Pattern by Example: type-driven visual
programming of XML queries

Véronique Benzaken*
!Université Paris-Sud 11, LRI, Orsay - France

Giuseppe Castagna?

Dario Colazzo* Cédric Miachon?
2CNRS - PPS, Université Paris 7, Paris - France

3Courtanet - Paris - France

ABSTRACT

We present Pattern-by-Example (PBE), a graphical language that
allows users with little or no knowledge of pattern-matching and
functional programming to define complex and optimized queries
on XML documents. We demonstrate the key features of PBE
by commenting an interactive session and then we present its
semantics, by formally defining a translation from PBE graphi-
cal queries into CQIL ones. The advantages of the approach are
twofold. First, it generates queries that are provably correct with
respect to types: the type of the result is displayed to the user
and this constitutes a first and immediate visual check of the se-
mantic correctness of the resulting query. The second advantage
is that a semantics formally—thus, unambiguously—defined is an
important advancement over some current approaches in which
standard usage and learning methods are based on “trial and er-
ror” techniques.

Keywords

Visual programming, Database programming languages, Func-

tional programming, Type systems.

1. INTRODUCTION

One of the reasons, if not the main one, of the success
of relational databases is the query language SQL. The key
features that made SQL the standard query language for
relational databases are its ease of use, its formal foundation
and clear semantics, and its high declarativity. This last
point is quite important because both it makes the writing
of SQL queries independent from the physical organization
of data and, for the same reason, makes SQL queries highly
optimizable.

As we discuss in the related work section, a further boost
to relational databases was given by the introduction of

graphical query languages, such as Query-by-FEzample (QBE).

Despite the simplicity of SQL and of the relational model
these graphical query languages allowed more persons to ac-
cess relational databases and in a more user friendly way.
This is done without missing most of the advantages of the
previous approach since the semantics of these languages is
given by a translation into the relational algebra or calculus.

Nowadays there is a clear trend to increasingly use XML
to make data available on the Web. Querying data in this
format poses the same challenges as for relational data and
even amplifies the problems. The arbitrary structural nest-
ing of XML due to its tree-based structure is at the ori-
gin of the absence of a clear candidate language to query
bases of XML documents. W3C puts forward the XQuery
language [4] and other proposals such as XDuce [12] or
CDuce [1] exist. While XQuery relies on XPath to decon-

struct XML trees, and on a for operator to iterate over this
deconstruction the other rely on pattern-matching for decon-
structing values and, in the case of CQL, on aselect-from-where
iterator. While XPath is good for a deconstruction that nav-
igates vertically in the document it is not able to perform
a fine grained selection on horizontal navigation, that is on
sequences of elements. For instance, imagine that we have
to select in an XML document bib.xml containing a bibli-
ography (see Figure 2 for an instance), all the titles of books
published by Addison Wesley after 1991 that have exactly
two authors. In XQuery we cannot directly select these ti-
tles but we have to stop at books’ level, and then perform
three subselections one for authors, one for titles and one
for prices as in (iterator keywords are underlined)

<bib> for $b in

document ("bib.xml") /bib/book [count (./author)=2] where
$b/publisher="Addison-Wesley" and $b/Q@year>1991 return
<book year="$b/Q@year">$b/title </book> </bib>

It would be better if we could capture in a variable exactly
the titles of the books that match the required conditions,
that is, that have a specific given form. In functional lan-
guages the form of a value can be described by patterns.
Patterns then can be used to perform horizontal selection,
by matching them against heterogeneous sequences of el-
ements in order to capture only some given subparts. For
this reason in a previous work [2] we proposed CQL an XML
oriented query language that combines the vertical selection
capabilities of XPath-like expressions with the horizontal
selection capabilities of CDuce patterns [1], which are pat-
terns designed for XML elements. In CQL the query above
is written as

<bib>
select <book year=y> t from
<book year=y&(1992--%)>[t::Title Author Author
<publisher>"Addison-Wesley" (_\Author)#]
in load_xml("bib.xml")/Book

CQL syntax is an enriched form of the SQL’s one: () in
the select part we can use fully structured expressions in-
stead of just relations, (ii) on the right of a « in » in from
clauses, simple relations (that is, sets of tuples) are replaced
by XPath-like expressions that allow vertical navigation to
select heterogeneous sequences of elements and (7i¢) rather
than simply captured by variables (as in SQL) the extracted
sequence is navigated horizontally by patterns that match
the sequence elements and capture subparts in variables. In
the expression above the pattern on the left of the « in »
keyword selects all and only the book elements whose at-
tribute year is in the interval (1992, co) and that have ezactly
two author subelements followed by a publisher element that
contain the string "Addison-Wesley", this followed by any

element (the wild-card “_”) that is not (the difference sign
\) an author (the * denotes a regular expression that indi-
cates that there may be zero or more such elements);* of the
selected book elements the pattern captures the year in the
variable y and the title in the variable t.

CQL not only makes it possible to combine vertical and
horizontal navigation but provides a very precise type infer-
ence and better logical optimizations which make it more
efficient in main memory execution than major implemen-
tations of XQuery [2]. However, the use of patterns may
be difficult to a basic programmer, especially in advanced
(e.g. nested) queries. In this context a graphical interface
to define queries is much more necessary than in the SQL
case. This is the goal of our work that, mimicking what
was done for SQL, will first define a tableau-based graphi-
cal representation of queries for XML-documents and then
give its semantics via a translation into CQL. The rich struc-
ture of XML makes the task much more challenging than for
the relational model: we do not work on a set of fixed and
flat relations; instead the information we extract may have
a complex structure. In order to generate the table corre-
sponding to some extracted data our system will heavily rely
on the type system. For instance in the query example we
gave above, once we have extracted the data on books the
graphical interface will use the type system and the given
DTD to generate a table that contains a column for the year,
another for the authors, a third for the publisher and a last
one for the price: the users will then have just to fill the cells
with the corresponding conditions and capture variables to
complete the query.

Related wor k

The use of graphical languages for expressing queries is not
new in the database field. This is mainly due to the require-
ment that non-expert users should be able to interact with
the database system while not being acquainted with the
subtleties of the underlying query language which may be
complex to use.

Query-by-Ezample (QBE) [16] is the first graphical query
language for relational databases. It has been developed in
the 70’s by Zloof at IBM and gave rise to a wide category of
commercial graphical languages such as, for example, Para-
dox or Microsoft Access. The central concept of QBE is the
notion of tableaux. A tableau is a graphical interface (a ta-
ble indeed) allowing the user to express some queries simply
by defining specific variables in the table.

In the context of XML, many attempts to define graphi-
cal query languages have been proposed: QSByE (Querying
Semi-structured data by Example) [11], XQBE [6], Miro-
web [5], EQUIX [9], BBQ [14], Pesto [7], QURSED [15],
Xcerpt [3] and Xing [10]. Due to space limitations, we shall
give the spirit of these approaches rather than giving an ex-
haustive state of the art. Hence, we choose to present XQBE
XQuery by Example as it is the most complete language. We
refer the reader to [13] for a complete survey.

Unlike QBE, rather than manipulating tableaux, XQBE
manipulates XML trees. The purpose was to offer an in-
tuitive interface in order to automatically generate XQuery

IThe difference sign is used for the sake of the example but here is
completely useless. The DTD of “bib.xml” given in Section 2.1 ensures
that a publisher element is followed just and exactly by one element
of type Price. Therefore a single wildcard “ ” would have sufficed.

queries. XQBE offers most of XPath expressive power,? per-
mits the definition of nested queries, to build new elements
etc. In order to give the reader a flavor of XQBE let us
consider the following query which corresponds to query Q
of XML Query Use Cases [8]. List all books published by
“Addison-Wesley” since 1991. This is exactly the query we
presented in the introduction without the condition on the
number of authors. Thus to define it it suffices to remove in
the XQuery expression the predicate on the path. In XQBE
such a query is expressed as shown in Figure 1.

book

publisher

(a) “Addison-Wesley”

= 1991

Figure 1: XQBE Q1

In XQBE, the workspace is divided in two separate zones:
the source space (on the left) and the result space (on the
right). Each zone contains labeled graphs which represent
fragments of the XML document to be processed. XML ele-
ments are represented by rectangles annotated by their tag,
attributes are represented by black disks together with their
names. For instance, on Figure 1 the source zone expresses
a query which extracts all books elements <book> having an
attribute year whose value is greater than 1991, and having
a child <publisher> with value "Addison-Wesley". In the
corresponding result space, again the result is described by
a tree. For our example, the graph states that the result will
consist of all the titles of <book> elements which have been
selected in the source space (such a binding is materialized
by the arc connecting the respective node from source to
result space). These will then be encapsulated in a unique
fresh element <bib> (the trapezoidal shape indicates the fact
that the result is considered as new).

