
Pattern by Example: type-driven visual
programming of XML queries

Véronique Benzaken1 Giuseppe Castagna2 Dario Colazzo1 Cédric Miachon3

1Université Paris-Sud 11, LRI, Orsay - France 2CNRS - PPS, Université Paris 7, Paris - France
3Courtanet - Paris - France

ABSTRACTWe present Pattern-by-Example (PBE), a graphi
al language thatallows users with little or no knowledge of pattern-mat
hing andfun
tional programming to de�ne
omplex and optimized querieson XML do
uments. We demonstrate the key features of PBEby
ommenting an intera
tive session and then we present itssemanti
s, by formally de�ning a translation from PBE graphi-
al queries into CQL ones. The advantages of the approa
h aretwofold. First, it generates queries that are provably
orre
t withrespe
t to types: the type of the result is displayed to the userand this
onstitutes a �rst and immediate visual
he
k of the se-manti

orre
tness of the resulting query. The se
ond advantageis that a semanti
s formally�thus, unambiguously�de�ned is animportant advan
ement over some
urrent approa
hes in whi
hstandard usage and learning methods are based on �trial and er-ror� te
hniques.
KeywordsVisual programming, Database programming languages, Fun
-tional programming, Type systems.
1. INTRODUCTIONOne of the reasons, if not the main one, of the su

essof relational databases is the query language SQL. The keyfeatures that made SQL the standard query language forrelational databases are its ease of use, its formal foundationand
lear semanti
s, and its high de
larativity. This lastpoint is quite important be
ause both it makes the writingof SQL queries independent from the physi
al organizationof data and, for the same reason, makes SQL queries highlyoptimizable.As we dis
uss in the related work se
tion, a further boostto relational databases was given by the introdu
tion ofgraphi
al query languages, su
h as Query-by-Example (QBE).Despite the simpli
ity of SQL and of the relational modelthese graphi
al query languages allowed more persons to a
-
ess relational databases and in a more user friendly way.This is done without missing most of the advantages of theprevious approa
h sin
e the semanti
s of these languages isgiven by a translation into the relational algebra or
al
ulus.Nowadays there is a
lear trend to in
reasingly use XMLto make data available on the Web. Querying data in thisformat poses the same
hallenges as for relational data andeven ampli�es the problems. The arbitrary stru
tural nest-ing of XML due to its tree-based stru
ture is at the ori-gin of the absen
e of a
lear
andidate language to querybases of XML do
uments. W3C puts forward the XQuerylanguage [4℄ and other proposals su
h as XDu
e [12℄ or
CDu
e [1℄ exist. While XQuery relies on XPath to de
on-

stru
t XML trees, and on a for operator to iterate over thisde
onstru
tion the other rely on pattern-mat
hing for de
on-stru
ting values and, in the
ase of CQL, on asele
t-from-whereiterator. While XPath is good for a de
onstru
tion that nav-igates verti
ally in the do
ument it is not able to performa �ne grained sele
tion on horizontal navigation, that is onsequen
es of elements. For instan
e, imagine that we haveto sele
t in an XML do
ument bib.xml
ontaining a bibli-ography (see Figure 2 for an instan
e), all the titles of bookspublished by Addison Wesley after 1991 that have exa
tlytwo authors. In XQuery we
annot dire
tly sele
t these ti-tles but we have to stop at books' level, and then performthree subsele
tions one for authors, one for titles and onefor pri
es as in (iterator keywords are underlined)<bib> for $b indo
ument("bib.xml")/bib/book[
ount(./author)=2℄ where$b/publisher="Addison-Wesley" and $b/�year>1991 return<book year="$b/�year">$b/title </book> </bib>It would be better if we
ould
apture in a variable exa
tlythe titles of the books that mat
h the required
onditions,that is, that have a spe
i�
 given form. In fun
tional lan-guages the form of a value
an be des
ribed by patterns.Patterns then
an be used to perform horizontal sele
tion,by mat
hing them against heterogeneous sequen
es of el-ements in order to
apture only some given subparts. Forthis reason in a previous work [2℄ we proposed CQL an XMLoriented query language that
ombines the verti
al sele
tion
apabilities of XPath-like expressions with the horizontalsele
tion
apabilities of CDu
e patterns [1℄, whi
h are pat-terns designed for XML elements. In CQL the query aboveis written as<bib>sele
t <book year=y> t from<book year=y&(1992--*)>[t::Title Author Author<publisher>"Addison-Wesley" (_\Author)* ℄in load_xml("bib.xml")/Book
CQL syntax is an enri
hed form of the SQL's one: (i) inthe sele
t part we
an use fully stru
tured expressions in-stead of just relations, (ii) on the right of a � in � in from
lauses, simple relations (that is, sets of tuples) are repla
edby XPath-like expressions that allow verti
al navigation tosele
t heterogeneous sequen
es of elements and (iii) ratherthan simply
aptured by variables (as in SQL) the extra
tedsequen
e is navigated horizontally by patterns that mat
hthe sequen
e elements and
apture subparts in variables. Inthe expression above the pattern on the left of the � in �keyword sele
ts all and only the book elements whose at-tribute year is in the interval (1992,∞) and that have exa
tlytwo author subelements followed by a publisher element that
ontain the string "Addison-Wesley", this followed by any1

