloading and useless
computations on tags.

e The two XSLT versions use slightly different styles (two templates, or a single template with
computation on tag).

Current status

e DTD, Schema validation, Namespace, Unicode, Web
Services, Interactive Sessions.

e Distribution under MIT Licence, for Linux/Unix, Mac OS10,
Windows XP (.exe).

Perspectives

e Polymorphism and inference
e Modules

e Language oriented security
e Persitent Engine,

Current prototype (MIT Licence) at www . cduce.org

</Be CDuce’d>

www.cduce.org

	mbox {ocre �f Huge Introduction}
	Information on the web
	New applications
	New Requirements
	XML
	XML: an example
	mbox {ocre �f Huge Transformation Languages}
	Document Processing
	Document processing
	Languages
	Languages
	Languages
	mbox {ocre �f Huge duce }\[3mm] {�f ocre an XML-Centric General Purpose Language}\[3mm]{ocre (www.cduce.org)}

	Motivation
	duce : Introduction
	duce {} overview
	duce {} overview
	Types
	Core type algebra
	Core type algebra
	Set-theoretic interpretation of types
	XML: Sequences and Elements
	XML: Sequences and Elements
	XML-Friendly Syntax
	Loading XML documents
	Pattern Matching
	Pattern Algebra
	Recursive patterns
	More on Patterns
	XML-friendly Patterns
	Pattern Compilation
	Extra support for sequences
	xtransform
	Overloading
	Extensions for queries
	Projection
	Projection
	Select from where
	Select from where
	Benchmarks
	Current Status and Perspectives