Most of graphical query languages for XML use graph-
based representations of both documents and queries. Their
main limitations are that no semantics is formally assigned
to those graphs hence they do not account for correctness
proofs of the translation (usually to XQuery) they imple-
ment and last they never exploit the underlying type system
in order to yield optimized versions of the resulting queries.

Unlike those, (i) we formally assign a semantics to our
graphical tableaux-based interface and (ii) formally establish
a (partial) correctness proof of the translation to CQL.

We will proceed as follows. First we present in Section 2
the system by showing and commenting an interactive ses-
sion with our prototype. To that end we also introduce
CQL, since its regular expression types are used as condi-
tions in the graphical interface whose use will result in the
generation of a CQL expression. The formal development
follows in Section 3. In particular we formally introduce the
notions of tableau and PBE query and define their seman-
tics by translating PBE queries into CQL queries. Since the
translation in far from being trivial we define the translation
incrementally, by progressively increasing the complexity of

2 Apart from some functions such as for instance position()

the translated queries. This will allow us to point out the
most difficult or subtle points of the translation. A partial
correctness result of this translation is also given.

Throughout the presentation we use some conventions and
syntactic sugar of CDuce/CQL, most of which are quite in-
tuitive and need no explanation. On the same vein, we just
present a very simplified version of the language. Space con-
straints do not allow us to do a complete treatment, which
anyhow would not bring any further insight. The inter-
ested reader can consult the documentation available on the
CDuce web site (www.cduce.org) and try the distribution of
the full featured language available there too.

2. A GUIDED TOUR

In this section we present a guided tour of PBE (Pat-
tern by Ezample) our graphical query language designed to
help non-expert users to write complex queries. PBE uses
CQL as a back-end since it generates and evaluates opti-
mized CQL queries, but other back-ends can be considered.
Actually, PBE can be used independently from CQL, since
its usage only requires the knowledge of the types that CQL
borrow from CDuce, types that are very close to other type
systems for XML. However, the presentation of PBE seman-
tics is far simpler in CQL, which is the reason why we start
this presentation by an overview of CQL.

2.1 Presentation of cqQL

The goal is not to give a full presentation of CQL (for that
see [2]) but rather to present a minimum set of features that
are enough to present PBE. The most important feature are
types. PBE and CQL use CDuce’s types, which can be seen
as a compact notation for DTDs (actually, for Relax-NG):

Types T == btype| [t] | <tag {A}>[t] | Any | v
| TIT | TaT | T\T

RegEx t o= T | tt | tlt | t2 | tx | t+ |

Attrs A = a=TA | ¢

Types are either type constructors, that is: basic types (e.g.,
Int, Bool, Char, ...); heterogeneous sequences types (delim-
ited by square brackets and whose content is described by
a type regular expression t); XML elements (that is, tagged
sequences whose tag may contain a possibly empty list of
attribute type declarations which assign types to attribute
names ranged over by a); Any, the type of all values; v,
the singleton type that contains only the value v. Or they
are type combinators, that is, union, intersection, or differ-
ence of types. Regular expression types, ranged over by t,
are obtained from types and the empty string (denoted by
€) by juxtaposition, union, and the constructors for optional
elements, possibly empty, and nonempty sequences.

We will use some conventions, in particular the underscore
“_" to denote Any, PCDATA to denote the regular expression
type Char#* and String to denote the type [Char*]. We also
use identifiers to denote types (and follow the convention of
capitalizing them), as in the following declarations

type Bib = <bib>[Book*]

type Book = <book year=String>[Title (Author|Edit)+ Publisher Price]

type Author = <author>[Last First]
type Edit = <editor>[Last First]
type Title = <title>[PCDATA]

type First = <first>[PCDATA]

type Last = <last>[PCDATA]

type Publisher = <publisher>[PCDATA]
type Price = <price>[Int]

which defines the types for the bibliography example we will
use throughout the paper.

For this paper, CQL expressions are variables (ranged over
by x, y, ...), constants (e.g. true, 1, 2, ... ranged over by
c), the select_from_where expression, the constructors for
sequences (a juxtaposition of blank-separated expressions
delimited by square brackets), and XML elements (a se-
quence expression e labeled by a tag and a possibly empty
set of attributes), banged expressions !e (which “opens”

the sequence e so that, for instance, if e1,es,..., e, are se-
quences, then [te; es ... 'e,] returns their concatenation),
and operators (e.g. =, >, max, if_then_else, ...). Values,

ranged over by v, are closed expressions that do not contain
“select”, operators, or banged sub-expressions.
e == xz|c|le...e]l|<taga=e...a=e>e | e | op(e,..,€)
| select e from pine,...,pin e where e
The expression select e’ from p1ines,...,ppin e, where %
deserves explanation. The expression ¢ in the where clause
must be of boolean type, while the expressions e;’s in the
from clauses must return sequences. Select iterates on these
sequences matching each element of e; against the corre-
sponding pattern p;. Pattern variables capture subparts of
the matching elements and these variables can then be used
in e® or in the successive from clauses. The result of a select
is the sequence of evaluations of the expression e° in the en-
vironments obtained by iterating on the from clauses.

Patterns are nothing but types with capture variables.
We distinguish two kinds of patterns for capture variables:
“simple variables patterns” that have the form of a variable
and can occur wherever a type can, and “sequence capture
patterns” that have the form x::¢, can occur wherever a
regular expression type can, and capture in x the sequence
of all values matched by the regular expression ¢. So in the
CQL query given in the introduction y is a simple capture
variable (the intersection of two patterns succeeds only if
each pattern succeeds, therefore y captures the value of at-
tribute year only if this is of type 1992--*), while t captures
the sequence of all titles of the book (in this case just one).
Differently from union types, that are symmetric, union pat-
terns implement a first match policy: the right pattern is
checked only if the left one fails. So, for instance when the
pattern [(x::Author|_)*] is matched against a sequence it
captures in x the sequence of all (values of type) authors
present in it (if an element is of type Author, then it is cap-
tured by x, otherwise is discarded by matching it against
the wildcard “_” 1i.e. the type Any).

We apply the convention to use single quotes to delimit
characters and double quotes to delimit strings (which are
sequences of characters). For formal and complete defini-
tions of the syntax, the semantics, and the typing of CQL
the reader can refer to [2].

2.2 A tour of PBE

We demonstrate PBE by querying the document in Fig-
ure 2 and assuming that it conforms to the CDuce type
Bib defined by the declarations given in the previous sec-
tion (from which we omit Edit in order to limit the size of
figures) that we will have entered in the tab “Data” of our
PBE interface, visible in Figures 3 11. ?

Queries are expressed by means of tableauz. Two different
kinds of tableaux are presented: Filter tableaur and Con-

3Declarations are generated from a DTD by the program dtd2cduce.