element (the wild-
ard �_�) that is not (the di�eren
e sign\) an author (the * denotes a regular expression that indi-
ates that there may be zero or more su
h elements);1 of thesele
ted book elements the pattern
aptures the year in thevariable y and the title in the variable t.
CQL not only makes it possible to
ombine verti
al andhorizontal navigation but provides a very pre
ise type infer-en
e and better logi
al optimizations whi
h make it moree�
ient in main memory exe
ution than major implemen-tations of XQuery [2℄. However, the use of patterns maybe di�
ult to a basi
 programmer, espe
ially in advan
ed(e.g. nested) queries. In this
ontext a graphi
al interfa
eto de�ne queries is mu
h more ne
essary than in the SQL
ase. This is the goal of our work that, mimi
king whatwas done for SQL, will �rst de�ne a tableau-based graphi-
al representation of queries for XML-do
uments and thengive its semanti
s via a translation into CQL. The ri
h stru
-ture of XML makes the task mu
h more
hallenging than forthe relational model: we do not work on a set of �xed and�at relations; instead the information we extra
t may havea
omplex stru
ture. In order to generate the table
orre-sponding to some extra
ted data our system will heavily relyon the type system. For instan
e in the query example wegave above, on
e we have extra
ted the data on books thegraphi
al interfa
e will use the type system and the givenDTD to generate a table that
ontains a
olumn for the year,another for the authors, a third for the publisher and a lastone for the pri
e: the users will then have just to �ll the
ellswith the
orresponding
onditions and
apture variables to
omplete the query.

Related workThe use of graphi
al languages for expressing queries is notnew in the database �eld. This is mainly due to the require-ment that non-expert users should be able to intera
t withthe database system while not being a
quainted with thesubtleties of the underlying query language whi
h may be
omplex to use.Query-by-Example (QBE) [16℄ is the �rst graphi
al querylanguage for relational databases. It has been developed inthe 70's by Zloof at IBM and gave rise to a wide
ategory of
ommer
ial graphi
al languages su
h as, for example, Para-dox or Mi
rosoft A

ess. The
entral
on
ept of QBE is thenotion of tableaux. A tableau is a graphi
al interfa
e (a ta-ble indeed) allowing the user to express some queries simplyby de�ning spe
i�
 variables in the table.In the
ontext of XML, many attempts to de�ne graphi-
al query languages have been proposed: QSByE (QueryingSemi-stru
tured data by Example) [11℄, XQBE [6℄, Miro-web [5℄, EQUIX [9℄, BBQ [14℄, Pesto [7℄, QURSED [15℄,X
erpt [3℄ and Xing [10℄. Due to spa
e limitations, we shallgive the spirit of these approa
hes rather than giving an ex-haustive state of the art. Hen
e, we
hoose to present XQBEXQuery by Example as it is the most
omplete language. Werefer the reader to [13℄ for a
omplete survey.Unlike QBE, rather than manipulating tableaux, XQBEmanipulates XML trees. The purpose was to o�er an in-tuitive interfa
e in order to automati
ally generate XQuery1The di�eren
e sign is used for the sake of the example but here is
ompletely useless. The DTD of �bib.xml� given in Se
tion 2.1 ensuresthat a publisher element is followed just and exa
tly by one elementof type Pri
e. Therefore a single wild
ard �_� would have su�
ed.

queries. XQBE o�ers most of XPath expressive power,2 per-mits the de�nition of nested queries, to build new elementset
. In order to give the reader a �avor of XQBE let us
onsider the following query whi
h
orresponds to query Q1of XML Query Use Cases [8℄. List all books published by�Addison-Wesley� sin
e 1991. This is exa
tly the query wepresented in the introdu
tion without the
ondition on thenumber of authors. Thus to de�ne it it su�
es to remove inthe XQuery expression the predi
ate on the path. In XQBEsu
h a query is expressed as shown in Figure 1.
Figure 1: XQBE Q1In XQBE, the workspa
e is divided in two separate zones:the sour
e spa
e (on the left) and the result spa
e (on theright). Ea
h zone
ontains labeled graphs whi
h representfragments of the XML do
ument to be pro
essed. XML ele-ments are represented by re
tangles annotated by their tag,attributes are represented by bla
k disks together with theirnames. For instan
e, on Figure 1 the sour
e zone expressesa query whi
h extra
ts all books elements <book> having anattribute year whose value is greater than 1991, and havinga
hild <publisher> with value "Addison-Wesley". In the
orresponding result spa
e, again the result is des
ribed bya tree. For our example, the graph states that the result will
onsist of all the titles of <book> elements whi
h have beensele
ted in the sour
e spa
e (su
h a binding is materializedby the ar

onne
ting the respe
tive node from sour
e toresult spa
e). These will then be en
apsulated in a uniquefresh element <bib> (the trapezoidal shape indi
ates the fa
tthat the result is
onsidered as new).Most of graphi
al query languages for XML use graph-based representations of both do
uments and queries. Theirmain limitations are that no semanti
s is formally assignedto those graphs hen
e they do not a

ount for
orre
tnessproofs of the translation (usually to XQuery) they imple-ment and last they never exploit the underlying type systemin order to yield optimized versions of the resulting queries.Unlike those, (i) we formally assign a semanti
s to ourgraphi
al tableaux-based interfa
e and (ii) formally establisha (partial)
orre
tness proof of the translation to CQL.We will pro
eed as follows. First we present in Se
tion 2the system by showing and
ommenting an intera
tive ses-sion with our prototype. To that end we also introdu
e