<bib>
<book year="1995">
<title>TCP/IP Illustrated</title>
<author>
<last>Stevens</last>
<first>W.</first>
</author>
<publisher>Addison-Wesley</publisher>
<price>65</price>
</book>
<book year="1992">
<title>Advanced Programming in Unix</title>
<author>
<last>Stevens</last>
<first>W.</first>
</author>
<publisher>Addison-Wesley</publisher>
<price>65</price>
</book>
<book year="2000">
<title>Data on the Web</title>
<author>
<last>Abiteboul</last>
<first>Serge</first>
</author>
<author>
<last>Buneman</last>
<first>Peter</first>
</author>
<author>
<last>Suciu</last>
<first>Dan</first>
</author>
<publisher>Morgan Kaufmann Publishers </publisher>
<price>39</price>
</book>
</bib>

Figure 2: reference XML document

struct tableauz. The former are used for extracting infor-
mation (they are entered in the upper half of the interface),
while the latter are used for building the sequence of XML
values that constitutes the result of the query (they are en-
tered in the lower half of the interface). PBE tableaux allow
for expressing a wide variety of queries. Let us start with
a simple query: “return all books in the bibliography”. As-
sume that the document to be queried is stored in the doc
(persistent) variable. The filter tableau offers a list of persis-
tent XML documents and the user will choose among them
the doc variable as shown in the left part of Figure 3.

File Edit

Tableaux ‘ Misc } Data } Queries}

Filter Tableau

doc

bstorel

Figure 3: Filter tableau creation

Once the document is selected, PBE displays the filter tableau
associated to the type of doc (i.e., Bib) as shown in Figure 4.
The column marked by a # symbol represents the tag which
can be tested and captured? while the fact that the content

4Tn the full version of CQT./CDuce XMT, tags are full fledged ex-

of Bib elements is a sequence of Book elements (recall, Bib
= <bib>[Book#*]) is represented by Book*. In the row, PBE
provides fresh variables x1, x2 to capture the correspond-
ing components and a default (type) constraint Any which
is always satisfied

(= PBE
File Edit

[=la]x=]

Tableaux | Misc I Data l Queries I

[Filter T:i\eau ” - ” — l

Figure 4: Filter tableau for doc

The user who wants to capture all the books of the bibliog-
raphy doc in a variable books (Figure 5), has just to declare
this variable in the corresponding column (the one labeled
by Book*). The right part of the cell remains unchanged
(Any), since we do not need to express further constraints
on variable books.

= PBE
File Edit

EENEY

Tableaux | Misc I Data l Queries I

Filter Tableau

[Bib H # H Book* l

Figure 5: Adding variable books in the filter tableau

Getting and, presumably, re-structuring the result is per-

formed by means of a construct tableau that is defined in
the lower part of the window as illustrated in Figure 6.
Construct tableaux are defined by adding new columns and
filling the cells by using the variables introduced in the other
tableaux. From the content that is filled in a cell, PBE de-
duces and inserts the type that labels the corresponding
column. Not only does the construct tableau indicates how
the result is re-structured (here we choose to encapsulate all
books in a <result> tag) but it also provides a fresh vari-
able q1 that denotes the query so that it can be later reused
(e.g. for defining nested queries).
Clicking on the “View query” button right below a construct
tableau, makes PBE compute and display in the “Queries”
tab the corresponding CQL query and its result (Figure 7).
PBE also infers that the type of q1 is [<result>[Book*]*],
an information useful in case q1 was reused in other queries.
As with any other variable, q1 can be reused by selecting it in
the pull down menu of Figure 3 to which it is automatically
added at the moment of its definition.

This first example was very simple. We shall now present
two more advanced examples that illustrate (i) how to pro-
gram nested queries and (¢¢) what is the use of several rows

pressions that can contain namespaces and have arbitrary com-
plex types such as type AorB = <(‘al‘b)>[Any*].

= o CE
File Edit
Tableaux |M|s(_: | Data | Quenesl
Filter Tableau
[Bib “ # l[Book* I
doc T (11 ”A”)’ A”}‘
I
Construct Tableau
<|result |>
‘ql ” books ”Add Column
View query
4]
Figure 6: Construct tableau creation for ql
= o CE
File Edit

Tableaux I Misc |Data| Queries |

Queries
Queries:

let g1 = (select =result=[lbooks]
from
<(x1) ..>[books:{ Bock*)] in [doc])
Result:
[<result=[
<book year="1994"=[
<title=['TCP/IP llustrated']
<author>[<last>['Stevens'] <first>['W.']]
<publisher=['‘Addison-Wesley']
<price=>[65]

<book year="1992">[
<title=['‘Advanced Programming in the Unix environment']
<author=>[<last>['Stevens'] <first>['W']]
<publisher>['‘Addison-Wwesley']
<price=>[65]
1

<book year="2000">[
<title>['Data on the Weh']
<author>[<last>['Abiteboul] <first=>['Serge' 1]
<author>[<last>['Buneman'] <first=['Peter']]
<author=[<last>['Suciu'] <first>['Dan']]
<publisher=['Morgan Kaufmann Publishers']
<price>[39]
1

Figure 7: CQL code and result for ql.

in a filter tableau. Imagine that we want to define a query
that returns a sequence of elements tagged by <entry> where
each such element corresponds to a book of our example
bibliography and contains its title element as well as the
authors’ last name elements encapsulated in a <auth> tag.
While the plain English semantics is a little bit twisted, the
meaning should be quite clearer by looking at how the query
is expressed in Figure 8.

The first filter tableau is defined for the books variable
that was introduced (and automatically added in the pull-
down menu) by the previous query, and extracts in title
and a the list of titles (well, just one) and of authors of
each book, respectively. This row captures for each book
the relationship between its title and its authors. In order
to extract for each author in a his/her last-name we use
a second filter tableau which captures in the variable last
the corresponding information. To encapsulate each <last>
element in a tag <auth>, we define the construct tableau g3.

= PBE
File Edit

S EEY

Tableaux ‘ Misc ‘ Data ‘ Querias}

Add Row

Filter Tableau
[Book “ # “ Title ” Author+ l[Publisher H Price]

books 3 (=3 ”Any Any a HAny Any x7 ”Any

Filter Tableau
[Author “ # “ Last “ First l

|a slpe_Jany Jlest Jany Jpao Jaw |

Construct Tableau
={auth |>| Last |

‘q3 ”last ”Add Column

[View gquery

Construct Tableau

<[entry |>| Title ”<auth ([11=>[Last]|

{qd Ht\t\e ”q3 H Add Column

Figure 8: A nested PBE query

This tableau is then reused in the construct tableau of the
query g4, in which the title is requested as well as the result
of g3 for this title.

The definitions of the queries q3 and g4 and their respec-
tive results are shown in Figure 9. When it is executed

O PBE
File Edit

[=J[e]x]

Tab\eaux} Misc ‘ Data | Queries ‘

[Queries
Queries:

let g3 = (select <auth>[llast]
from
<({x1) ..>[books:{ Book*)]in [doc].
<(x3) ..>[title: Title a::(Author+) x6::Publisher x7::Price] in boaks,
<(x8) ..>[last::Last x10:First Jin a)
Result:
[<auth=[<last>['Stevens' 1]
<auth=[<last=['Stevens']]
<auth=[<last>['Abiteboul']]
<auth=>[<last>['Buneman']]
<auth=[<last=['Suciu']]
]
let g4 = (select <entry=[title !{select <auth=[!last]
from
<(x8) ..>[last::Last x10:First Jinaj]
from
<(x1) .>[books:l Book*)]in [doc],
<(x3) . >[title: Title ax:(Author+) x6::Publisher x7:Price] in books)
Result:
[<entry=[<title=[TCP/IP llustrated'] <auth>[<last=>['Stevens' 1]]
<entry=
<title=['Advanced Pragramming in the Unix environment']
<auth=>[<last>['Stevens']]
1
<entry=[
<title=['Data on the Web']
<auth>[<last>['Abiteboul']]
<auth=>[<last>['‘Buneman']]
<auth>[<last>['suciu']]

1
(il

Figure 9: CQL code for queries g3 and q4

standalone q3 returns a single list containing all the authors
in the bibliography (since in that case a is bound to all au-
thors), as shown in the first « Result » section of Figure 9.
Instead when it used inside g4 the query g3 encapsulates

the authors of the book currently selected by the outer it-
eration. It is important to notice that q3 does not occur in
the code for q4. As a matter of fact, it would be wrong to do
it, as the code that occurs in g4 at the position of g3 is not
the code defined for 93 as a stand-alone query. Indeed when
generating the code g4 PBE must generate custom code for
the call of g3, that takes into account the environment in
which the nested query is evaluated. The technique we use
to keep track of the environment in which nested queries
are called and to minimize the number of possible patterns
needed for expressing the query are formally explained from
Section 3.2.3 on.

=] PBE =B]
File Edit
Tableaux | Misc |E‘ Queries I

Filter Tableau

I Book ” # “ Title ” Author+ ” Publisher ” Price J

b Jany Jutle Jany |5 Ay Jxs JAmy |7 A |

books :
AddRow |

Filter Tableau
[e | # || chare |

title e Jlany frext frr]
Add Row ‘xs |Any text

Construct Tableau
<|title [t o)) chars |

|as [[text

HAdd Column

Figure 10: Multiple rows tableau

Our last example illustrates the use of several rows in a
filter tableau. Assume that we want to select the books
whose title begins either by letter “T” or by letter “D”.These
constraints are expressed in the CQL type algebra respec-
tively as [>T’ _#], [’D’ _x]. Their “or” is obtained by the
tableaux in Figure 10, since in PBE multiple rows are inter-
preted as union patterns. Note that each row declares the
same variables: rows differ only for their constraints (see
also Definition 3.2 which enforces this property). It is worth
stressing that by using the knowledge of the DTD and the
stated constraints of the filter tableau, PBE deduces type :
[’D?[°T? Charx] for the capture variable text in the con-
struct tableau. The CQL query generated by the system
and its result are given on Figure 11.

(= PBE
File Edit

[=le]x]

Tab\eauxl Misc I Data | Queries |

Queries
Queries:

let 5 = (select <title=[ltext]
from
<(x1) ..>[books::(Book*)]in [doc],
<(x3) ..>[title::Title x5::(Author+) x6::Publisher x7::Price] in books,
<(x8) ..>[text::(T Char*)] | <(x8) ..>[text:('D' Char*)]in title)
Result:
[<title=[TCP/IP lllustrated'] <title=['Data on the Web']]

Figure 11: Result of the multi-row query

3. FORMAL DEVELOPMENT

In this section we give the the formal definition of PBE
by first precisely defining its syntax and then stating its
semantics via a translation into CQL.

3.1 PBE syntax

The syntax of PBE is constituted by three distinct kinds
of tableaux, filter tableauz and construct tableauz that were
informally presented in the previous section, and condition
tableauz (or condition bozes). Let us discuss each of them.

3.1.1 Filter tableaux

Filter tableaux are tables in which (i) rows are labeled
by already defined variables, (i7) columns are labeled by at-
tribute names, by a hash sign (exactly one column), and/or
by type regular expressions and (i) cells contain fresh vari-
ables and regular expression type constraints. For instance,
in the previous section we defined the following tableau

Book # Title Author+ | Publisher Price

books (z1,t1) | (w2,t2) (z3,t3) (z4,ta) (z5,t5)

which filters the elements that compose the sequence de-
noted by the variable books. The user defines only the
content of the row, the rest (that is the number of columns
and their labels) are automatically deduced from the type of
filtered variable books, that is Book. But how is that PBE
decided to insert a single column labeled Author+ instead
of equivalently | say, three columns respectively labeled
Author?, Author, Author*? The reason to prefer the former
to the latter should be pretty clear: we want to minimize the
number of filter columns in order to use as few variables as
possible. In order to formalize the way in which this choice
is made, we need the definition of sequence mazimal product.

First notice that every type regular expression ¢ is of the
form RiRs... R, (with n>1) where R;’s are type regular
expressions different from the juxtaposition. Let us call
Ri...R, the ezpanded form of t. Notice also that every
R; in an expanded form is of the form ¢ro (where o is either
*, + 7 or the empty string—in the latter case tr is either a
regular expression union or a type): we call tr the base of
R. Finally, we write 11 ~ 15 if and only if 71 and 7% denote
the same type (e.g. [(AIB) CI~[(A C)I(B C)I; see [1] for
definition).

DEeFINITION 3.1. Let Ri... R, be a type reqular expres-
sion in its erpanded form and let us denote the base of
R; by tr,. Ri...R, is a sequence maximal product if
(tr,] % [tr,,,] fori=1..(n—1).

For example, « B¥ B+ C B » is not a maximal product since
the first two elements have the same base. There exists
a naive algorithm to transform every type regular expres-
sion into a maximal product and consisting in merging con-
secutive expressions with the same base (e.g., « t* ¢t » be-
comes t+ and « B B+ C B» becomes « B+ C B»). There-
fore, henceforward we consider all type regular expressions
be maximal products. Notice, however, that this is just a
syntactic property with no semantic implication. It heav-
ily depends on way the user wrote DTD’s for data: for in-
stance, « (AIB)* (A*C+|B*C+) » is a maximal product al-
though « (AIB)* C+ » would be a smarter denotation.

DEFINITION 3.2. Let T be an XML type, a filter tableau
associated to T is:

Ll # [a [---] a [R [--] Ra |
Yy (:1707t(1)) ($17t%) ($k7t]lc)($k+17t]lc+1)

J@rtn, tiy)

Y (9007%”) (xlvtT) (xkvtzn)(le»lvtzn_‘_l) (xk+n7t;€n+n)

where
1. y is a variable of type [T*]1 or a persistent root of
type T,
2. T =<tag {a1=T ... ar=Te}>[R1 ... R,1,
8. R1 ... R, is a mazimal product,
4. xj are fresh variables (j =0...k+n),
5. t;- are reqular expression types (i = 1..m,j = 0..k+n).

Henceforth we will mainly work on what we call (improperly
in the case of filter tables) rows of a tableau and we use the
following compact notation to denote the (set of) row(s) of
a filter tableau

FT(yltag|k|(zo, to)l (@1, 1) .. (@h, Gl (@ht 1, Eet1) - - (s o))

where tag is the tag of the XML type associated to vy, k the
number of its attributes and each t¢; represent the vector
th.oo

3.1.2 Construct tableaux

A construct tableau is a single row table that defines the
structure of the result of a query. The user specifies the tag
in which the result must be encapsulated and adds as many
columns as (subsequences of) elements in the result. Each
element is specified by filling the cell in the corresponding
column with a variable whose type will determine the la-
bel of the column. For instance, the construct tableau of
Figure 10 is:

<title> || [(°D’|’T’) Charx*]
qb text

In general, users can define not only the tag of the result
but also its attributes, which yields the definition:

DEFINITION 3.3. Ifx1,..., Xk+n are variables, ai, ..., ar are
attribute names and tag is an expression denoting a tag, then
they define the following construct tableau

tag [l a1 |-~ | ar | Ri | -] Bn
Y z1 |- | zn

Thk+1 Tk+n

where R; is the (regexp) type of Tr+i (i =1...n—k) andy a
fresh variable of type [(<tag {a1=t1 ... ap=tx}>[R1 ... Rp1)*].

As we did for filter tableaux we introduce a compact nota-
tion to denote a row of construct tableau, that is

CT(yltaglk|(a1, 1) ... (ak, Tk)|Tht1 - - - Thtn),
where k is the number of attributes.

3.1.3 Condition Box

PBE condition boxes are the same as in QBE, that is, they
are used to specify constraints. In
particular, condition boxes are useful CONDITION BOX
for declaring join conditions between €1
two variables. Condition boxes are of
the form as shown on the side, that is
they are single column tables whose
rows contain a CQL expression of boolean type. Usually
these expressions are applications of operators to variables,

€n

such as the equality of two variables z=y (a typical condition
used for joins) or to a variable and constants, such as y>5. As
we did for filter and construct tableaux we introduce some
special notation to record rows of condition boxes. For the
sake of the presentation we consider just a very special case
of conditions formed by the application of a binary boolean
operator to either variables or values. Then a row of a con-
dition box containing expression e; op e2 will be represented
as CB(op,e1,e2).