CQL, sin
e its regular expression types are used as
ondi-tions in the graphi
al interfa
e whose use will result in thegeneration of a CQL expression. The formal developmentfollows in Se
tion 3. In parti
ular we formally introdu
e thenotions of tableau and PBE query and de�ne their seman-ti
s by translating PBE queries into CQL queries. Sin
e thetranslation in far from being trivial we de�ne the translationin
rementally, by progressively in
reasing the
omplexity of2Apart from some fun
tions su
h as for instan
e position()2

the translated queries. This will allow us to point out themost di�
ult or subtle points of the translation. A partial
orre
tness result of this translation is also given.Throughout the presentation we use some
onventions andsynta
ti
 sugar of CDu
e/CQL, most of whi
h are quite in-tuitive and need no explanation. On the same vein, we justpresent a very simpli�ed version of the language. Spa
e
on-straints do not allow us to do a
omplete treatment, whi
hanyhow would not bring any further insight. The inter-ested reader
an
onsult the do
umentation available on the
CDu
e web site (www.
du
e.org) and try the distribution ofthe full featured language available there too.
2. A GUIDED TOURIn this se
tion we present a guided tour of PBE (Pat-tern by Example) our graphi
al query language designed tohelp non-expert users to write
omplex queries. PBE uses
CQL as a ba
k-end sin
e it generates and evaluates opti-mized CQL queries, but other ba
k-ends
an be
onsidered.A
tually, PBE
an be used independently from CQL, sin
eits usage only requires the knowledge of the types that CQLborrow from CDu
e, types that are very
lose to other typesystems for XML. However, the presentation of PBE seman-ti
s is far simpler in CQL, whi
h is the reason why we startthis presentation by an overview of CQL.
2.1 Presentation of CQLThe goal is not to give a full presentation of CQL (for thatsee [2℄) but rather to present a minimum set of features thatare enough to present PBE. The most important feature aretypes. PBE and CQL use CDu
e's types, whi
h
an be seenas a
ompa
t notation for DTDs (a
tually, for Relax-NG):Types T ::= btype | [t℄ | <tag {A}>[t℄ | Any | v

| T|T | T&T | T \ TRegEx t ::= T | t t | t|t | t? | t* | t+ | εAttrs A ::= a=TA | εTypes are either type
onstru
tors, that is: basi
 types (e.g.,Int, Bool, Char, . . .); heterogeneous sequen
es types (delim-ited by square bra
kets and whose
ontent is des
ribed bya type regular expression t); XML elements (that is, taggedsequen
es whose tag may
ontain a possibly empty list ofattribute type de
larations whi
h assign types to attributenames�ranged over by a�); Any, the type of all values; v,the singleton type that
ontains only the value v. Or theyare type
ombinators, that is, union, interse
tion, or di�er-en
e of types. Regular expression types, ranged over by t,are obtained from types and the empty string (denoted by
ε) by juxtaposition, union, and the
onstru
tors for optionalelements, possibly empty, and nonempty sequen
es.We will use some
onventions, in parti
ular the unders
ore�_" to denote Any, PCDATA to denote the regular expressiontype Char*, and String to denote the type [Char*℄. We alsouse identi�ers to denote types (and follow the
onvention of
apitalizing them), as in the following de
larationstype Bib = <bib>[Book*℄type Book = <book year=String>[Title (Author|Edit)+ Publisher Pri
e℄type Author = <author>[Last First℄type Edit = <editor>[Last First℄type Title = <title>[PCDATA℄type First = <first>[PCDATA℄type Last = <last>[PCDATA℄type Publisher = <publisher>[PCDATA℄type Pri
e = <pri
e>[Int℄

whi
h de�nes the types for the bibliography example we willuse throughout the paper.For this paper, CQL expressions are variables (ranged overby x, y, . . .),
onstants (e.g. true, 1, 2, . . . ranged over by
c), the sele
t_from_where expression, the
onstru
tors forsequen
es (a juxtaposition of blank-separated expressionsdelimited by square bra
kets), and XML elements (a se-quen
e expression e labeled by a tag and a possibly emptyset of attributes), banged expressions !e (whi
h �opens�the sequen
e e so that, for instan
e, if e1, e2, . . . , en are se-quen
es, then [!e1 !e2 . . . !en℄ returns their
on
atenation),and operators (e.g. =, >, max, if_then_else, ...). Values,ranged over by v, are
losed expressions that do not
ontain�sele
t�, operators, or banged sub-expressions.
e ::= x | c | [e . . . e℄ | <tag a=e . . . a=e>e | !e | op(e, .., e)

| sele
t e from p in e, . . . ,p in e where eThe expression sele
t es from p1in e1,...,pnin en where ewdeserves explanation. The expression ew in the where
lausemust be of boolean type, while the expressions ei's in thefrom
lauses must return sequen
es. Sele
t iterates on thesesequen
es mat
hing ea
h element of ei against the
orre-sponding pattern pi. Pattern variables
apture subparts ofthe mat
hing elements and these variables
an then be usedin es or in the su

essive from
lauses. The result of a sele
tis the sequen
e of evaluations of the expression es in the en-vironments obtained by iterating on the from
lauses.Patterns are nothing but types with
apture variables.We distinguish two kinds of patterns for
apture variables:�simple variables patterns� that have the form of a variableand
an o

ur wherever a type
an, and �sequen
e
apturepatterns� that have the form x::t,
an o

ur wherever aregular expression type
an, and
apture in x the sequen
eof all values mat
hed by the regular expression t. So in the
CQL query given in the introdu
tion y is a simple
apturevariable (the interse
tion of two patterns su

eeds only ifea
h pattern su

eeds, therefore y
aptures the value of at-tribute year only if this is of type 1992--*), while t
apturesthe sequen
e of all titles of the book (in this
ase just one).Di�erently from union types, that are symmetri
, union pat-terns implement a �rst mat
h poli
y: the right pattern is
he
ked only if the left one fails. So, for instan
e when thepattern [(x::Author|_)*℄ is mat
hed against a sequen
e it
aptures in x the sequen
e of all (values of type) authorspresent in it (if an element is of type Author, then it is
ap-tured by x, otherwise is dis
arded by mat
hing it againstthe wild
ard �_��i.e. the type Any).We apply the
onvention to use single quotes to delimit
hara
ters and double quotes to delimit strings (whi
h aresequen
es of
hara
ters). For formal and
omplete de�ni-tions of the syntax, the semanti
s, and the typing of CQLthe reader
an refer to [2℄.
2.2 A tour of PBEWe demonstrate PBE by querying the do
ument in Fig-ure 2 and assuming that it
onforms to the CDu
e typeBib de�ned by the de
larations given in the previous se
-tion (from whi
h we omit Edit in order to limit the size of�gures) that we will have entered in the tab �Data� of ourPBE interfa
e, visible in Figures 3�11. 3Queries are expressed by means of tableaux. Two di�erentkinds of tableaux are presented: Filter tableaux and Con-3De
larations are generated from a DTD by the program dtd2
du
e.3

<bib><book year="1995"><title>TCP/IP Illustrated</title><author><last>Stevens</last><first>W.</first></author><publisher>Addison-Wesley</publisher><pri
e>65</pri
e></book><book year="1992"><title>Advan
ed Programming in Unix</title><author><last>Stevens</last><first>W.</first></author><publisher>Addison-Wesley</publisher><pri
e>65</pri
e></book><book year="2000"><title>Data on the Web</title><author><last>Abiteboul</last><first>Serge</first></author><author><last>Buneman</last><first>Peter</first></author><author><last>Su
iu</last><first>Dan</first></author><publisher>Morgan Kaufmann Publishers </publisher><pri
e>39</pri
e></book></bib> Figure 2: referen
e XML do
umentstru
t tableaux. The former are used for extra
ting infor-mation (they are entered in the upper half of the interfa
e),while the latter are used for building the sequen
e of XMLvalues that
onstitutes the result of the query (they are en-tered in the lower half of the interfa
e). PBE tableaux allowfor expressing a wide variety of queries. Let us start witha simple query: �return all books in the bibliography�. As-sume that the do
ument to be queried is stored in the do
(persistent) variable. The �lter tableau o�ers a list of persis-tent XML do
uments and the user will
hoose among themthe do
 variable as shown in the left part of Figure 3.

Figure 3: Filter tableau
reationOn
e the do
ument is sele
ted, PBE displays the �lter tableauasso
iated to the type of do
 (i.e., Bib) as shown in Figure 4.The
olumn marked by a # symbol represents the tag whi
h
an be tested and
aptured4 while the fa
t that the
ontent4In the full version of CQL/CDu
e XML tags are full �edged ex-

of Bib elements is a sequen
e of Book elements (re
all, Bib= <bib>[Book*℄) is represented by Book*. In the row, PBEprovides fresh variables x1, x2 to
apture the
orrespond-ing
omponents and a default (type)
onstraint Any whi
his always satis�ed
Figure 4: Filter tableau for do
The user who wants to
apture all the books of the bibliog-raphy do
 in a variable books (Figure 5), has just to de
larethis variable in the
orresponding
olumn (the one labeledby Book*). The right part of the
ell remains un
hanged(Any), sin
e we do not need to express further
onstraintson variable books.

Figure 5: Adding variable books in the �lter tableauGetting and, presumably, re-stru
turing the result is per-formed by means of a
onstru
t tableau that is de�ned inthe lower part of the window as illustrated in Figure 6.Constru
t tableaux are de�ned by adding new
olumns and�lling the
ells by using the variables introdu
ed in the othertableaux. From the
ontent that is �lled in a
ell, PBE de-du
es and inserts the type that labels the
orresponding
olumn. Not only does the
onstru
t tableau indi
ates howthe result is re-stru
tured (here we
hoose to en
apsulate allbooks in a <result> tag) but it also provides a fresh vari-able q1 that denotes the query so that it
an be later reused(e.g. for de�ning nested queries).Cli
king on the �View query� button right below a
onstru
ttableau, makes PBE
ompute and display in the �Queries�tab the
orresponding CQL query and its result (Figure 7).PBE also infers that the type of q1 is [<result>[Book*℄*℄,an information useful in
ase q1 was reused in other queries.As with any other variable, q1
an be reused by sele
ting it inthe pull down menu of Figure 3 to whi
h it is automati
allyadded at the moment of its de�nition.This �rst example was very simple. We shall now presenttwo more advan
ed examples that illustrate (i) how to pro-gram nested queries and (ii) what is the use of several rowspressions that
an
ontain namespa
es and have arbitrary
om-plex types su
h as type AorB = <(`a|`b)>[Any*℄.4