3.1.4 PBE Queries

DEeFINITION 3.4. A PBE query is defined by a non-empty
set of persistent roots, a finite set of filter tableauz, a finite
non-empty set of construct tableauz, and an optional condi-
tion boz.

In order to be well defined every free variable used in a query
must be either a persistent root or defined elsewhere. Notice
also that in the result of a query (i.e. in a construct tableau)
we do not let the user specify general expressions but just
variables (it is a design choice); therefore we also require that
no persistent root appears free in a construct tableau, since
this would be the same as specifying a constant. In order
to formally state when a PBE query is correctly defined we
need to introduce the notions of free and declared variables
of a tableau

DEFINITION 3.5. Let f, ¢, and d denote the following three
generic objects: [= FT(y|tag|k|(zo,t0)|(x1,11) ... (Tk, ir)]
(T2, T151) - (@i, Trgn)), € = CT(yltaglhl(a1,1). ..
(ak, Tk)|Tk+1 .- Thtn), and d = CB(op,e1,e2). The free
and declared variables of these objects respectively are

() = {v} dv(f) = {zo...Trin}
fv(c) = {z1...Th4n} dv(e) = {y}
fv(d) = var(e1)Uvar(ez) dv(d) = o©

where var denotes the function that returns the free variables
of a CQL expression.

If O is a set of objects, then we denote by fv(0) and dv(0)
the union of the respective sets of free and declared variables
of its objects.

DErFINITION 3.6. For a given PBE query let us denote by
P the set of its persistent roots, by F the set of all rows of
its filter tableauz, by € the set of all rows of its condition
tableaur and by © the rows of a possible condition boz. The
query is well defined if and only if

1. W(ZF)UN(E)Ufv(O) Cdv(F)Udv(¥)uU &

2. NENLX =0

Note that the freshness conditions in tableaux definitions
ensure that every variable is declared in one and only one
tableau row that it univocally identifies.

3.2 Semantics

The semantics of PBE is defined via an (effective) transla-
tion from PBE queries (more precisely, from variables denot-
ing PBE queries) to CQL queries. The translation is defined
in form of inference rules. For the sake of presentation, the
translation is introduced gradually in several steps: first,
we define a naive translation for unnested queries without
condition box. Then, we observe that the definition cre-
ates some redundancies and modify the translation to avoid
them. Next we add nested queries, that is, PBE queries
with several interrelated construct tableaux and, finally, the
condition box.

3.2.1 Unnested queries without condition

Let &2, #, ¢, and © be defined as in Definition 3.6. We
start by considering the case in which both © and fv(¢) N
dv(%) are empty (no condition and no nesting).

CT(z|tag|k|(ar,z1) ... (ak, Tk)|Tkt1 - - . Thgn) € C
f}—f ri—1l; 1=1...k+n

(R2)
F,C s v — select <tag a1=x1 ... arp=xi>
[txryr... !l‘k+n] from [q,... ,lk_;,_n
Af e Foxedv(f) yefv(f)NFP (F3)
F by ax — pattern(f) in [y]
feZ, zedv(f) yefv(f) y¢&# F\fkry—1)

Fryax—1, pattern(f) in y

x & dv(¥%) x & dv(F)

F,Crsx—Q (£6) Frir—Q (£2)

Figure 12: Naive translation of unnested queries without condition.

The inference rules are given in Figure 12. The main
judgment is .#,% ks © — e which translates a variable
x identifying a query—that is, a variable declared by a
row in ¥ into a CQL query e. This is done in rule R2
which straightforwardly generates the select clause (just
notice that element variables are banged since they denote
sequences) and relies on a new form of judgment to generate
the from clauses. A judgment .# F; x — [generates a list
[of from clauses of the form «p in e», where p is a CQL
pattern and e is a CQL expression whose form is either [y]
or y. As we assume that there are no nested queries, then all
variables free in ¢ must be declared by one (and only one)
row in % (recall that these variables cannot be persistent
roots). For this reason we just need two rules to generate
the from clauses: we use F3 when the free variable of the
F-row at issue is a persistent root (in which case we can
stop the search since the variable is completely defined); we
use F/ when the free variable of the .Z-row at issue is a
capture variable defined in some other row (in which case
we have to find this row and recall the judgment -y un-
der an environment .% from which this row is removed to
avoid loops in order to generate the clauses [that define
this variable: these clauses must precede the definition of
the variable, of course). Finally the pattern corresponding
to a filter tableau row is generated by the function pattern()
which has the following definition.

DEFINITION 3.7. Let f be a filter tableau row of the form
FT(yltag|k|(zo,t0)|(x1, 1) (@,)| (@h 415 Tog 1) (Thgns Trgn))s
where y is of type either <sop{lai1=s1..ap=sx}>[R1..R,] (i.e.,
y 1s a persistent root), or [<so{ai1=s1..ax=s5}>[R1..R,1%]
(i.e., y is a capture wvariable), and m denotes the arity of
the various t;’s. Then pattern(f) = pil ... |pm where, for
j=1..m, p; is defined as:

<(zoktd&s)) ai=z1&t]&s] ... ap=ri&tlesi>[)
Thy1:Sy g - xk_‘_n::siJrn]

t], &R,

], &lR:]
The j-th row of a filter table generates the pattern p; com-
posing a union pattern. In each pj, if z; is a variable that

if Ri is a type

where for i = 1.n
Sj _
itk otherwise

captures an attribute, then the pattern associated to x; is
ai=xi&tf. Otherwise we use regular expressions and the
pattern is x;qp sz_‘_k. The s{+k is different according to
the form of the regular expression type R;. In the case
R; is a type (e.g. the type regular expression Title), then
87, = t1, &R, otherwise (e.g. the type regular expression
Book*, which is not a type) serk = tf+k& [R;].

Finally, rules R6 and F2 explicitly manage the case of
ill-defined PBE queries by generating an error, denoted by
Q.

Let us follow the translation on a PBE query ¢ that groups
the title and the price of each book in doc under a new tag
<result> and is defined as follows

Bib # Bookx*
doc || (zo,_) | (bks,_)
Book # Title Author+ | Publisher Price
bks ($17—) (tls’—) ($27—) ($37—) (p?"{),_)

<result> Title | Price
q tls pre

Formally ¢ = {CT(q|result|0| |tls prc)}, F = {FT(doc|
bib|0|(xo, Any)| |(bks, Any)), FT(bks[book|0|(z1, Any)|(#ls, Any)
(x2, Any) (w3, Any) (pre, Any))}, © = @.

Rule R2 is evaluated first since there exists a row in €
which declares the query ¢. Thus we have:

. 6,7 s q— select <result> [!tls !prc] from li,ls

Since tls is based on the variable bks which is not a persis-

tent root, then for the computation of /1 corresponding to

tls we apply rule F4, which gives:

F Fytls — l3,<(x1)>[tls:Title x2::Author+
x3::Publisher prc::Price] in bks

To compute I3 we repeat the operation on bks which being
based on the persistent root doc triggers F'3:

F by bks — <(x0)> [bks::Book*] in [doc]
Thus [; denotes the list:

<(x0)>[bks::Book*] in [doc],
<(x1)>[tls::Title x2::Author+ x3::Publisher prc::Price] in bks

and the same computation gives for lo:

<(x0)>[books::Book*] in [doc],
<(x1)>[tls::Title x2::Author+ x3::Publisher prc::Price] in bks

In conclusion the rules of Figure 12 translate the PBE query
q into the following CQL query:

select <result> [!tls !prc] from
<(x0)>[bks::Book*] in [doc],
<(x1)>[tls::Title x2::Author+ x3::Publisher prc::Price] in bks,
<(x0)>[bks::Book*] in [doc],
<(x1)>[tls::Title x2::Author+ x3::Publisher prc::Price] in bks

Tt is clear that half of the lines in the from clauses are useless.
This redundancy is due to the fact that the rules compute
several times the clauses that define the variables tls and
pre. To avoid this duplication we add a new memoization
environment that records the set of variables already defined
during the deduction, as we show in the next section.