Figure 6: Constru
t tableau
reation for q1

Figure 7: CQL
ode and result for q1.in a �lter tableau. Imagine that we want to de�ne a querythat returns a sequen
e of elements tagged by <entry> whereea
h su
h element
orresponds to a book of our examplebibliography and
ontains its title element as well as theauthors' last name elements en
apsulated in a <auth> tag.While the plain English semanti
s is a little bit twisted, themeaning should be quite
learer by looking at how the queryis expressed in Figure 8.The �rst �lter tableau is de�ned for the books variablethat was introdu
ed (and automati
ally added in the pull-down menu) by the previous query, and extra
ts in titleand a the list of titles (well, just one) and of authors ofea
h book, respe
tively. This row
aptures for ea
h bookthe relationship between its title and its authors. In orderto extra
t for ea
h author in a his/her last-name we usea se
ond �lter tableau whi
h
aptures in the variable lastthe
orresponding information. To en
apsulate ea
h <last>element in a tag <auth>, we de�ne the
onstru
t tableau q3.

Figure 8: A nested PBE queryThis tableau is then reused in the
onstru
t tableau of thequery q4, in whi
h the title is requested as well as the resultof q3 for this title.The de�nitions of the queries q3 and q4 and their respe
-tive results are shown in Figure 9. When it is exe
uted

Figure 9: CQL
ode for queries q3 and q4standalone q3 returns a single list
ontaining all the authorsin the bibliography (sin
e in that
ase a is bound to all au-thors), as shown in the �rst � Result � se
tion of Figure 9.Instead when it used inside q4 the query q3 en
apsulates5

the authors of the book
urrently sele
ted by the outer it-eration. It is important to noti
e that q3 does not o

ur inthe
ode for q4. As a matter of fa
t, it would be wrong to doit, as the
ode that o

urs in q4 at the position of q3 is notthe
ode de�ned for q3 as a stand-alone query. Indeed whengenerating the
ode q4 PBE must generate
ustom
ode forthe
all of q3, that takes into a

ount the environment inwhi
h the nested query is evaluated. The te
hnique we useto keep tra
k of the environment in whi
h nested queriesare
alled and to minimize the number of possible patternsneeded for expressing the query are formally explained fromSe
tion 3.2.3 on.

Figure 10: Multiple rows tableauOur last example illustrates the use of several rows in a�lter tableau. Assume that we want to sele
t the bookswhose title begins either by letter �T� or by letter �D�.These
onstraints are expressed in the CQL type algebra respe
-tively as ['T' _*℄, ['D' _*℄. Their �or� is obtained by thetableaux in Figure 10, sin
e in PBE multiple rows are inter-preted as union patterns. Note that ea
h row de
lares thesame variables: rows di�er only for their
onstraints (seealso De�nition 3.2 whi
h enfor
es this property). It is worthstressing that by using the knowledge of the DTD and thestated
onstraints of the �lter tableau, PBE dedu
es type :['D'|'T' Char*℄ for the
apture variable text in the
on-stru
t tableau. The CQL query generated by the systemand its result are given on Figure 11.
Figure 11: Result of the multi-row query

3. FORMAL DEVELOPMENTIn this se
tion we give the the formal de�nition of PBEby �rst pre
isely de�ning its syntax and then stating itssemanti
s via a translation into CQL.
3.1 PBE syntaxThe syntax of PBE is
onstituted by three distin
t kindsof tableaux, �lter tableaux and
onstru
t tableaux that wereinformally presented in the previous se
tion, and
onditiontableaux (or
ondition boxes). Let us dis
uss ea
h of them.
3.1.1 Filter tableauxFilter tableaux are tables in whi
h (i) rows are labeledby already de�ned variables, (ii)
olumns are labeled by at-tribute names, by a hash sign (exa
tly one
olumn), and/orby type regular expressions and (iii)
ells
ontain fresh vari-ables and regular expression type
onstraints. For instan
e,in the previous se
tion we de�ned the following tableauBook # Title Author+ Publisher Pri
ebooks (x1,t1) (x2,t2) (x3,t3) (x4,t4) (x5,t5)whi
h �lters the elements that
ompose the sequen
e de-noted by the variable books. The user de�nes only the
ontent of the row, the rest (that is the number of
olumnsand their labels) are automati
ally dedu
ed from the type of�ltered variable books, that is Book. But how is that PBEde
ided to insert a single
olumn labeled Author+ insteadof�equivalently�, say, three
olumns respe
tively labeledAuthor?, Author, Author*? The reason to prefer the formerto the latter should be pretty
lear: we want to minimize thenumber of �lter
olumns in order to use as few variables aspossible. In order to formalize the way in whi
h this
hoi
eis made, we need the de�nition of sequen
e maximal produ
t.First noti
e that every type regular expression t is of theform R1R2 . . . Rn (with n≥1) where Ri's are type regularexpressions di�erent from the juxtaposition. Let us
all
R1 . . . Rn the expanded form of t. Noti
e also that every
Ri in an expanded form is of the form tR◦ (where ◦ is either*, +, ?, or the empty string�in the latter
ase tR is either aregular expression union or a type): we
all tR the base of
R. Finally, we write T1 ≃ T2 if and only if T1 and T2 denotethe same type (e.g. [(A|B) C℄≃[(A C)|(B C)℄; see [1℄ forde�nition).Definition 3.1. Let R1 . . . Rn be a type regular expres-sion in its expanded form and let us denote the base of
Ri by tRi