3.2.2 Redundancy elimination for unnested queries
without condition

The rules in Figure 13 define a modification of the previ-
ous translation that eliminates the redundancy we pointed
out, by using in the Fy-judgments a new environment %
that stores the variables occurring in patterns returned by
pattern().

The rules F3 and F/, besides returning the list of clauses [,

CT(zltag|k|(a1, z1)...(ak, Tk)|Tht1- - Than) € C
9,21-,1 |—f €T; — (li, EZ) Yo=& i=1..k+n

(R2)
F,6 s v — select <tag ai=x1...ap=Tk>
['zrt1... 'Tryn] from li, ... lktn
rTEX 7
Q,Zfoﬂ(Q,Z)()
xg¥ IfeF,xecdv(f) yefv(f)nF 79
F., Y by o — (pattern(f) in [y],X Udv(f)) (£3)
g IfeFxed(f) yef(f) yg&
FNLEUAV(f) bry — (1, X) (F))

F, N kpx— (l; , pattern(f) in y,Y')

x & dv(%)
F,Crsx— Q"

z € X Udv(F)
ﬁ,El—fa:—>Q)

x € dv(F)
o (R
R
CT(x|tag|k|(a1,z1)...(ak, Tk)|Tkt1. - Thtn) € C
{le,...,a:jm} :dv(f)ﬁ{xl,...,karn}
F,C s xi — e i=1.k+n
9, Yho1 |—f Tj, — (lh, Eh) h=1.m Xo=0

’ (R2)
F, € s v — select <tag ai=e;...ax=ex>

[!6k+1...!6k+n] from l1,...,lm
x & dv(F)Udv(?) p
F,Crsx—Q (R6)

(F1), (F2), (F8), (F4) asin Fig. 13

Figure 13: Memoization for unnested queries without condition.

they now also return a new environment Y that that enriches
the current one with the variables defined in [.

The overall recording of the defined variables is performed
in the rule R2 by the premises F,%;_1 k¢ z; — (13, %)
where the X;’s are used as accumulators. Each ¥; indeed
contains all variables defined in the preceding environments,
that is in any 3y, such as k < ¢ (where Xo = @). The last
environment Y, will then contain all the defined variables.

The elimination of redundancy is then crucially performed
by the new rule FI which returns an empty set of from
clauses in the case where the variable to be sought is already
defined that is, it belongs to X in this case there is
no clause [to add in the construction of the query as all
definitions are already present. Rule F'2 is straightforwardly

modified.
By applying these rules to the example of the previous
section we obtain the following CQL query

select <result> [!tls !prc] from
<(x0)>[bks::Book*] in [doc],
<(x1)>[tls::Title x2::Author+ x3::Publisher prc::Price] in bks

which is indeed the one we expected.

3.2.3 Nested querieswithout condition

We extend the previous translation to account for nested
queries, that is, queries whose construct tableaux declare
variables free in other construct tableaux (fv(%)Ndv(%)#2).

Intuitively, when during the translation of a query we
meet a variable, we must check whether this variable is de-
clared in a filter tableau (it is in dv(.%)) or in a construct
tableau (it is in dv(%)). In the former case we must pro-
ceed as before, that is, insert the variable as it is in the
select expression and generate the from clauses that define
it. In the latter case, instead of inserting the variable in the
select expression we have to insert the query generated by
recursively calling the translation.

This is done by modifying the R-rules for b, (the F-rules,
which are for F;-judgments, do not change) as shown in Fig-
ure 14. In particular this is done in rule R2 which for each
z; (independently from whether it is in dv(.%) or in dv(%))
calls for its translation (premises #,% s z; — e;). If the
variable is declared in a filter tableau, this results in calling

Figure 14: Translation rules for nested queries without condition.

the new rule RI which returns the variable (now consid-
ered as a CQL expression), otherwise the rule R2 is called
on the new variable and the corresponding CQL expression
generated. The rule also generates the from clauses for the
variables that are in dv(.%), by the same technique as before.
The rule R6 is modified since variables free in a construct
tableau may now be defined in another construct tableau
(this modification is not necessary for F2).

Bib # Bookx*
doc || (zo,_) | (bks,_)
Book # Title Author+ | Publisher Price
bks (z1,-) | (s,) (a,_) (z2,_) (z3,_)
Author # Last First

a (147—) (lnv—) (fnv—)

<auth> Last | First

) In n
<result> Title | <auth>[Last First]

q tls p

Figure 15: Return titles and authors in a new element <result>,
where the tag auth replaces the tag author.

Let us apply the translation to the tableaux of Figure 15
which contains nested construct tableaux:
¢ = {CT(q|result|0| |tls p) CT(p|lauth|0| |In fn)}.
To translate the query g we apply R2 and in particular
evaluate 7,4 ks tls — € and .Z#,¢ s p — €”. Since
tls is defined in .%, then ¢’ is the CQL variable t1s. This,
with the call of - to generate the definitions for tls yields:

select <result>[!tls !¢’ 1 from
<(x0)>[bks: :Book*] in [doc],
<(x1)>[tls::Title a::Author+ x2::Publisher x3::Price] in bks

where €’ is the result of the evaluation of the query p. This
being a variable defined in % fires the rule R2. Since the
row defining p only contains variables defined in %, then
the translation is as in the previous section, yielding:

select <result>[!tls
!select <auth>[!1In !fn]
from <(x0)>[books::Book*] in [doc],
<(x1)>[tls::Title a::Author+
x2: :Publisher x3::Price] in bks
<(x4)>[1n::Last fn::First] in a
1
from <(x0)>[bks::Book*] in [doc],
<(x1)>[tls::Title a::Author+ x2::Publisher x3::Price] in bks

We notice that a new form of redundancy appears as the
clauses for x0 and x1 are uselessly computed twice. This is
due to the fact that the work done for translating the in-
ner query was already done when computing the translation
of the outer query. The solution is as before, that is, we
memoize the variables already met by the translation, with
the difference that the variables to be stored are now de-
fined in € and the environment that stores them is added
to Fs-judgments.

3.2.4 Redundancy elimination for nested querieswith-
out condition

We need to modify only the R-rules, whose judgments
specify now a environment ¥ both as input and as output.
These two X’s respectively store and return all the vari-
ables defined in the construct tableau being translated, so
that these variables are taken into account (when generating
from clauses) just once. F-rules instead need no modifica-
tion, even though these rules (in particular F2) now work
on richer ¥’s that convey more information.

x € dv(F)
F,C,XFsx— (X, 2)

x & dv(F) Udv(%)
F,C,XkFs1t— Q)

(R1)

CT(x|taglk|(ar,z1)...(ak, Tk)|Tht1.--Thtn) € C

{J"j17"'7mjm} :dv(‘g)ﬂ{wlw"axk-‘-n}
F,Yho1 Fray, — (n,2h) h=1...m
F, €, Ymbsxi — (Zhe;) i=1...k+n

(R2)
T, €, %0 Fs x — (Em, select <tag ai=ei..ax=er>

[Yep+1..tepsn]l from li..0n)

(F1), (F2), (F3), (F4) asin Fig. 13

Figure 16: Memoization for nested queries without condition.

In particular, R1 and R2 are straightforwardly extended
(by adding the context environment and, for R1, return-
ing it unmodified). R2 first generates all the from clauses
needed at the top level, and then it translates possibly nested
queries under the environment ¥, which records all the vari-
able defined in the generation of the top-level from clauses.
The rules in Figure 16 translate the tableaux of Figure 15
into the following (expected) query:
select <result>[!tls

!select <auth>[!1n !fn]
from <(x4)>[1n::Last fn::First] in a
]

from <(x0)>[bks::Book*] in [doc],
<(x1)>[tls::Title a::Author+ x2::Publisher x3::Price] in bks

The rules in Figure 16 are not complete, though. A rule is
still missing. The problem is that if in rule R2 ¥¢ = 3.,
holds, then the various sub-calls to the F'-rules would not
generate any clause, thus yielding an empty from part (and
a syntax error). This in particular happens when all clauses
needed for the definition of the variables free in some con-
struct tableau were already generated. To see an instance
of the problem, it suffices to replace in Figure 15 the first
construct tableau (the one that defines the p variable), by
the following one.

<auth> Author+
P a

10

for which the sole rules of Figure 16 would return
select <result>[!tls
!select <auth>[!a]
from 1

from <(x0)>[bks::Book*] in [doc],
<(x1)>[tls::Title a::Author+ x2::Publisher x3::Price] in bks

whose syntax is incorrect since the grayed from clause is
empty. To avoid this problem it suffices to add to the rules
of Figure 16 the following rule R4 that for ¥ = 3, returns
[e] instead of "select e from _ ":

(if £o = Sm)
CT(z|taglk|(ar, z1)...(ak, Tk)|Tkt1...Thin) € C
Ljpyene ,Z‘jm} = dv(ﬁ) N {1’1,. .. ,l‘k+n}
<g,2h_1 }—f x]‘h — (lh,Zh) h=1...m
F,C,Sm s — (Xhe;) i=1...k+n

(R4)

F,C, Y0 Fs x — (Xm, [<tag a1=e1...ar=er>
[legtr. . tewsnl 1)

With this new rule the previous example translates to:

select <result>[!'tls ![<auth>[!a]l]]
from <(x0)>[bks::Book*] in [doc],
<(x1)>[tls::Title a::Author+ x2::Publisher x3::Price] in bks

3.2.5 Nested querieswith condition.

Finally, the most general case, in which ©#2 needs the
new rules C1-C7 of Figure 17. These have as input .#, ¥ and
O and generate a CQL condition C that translates the rows
that use variables in 3 (that is, variables used by the query
being translated). The output also includes the list [of
from clauses that were created during the construction of C.
These clauses are created when © uses variables not already
treated (hence, not belonging to X). Of course, we need to
keep track of these variables for subsequent analysis steps, in
order to avoid the creation of duplicated from clauses. This
explains the third output of ., an environment ¥’ that
collects all the newly encountered and treated variables.

The first two C-rules handle the base cases where there
are no conditions to create, either because ¥ is empty and
thus the query being translated does not define any new
variable (C1) or because there are no more condition rows
to translate (C2). Rule C3 handles the case where the se-
lected condition uses only one variable z and this variable
is not already defined by a from clause (i.e., z ¢ X) . This
means that the condition is not relevant for the query be-
ing created, and therefore we may drop this condition-box
row and continue with other conditions. Rule C4 handles
the case of one-variable condition where the variable was
already treated. Rules C5 and C6 are the two-variables
counterparts of C3 and CJ, respectively (in this sense C1
is an optimization of C8 and C¥%). Finally, rule C7 handles
the case of a two-variable condition, where just one of the
two variables has not been treated (it is not in). Since one
of the two variables is already defined, we have to generate
the from clauses that define the other one, which is done
by the last premise in the rule. We omitted the symmetric
cases of C3, C/, and C7 in which operands are swapped.

The R-rules are modified as well, in particular by the ad-
dition of © to the inputs and of the calls to . to generate
conditions. When these calls do not generate any condition
(rules R2, R4), then the rules work as before. If instead
the calls generate a condition C, then this is added to the
translation. Rule R$ adds C as the where clause of the
generated select expression (plus all the generated from

x € dv(F) z €Y
(R1) — (F1)
F, €, 8,0z — (2,z) F Xkpr—(2,%)
(if So # Zm) & XUdv(F) P
CT(altag|k|(a1,@1) .. (ar, @)|Tis1 - .. Thin) € C Ty o0)
{le,...,l’Jm}—dV()m{x17'~-7xk+n} ,
FBn-r by @y, = (I, 5n) F, €, Em, O Fs 2 — (X5 €) gy Afe F,rxedv(f) yef(f)nP .
F Y, O (3,9,%,) zzl...k’—|—n h=1...m (R9) 7 51 7= (pattern(f) in 1.5 Udv(/) (F3)
F,C,%0,0 Fs x — (X, select <tag ai=e1...ar=ex>
[text1...'€k+n] from ll,...,lm) g X HfGEQ,]JGdV(f) yefv(f)
ygg eg\\.][‘72UCi\/(.f)}_fy_>(l172/)
(if o #) F X trx— (l; , pattern(f) in y,Y) (F4)
CT(z|tag|k|(ar, 1) ... (ak, Tk)|Trt1 - - Thgn) €FC ’ ’ ’
{1, xjmt =dv(F)N{z1, ..., Zpqn} (1)
F Y1 by, — (h,2h) F,€,%m, 0 bz — (2, €:) F,2,0¢.(2,2,0)
T, Ym, 0k (C,1.,) izl...kz—|—n h=1...m
= , —— (£3) (C2)
F,€,%0,0 Fs v — (X', select <tag ai=ei..ar=ep> Z.%,0F. (2,0,%)
[legt+1..ertn] from li.ln,l. where C)
) B(op,xv)é@ DY
(elaglkl(er,0) - (om,20)) .50\ - [C.h) (03
CT(x|tag|k|(a1,z1) ... (ak, Tk)|Tkt1 - - - Thtn) € 5 (05]
(@0,) = V(F) N {1, T} 7,50 (CLY)
ﬁ’,Zh_l |—f J}jh — (lh,Zh) (9’%7 Zm,@ |—S r; — (E;,ei)
Z .S, OF (8,0,%,) i=1...k+n h=1...m =CB(op,z,0) €0 z€X
F.€,%0,0 (S, [<t > (B4 ’Z’@\T Gy (C4)
75 by 40, s L — my ag ai1=e1...ag=eg
[!6k+1~~-!6k+n]]) 7’ ,("‘)}_C (C and (a:opv),l,E')
(if So = Sn) =CB (Op,m1,ac2)€® T €Y 22¢%
OT(z|taglk|(a1, 1) - . . (ap,) |Ths1 - - Thsn) € F 727 O\r ke (C,1, %) ()
{lev' . .,$jm} = dv(‘g) N {xlv ce 7x1€+"} 727 @ '_C (C7l72/)
ﬁ’,Zh_l |—f J}jh — (lh,Zh) (9’%7 Zm,@ |—S Xr; — (E;,ei)
F Em, 0k (C,0,%m) r=CB(op,z1,22) €O x1 €X z2€X
i=1...ktn h=1...m) F,5,0\r k. (C,1,%) s
F,€,%0,0 Fs & — (I, if C then [<tag ai=e1...ap=er> F,3,0F. (C and (z1 op x2),1,%") (€6)
[!ekJrl S !€k+n]] else [])
r =CB(op,r1,22) €O 11 €X 22 ¢ X%
x € dv(F)Udv(¥) (R6) 7,5,0\r . (C,11,Y) F,% Ffas— (l2,X") c
ﬁ?,%,z,@}—sx—)Q) Q,E,@}—c (Cand (xlopxz) s l1,12 s Z”) (7)

Figure 17: Translation rules for nested queries with condition.

clauses). Rule R5 handles the special case in which the var-
ious sub-calls generates an empty set of from clauses (it is
the non-empty condition counterpart of rule R4) and there-
fore there is no select expression to which stick C' as a
where clause: in this case an if_then_else CQL operator
is used instead.