. R1 . . . Rn is a sequen
e maximal produ
t if[tRi
℄ 6≃ [tRi+1

℄ for i = 1...(n−1).For example, � B* B+ C B � is not a maximal produ
t sin
ethe �rst two elements have the same base. There existsa naive algorithm to transform every type regular expres-sion into a maximal produ
t and
onsisting in merging
on-se
utive expressions with the same base (e.g., � t* t � be-
omes t+ and � B* B+ C B � be
omes � B+ C B �). There-fore, hen
eforward we
onsider all type regular expressionsbe maximal produ
ts. Noti
e, however, that this is just asynta
ti
 property with no semanti
 impli
ation. It heav-ily depends on way the user wrote DTD's for data: for in-stan
e, � (A|B)* (A*C+|B*C+) � is a maximal produ
t al-though � (A|B)* C+ � would be a smarter denotation.Definition 3.2. Let T be an XML type, a �lter tableauasso
iated to T is:6

T # a1 · · · ak R1 · · · Rn

y (x0, t1
0
) (x1, t1

1
) · · · (xk, t1

k
)(xk+1, t1

k+1
) · · · (xk+n, t1

k+n
)...

y (x0, tm0) (x1, tm1) · · · (xk, tm
k

)(xk+1, tm
k+1

) · · · (xk+n, tm
k+n

)where1. y is a variable of type [T*℄ or a persistent root oftype T ,2. T = <tag {a1=T1 . . . ak=Tk}>[R1 . . . Rn℄,3. R1 . . . Rn is a maximal produ
t,4. xj are fresh variables (j = 0 . . . k + n),5. ti
j are regular expression types (i = 1..m, j = 0..k +n).Hen
eforth we will mainly work on what we
all (improperlyin the
ase of �lter tables) rows of a tableau and we use thefollowing
ompa
t notation to denote the (set of) row(s) ofa �lter tableauFT(y|tag|k|(x0, ~t0)|(x1, ~t1) . . . (xk , ~tk)|(xk+1, ~tk+1) . . . (xk+n, ~tk+n))where tag is the tag of the XML type asso
iated to y, k thenumber of its attributes and ea
h ~ti represent the ve
tor

t1i , . . . , t
m
i

3.1.2 Construct tableauxA
onstru
t tableau is a single row table that de�nes thestru
ture of the result of a query. The user spe
i�es the tagin whi
h the result must be en
apsulated and adds as many
olumns as (subsequen
es of) elements in the result. Ea
helement is spe
i�ed by �lling the
ell in the
orresponding
olumn with a variable whose type will determine the la-bel of the
olumn. For instan
e, the
onstru
t tableau ofFigure 10 is: <title> [('D'|'T') Char* ℄q5 textIn general, users
an de�ne not only the tag of the resultbut also its attributes, whi
h yields the de�nition:Definition 3.3. If x1, ..., xk+n are variables, a1, ..., ak areattribute names and tag is an expression denoting a tag, thenthey de�ne the following
onstru
t tableautag a1 · · · ak R1 · · · Rn

y x1 · · · xk xk+1 · · · xk+nwhere Ri is the (regexp) type of xk+i (i = 1 . . . n−k) and y afresh variable of type [(<tag {a1=t1 . . . ak=tk}>[R1 . . . Rn℄)*℄.As we did for �lter tableaux we introdu
e a
ompa
t nota-tion to denote a row of
onstru
t tableau, that is
CT (y|tag|k|(a1, x1) . . . (ak, xk)|xk+1 . . . xk+n),where k is the number of attributes.

3.1.3 Condition BoxPBE
ondition boxes are the same as in QBE, that is, theyCONDITION BOX
e1...
en

are used to spe
ify
onstraints. Inparti
ular,
ondition boxes are usefulfor de
laring join
onditions betweentwo variables. Condition boxes are ofthe form as shown on the side, that isthey are single
olumn tables whoserows
ontain a CQL expression of boolean type. Usuallythese expressions are appli
ations of operators to variables,

su
h as the equality of two variables x=y (a typi
al
onditionused for joins) or to a variable and
onstants, su
h as y>5. Aswe did for �lter and
onstru
t tableaux we introdu
e somespe
ial notation to re
ord rows of
ondition boxes. For thesake of the presentation we
onsider just a very spe
ial
aseof
onditions formed by the appli
ation of a binary booleanoperator to either variables or values. Then a row of a
on-dition box
ontaining expression e1 op e2 will be representedas CB(op, e1, e2).
3.1.4 PBE QueriesDefinition 3.4. A PBE query is de�ned by a non-emptyset of persistent roots, a �nite set of �lter tableaux, a �nitenon-empty set of
onstru
t tableaux, and an optional
ondi-tion box.In order to be well de�ned every free variable used in a querymust be either a persistent root or de�ned elsewhere. Noti
ealso that in the result of a query (i.e. in a
onstru
t tableau)we do not let the user spe
ify general expressions but justvariables (it is a design
hoi
e); therefore we also require thatno persistent root appears free in a
onstru
t tableau, sin
ethis would be the same as spe
ifying a
onstant. In orderto formally state when a PBE query is
orre
tly de�ned weneed to introdu
e the notions of free and de
lared variablesof a tableauDefinition 3.5. Let f , c, and d denote the following threegeneri
 obje
ts: f = FT(y|tag|k|(x0,~t0)|(x1,~t1) . . . (xk,~tk)|
(xk+1,~tk+1) . . . (xk+n,~tk+n)), c = CT(y|tag|k|(a1, x1) . . .

(ak, xk)|xk+1 . . . xk+n), and d = CB(op, e1, e2). The freeand de
lared variables of these obje
ts respe
tively are
fv(f) = {y}
fv(c) = {x1 . . . xk+n}
fv(d) = var(e1)∪var(e2)

dv(f) = {x0 . . . xk+n}
dv(c) = {y}
dv(d) = ∅where var denotes the fun
tion that returns the free variablesof a CQL expression.If O is a set of obje
ts, then we denote by fv(O) and dv(O)the union of the respe
tive sets of free and de
lared variablesof its obje
ts.Definition 3.6. For a given PBE query let us denote by

P the set of its persistent roots, by F the set of all rows ofits �lter tableaux, by C the set of all rows of its
onditiontableaux and by Θ the rows of a possible
ondition box. Thequery is well de�ned if and only if1. fv(F) ∪ fv(C) ∪ fv(Θ) ⊆ dv(F) ∪ dv(C) ∪ P2. fv(C) ∩ P = ∅Note that the freshness
onditions in tableaux de�nitionsensure that every variable is de
lared in one and only onetableau row that it univo
ally identi�es.
3.2 SemanticsThe semanti
s of PBE is de�ned via an (e�e
tive) transla-tion from PBE queries (more pre
isely, from variables denot-ing PBE queries) to CQL queries. The translation is de�nedin form of inferen
e rules. For the sake of presentation, thetranslation is introdu
ed gradually in several steps: �rst,we de�ne a naive translation for unnested queries without
ondition box. Then, we observe that the de�nition
re-ates some redundan
ies and modify the translation to avoidthem. Next we add nested queries, that is, PBE querieswith several interrelated
onstru
t tableaux and, �nally, the
ondition box.7

3.2.1 Unnested queries without conditionLet P , F , C , and Θ be de�ned as in De�nition 3.6. Westart by
onsidering the
ase in whi
h both Θ and fv(C) ∩
dv(C) are empty (no
ondition and no nesting).CT(x|tag|k|(a1, x1) . . . (ak, xk)|xk+1 . . . xk+n) ∈ C

F ⊢f xi → li i = 1 . . . k+n

F , C ⊢s x → sele
t <tag a1=x1 . . . ak=xk>[!xk+1 . . . !xk+n℄ from l1, . . . , lk+n

(R2)
∃f ∈ F , x ∈ dv(f) y ∈ fv(f) ∩ P

F ⊢f x → pattern(f) in [y℄ (F3)
∃f∈F , x∈dv(f) y∈fv(f) y 6∈P F\f ⊢f y → l

F ⊢f x → l , pattern(f) in y
(F4)

x 6∈ dv(C)

F , C ⊢s x → Ω
(R6) x 6∈ dv(F)

F ⊢f x → Ω
(F2)Figure 12: Naive translation of unnested queries without
ondition.The inferen
e rules are given in Figure 12. The mainjudgment is F , C ⊢s x → e whi
h translates a variable

x identifying a query�that is, a variable de
lared by arow in C�into a CQL query e. This is done in rule R2whi
h straightforwardly generates the sele
t
lause (justnoti
e that element variables are banged sin
e they denotesequen
es) and relies on a new form of judgment to generatethe from
lauses. A judgment F ⊢f x → l generates a list
l of from
lauses of the form � p in e �, where p is a CQLpattern and e is a CQL expression whose form is either [y℄or y. As we assume that there are no nested queries, then allvariables free in C must be de
lared by one (and only one)row in F (re
all that these variables
annot be persistentroots). For this reason we just need two rules to generatethe from
lauses: we use F3 when the free variable of the
F -row at issue is a persistent root (in whi
h
ase we
anstop the sear
h sin
e the variable is
ompletely de�ned); weuse F4 when the free variable of the F -row at issue is a
apture variable de�ned in some other row (in whi
h
asewe have to �nd this row and re
all the judgment ⊢f un-der an environment F from whi
h this row is removed�toavoid loops�in order to generate the
lauses l that de�nethis variable: these
lauses must pre
ede the de�nition ofthe variable, of
ourse). Finally the pattern
orrespondingto a �lter tableau row is generated by the fun
tion pattern()whi
h has the following de�nition.Definition 3.7. Let f be a �lter tableau row of the formFT(y|tag|k|(x0, ~t0)|(x1, ~t1)..(xk, ~tk)|(xk+1, ~tk+1)..(xk+n, ~tk+n)),where y is of type either <s0{a1=s1..ak=sk}>[R1..Rn℄ (i.e.,
y is a persistent root), or [<s0{a1=s1..ak=sk}>[R1..Rn℄*℄(i.e., y is a
apture variable), and m denotes the arity ofthe various ~ti's. Then pattern(f) = p1| . . . |pm where, forj=1..m, pj is de�ned as:<(x0&tj