Bib # Book* |
doc || (zo,_) | (bks,_) |
Book # Title Author+ | Publisher | Price
bks (z1,_) | (ts1,_) (z2,_) (z3,_) (z4,_)
Entries # Entryx* |
bstore2 || (zs,_.) | (reviews,_) |

Entry # Title Price | Review
reviews || (z6,_) | (tls2,_) | (z7,_) | (zs,_)

<result> || Title CONDITION BOX

q tls1 tls1=tls2

Figure 18: Titles that appear both in doc and in bstore2.

11

The PBE query of Figure 18 defines the query Q5 of XML
Query Use Cases [8], which is interesting since it contains a

join condition tls1 = tlsa. The generation of the correspond-

ing CQL query, relies on rule C7, when the from clause for
tls1 occurring © has been created, but #ls> has not been
defined yet. The result is:

select <result>[!tlsl

from <(x0)>[bks::Book*] in [doc],
<(x1)>[tls1::Title x2::Author+ x3::Publisher x4::Price] in bks,
<(x5)>[reviews: :Entry*] in [bstore2],
<(x6)>[t1ls2::Title x7::Price x8::Review] in reviews

where tlsl=tls2

The translation of well-defined PBE queries always termi-
nates and yields well-typed CQL expressions, as stated by
the following theorem

THEOREM 3.8. Let Q = (F,%4,,0) be a PBE query.
For every © € dv(%) there exists a unique e such that the
judgment F,€,2,0 ks x — e is provable. Furthermore, if
Q 1s well defined, then e is a well-typed CQL expression (in

particular, e # Q) up to exhaustiveness of pattern match-
mng.

3.3 Further design issues

So far the interpretation of tableaux, although technically
difficult, is rather uncontroversial: the given semantics im-
plements what one intuitively expects from tableaux. There
are however some design choices that are not so obvious and
that can be interesting to allow more advanced uses of the
language. In particular, should constraints given in some fil-
ter tableau for a variable defined in a different filter tableau
apply locally or globally? Note that the latter choice is
the one done by QBE Also, should we relax the restrictions
on variables declared on multiple rows of a filter tableau,
accept rows that declare distinct variables, and considered
them as intersection patterns? For space reasons the dis-
cussion of these two options (which are easily implemented
and currently under consideration for inclusion in PBE) are
available at www.cduce.org/paper/pbe.pdf.

4. CONCLUSION AND FUTURE WORK

PBE is a graphical interface that allows users with little
or no knowledge of XPath, XQuery, or CQL to define com-
plex and optimized queries on XML documents. The only
required skill is to be able to understand XML types written
using pretty intuitive and standard conventions of type reg-
ular expressions. At road test we found the usage of PBE
quite simple and intuitive. Of course this is a subjective
view, but PBE has two objective and important advantages
with respect to other graphical query languages. The first is
that it generates queries that are provably correct with re-
spect to types. The type of the result is displayed to the user
and this constitutes a first and immediate visual yardstick
to check semantic correctness of the resulting query. The
second advantage is that its semantics is formally thus,
unambiguously—defined, and this is an important advance-
ment over some current approaches in which the standard
usage and learning methods are based on “trial and error”
techniques (a.k.a. “click and hope”).

The implementation of PBE developed in OCaml is in
alpha-testing and available at www.lri.fr/“miachon/pbe.
It relies for its graphical part on LablGTK, on the CDuce’s
type engine for computing table entries, and uses CQL as
back-end. Its kismet is its inclusion in the official CDuce dis-
tribution (www.cduce.org), but before some improvements
are still needed. Some are purely ergonomic, such as the
possibility of defining DTDs by using tableaux, the early
detection of useless filter tableaux rows (see Footnote 5),
the elimination of explicit variables by replacing them by
“drag-and-drop” techniques. Others are enhancement fea-
tures: foremost we want to allow the user to split an auto-
matically generated column into several equivalent ones (for
instance, if a user wants to capture exactly the second author
of a book, (s)he should be allowed to split the Author+ col-
umn of the first filter tableau in Figure 8 into three columns,
one for the first author, another for the second author, and

5The definition of well-defined query does not ensure that all the rows
of a filter tableau are useful. For instance, every row following a row
with all constraints equal to Any will never be used. This property
can be easily checked at construction time but its definition would
have required the introduction of several technical definitions of the
CDuce type system. We preferred to keep the definition simple, as
these errors are statically detected as soon as the query is generated
(more precisely, as soon as the pattern() funcion is called).

12

a last one for the remaining authors); but we want also de-
vise a way to express unions or complex constraints without
the necessity of writing complex type regular expressions in
filter tableau rows.

In our future plans there also is the use for PBE of dif-
ferent back-ends, in primis XQuery. Such a modification is
not straightforward because XPath selections are not as fine
grained on sequences as PBE ones. If for instance we query
a document of type <a>[B* C* B*] and insert a variable in
the first column of the corresponding filter tableau, then this
variable must be translated into an XPath expression with
a non-trivial condition that captures all B elements whose
left siblings do not include C elements.

5 REFERENCES

| V. Benzaken, G. Castagna, and A. Frisch. CDuce: an
XMIL- fnend]y general purpose language. In TCFP ’03, 8th
ACM Int. Conf. on Functional Programming, pages 51 63.
ACM Press, 2003.

[2] V. Benzaken, G. Castagna, and C. Miachon. A full
pattern-based paradigm for XML query processing. In
PADL 05, 7th Int. Symp. on Practical Aspects of
Declarative Languages, number 3350 in LNCS, pages
235-252. Springer, 2005.

[3] S. Berger, F. Bry, S. Schaffert, and Ch. Wieser. Xcerpt and
visXcerpt: From pattern-based to visual querying of XML
and semistructured data. In VLDB, pages 1053-1056, 2003.

[4] S. Boag, D. Chamberlin, M. Fernandez, D. Florescu,

J. Robie, J. Siméon, and M. Stefanescu. XQuery 1.0: An
XML Query Language. W3C Working Draft,
http://www.w3.org/TR/xquery/, May 2003.

[5] .. Bouganim, T. Chan-Sine-Ying, T-T. Dang-Ngoc, J-L.
Darroux, G. Gardarin, and F. Sha. Miro web: Integrating
multiple data sources through semistructured data types.
In The VLDB Journal, pages 750 753, 1999.

[6] D. Braga, A. Campi, and S. Ceri. “XQBE (XQuery By
Example): A visual interface to the standard XMT. query
language”. TODS, 30:398 443, 2005.

[7] M. J. Carey, .. M. Haas, V. Maganty, and J. H. Williams.
Pesto : An integrated query/browser for object databases.
In VLDB, pages 203 214, 1996.

[8] D. Chamberlin, P. Fankhauser, D. Florescu, M. Marchiori,
and J. Robie. XML Query Use Cases. Technical Report
20030822, World Wide Web Consortium, 2003.

[9] S. Cohen, Y. Kanza, Y. A. Kogan, W. Nutt, Y. Sagiv, and

A. Serebrenik. Equix easy querying in XML databases. In

WebDB (Informal Proceedings), pages 43-48, 1999.

M. Erwig. Xing: A visual XML query language. Journal of

Visual Languages and Computing, 14(1):5-45, 2003.

I. Filha, A. Laender, and A. da Silva. Querying

Semi-structured Data By Example: The QSByE Interface.

In Workshop on Information Integration on the Web, 2001.

H. Hosoya and B. Pierce. XDuce: A typed XML processing

language. ACM Transactions on Internet Technology,

3(2):117 148, 2003.

C. Miachon. Langages de requétes pour XML a base de

patterns : conception, optimisation et implantation. PhD

thesis, Université Paris Sud, 2006.

K. D. Munroe and Y. Papakonstantinou. BBQ: A visual

interface for integrated browsing and querying of XML. In

VLDB, 2000.

M. Petropoulos, Y. Papakonstantinou, and V. Vassalos.

Graphical query interfaces for semistructured data: the

QURSED system. TOIT, 5(2):390-438, May 2005.

M. Zloof. Query-by-example: A data base language. IBM

Systems Journal, 16(4):324-343, 1977.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