0&sj
0) a1=x1&tj

1&sj
1 . . . ak=xk&tj

k&sj

k>[
xk+1::s

j

k+1
. . . xk+n::sj

k+n℄where for i = 1..n

s
j
i+k =



t
j

i+k&Ri if Ri is a type
t
j

i+k&[Ri℄ otherwiseThe j-th row of a �lter table generates the pattern pj
om-posing a union pattern. In ea
h pj , if xi is a variable that

aptures an attribute, then the pattern asso
iated to xi is
ai=xi&tj

i . Otherwise we use regular expressions and thepattern is xi+k :: s
j
i+k. The s

j
i+k is di�erent a

ording tothe form of the regular expression type Ri. In the
ase

Ri is a type (e.g. the type regular expression Title), then
s

j

i+k = t
j

i+k&Ri, otherwise (e.g. the type regular expressionBook*, whi
h is not a type) s
j

i+k = t
j

i+k&[Ri℄.Finally, rules R6 and F2 expli
itly manage the
ase ofill-de�ned PBE queries by generating an error, denoted by
Ω.Let us follow the translation on a PBE query q that groupsthe title and the pri
e of ea
h book in do
 under a new tag<result> and is de�ned as followsBib # Book*do
 (x0, _) (bks, _)Book # Title Author+ Publisher Pri
ebks (x1, _) (tls, _) (x2, _) (x3, _) (pr
, _)<result> Title Pri
eq tls pr
Formally C = {CT(q|result|0| |tls pr
)}, F = {FT(do
|bib|0|(x0, Any)| |(bks, Any)),FT(bks|book|0|(x1, Any)|(tls, Any)
(x2, Any)(x3, Any)(pr
, Any))}, Θ = ∅.Rule R2 is evaluated �rst sin
e there exists a row in Cwhi
h de
lares the query q. Thus we have:. C , F ⊢s q → sele
t <result> [!tls !pr
 ℄ from l1,l2Sin
e tls is based on the variable bks whi
h is not a persis-tent root, then for the
omputation of l1
orresponding totls we apply rule F4, whi
h gives:
F ⊢f tls → l3,<(x1)>[tls::Title x2::Author+x3::Publisher pr
::Pri
e℄ in bksTo
ompute l3 we repeat the operation on bks whi
h beingbased on the persistent root do
 triggers F3 :

F ⊢f bks → <(x0)> [bks::Book* ℄ in [do
℄Thus l1 denotes the list:<(x0)>[bks::Book* ℄ in [do
℄,<(x1)>[tls::Title x2::Author+ x3::Publisher pr
::Pri
e℄ in bksand the same
omputation gives for l2:<(x0)>[books::Book* ℄ in [do
℄,<(x1)>[tls::Title x2::Author+ x3::Publisher pr
::Pri
e℄ in bksIn
on
lusion the rules of Figure 12 translate the PBE query
q into the following CQL query:sele
t <result> [!tls !pr
 ℄ from<(x0)>[bks::Book* ℄ in [do
℄,<(x1)>[tls::Title x2::Author+ x3::Publisher pr
::Pri
e℄ in bks,<(x0)>[bks::Book* ℄ in [do
℄,<(x1)>[tls::Title x2::Author+ x3::Publisher pr
::Pri
e℄ in bksIt is
lear that half of the lines in the from
lauses are useless.This redundan
y is due to the fa
t that the rules
omputeseveral times the
lauses that de�ne the variables tls andpr
. To avoid this dupli
ation we add a new memoizationenvironment that re
ords the set of variables already de�nedduring the dedu
tion, as we show in the next se
tion.
3.2.2 Redundancy elimination for unnested queries

without conditionThe rules in Figure 13 de�ne a modi�
ation of the previ-ous translation that eliminates the redundan
y we pointedout, by using in the ⊢f -judgments a new environment Σthat stores the variables o

urring in patterns returned by
pattern().The rules F3 and F4, besides returning the list of
lauses l,8

CT(x|tag|k|(a1, x1)...(ak, xk)|xk+1...xk+n) ∈ C

F , Σi−1 ⊢f xi → (li, Σi) Σ0=∅ i=1..k+n

F , C ⊢s x → sele
t <tag a1=x1...ak=xk>[!xk+1 . . . !xk+n℄ from l1, . . . , lk+n

(R2)
x ∈ Σ

F , Σ ⊢f x → (∅, Σ)
(F1)

x 6∈ Σ ∃f ∈ F , x ∈ dv(f) y ∈ fv(f) ∩ P

F , Σ ⊢f x → (pattern(f) in [y℄, Σ ∪ dv(f))
(F3)

x 6∈ Σ ∃f ∈ F , x ∈ dv(f) y ∈ fv(f) y 6∈ P

F\f, Σ ∪ dv(f) ⊢f y → (li, Σ
′)

F , Σ ⊢f x → (li , pattern(f) in y,Σ′)
(F4)

x 6∈ dv(C)

F , C ⊢s x → Ω
(R6) x 6∈ Σ ∪ dv(F)

F , Σ ⊢f x → Ω
(F2)Figure 13: Memoization for unnested queries without
ondition.they now also return a new environmentΣ that that enri
hesthe
urrent one with the variables de�ned in l.The overall re
ording of the de�ned variables is performedin the rule R2 by the premises F , Σi−1 ⊢f xi → (li, Σi)where the Σi's are used as a

umulators. Ea
h Σi indeed
ontains all variables de�ned in the pre
eding environments,that is in any Σk, su
h as k < i (where Σ0 = ∅). The lastenvironment Σn will then
ontain all the de�ned variables.The elimination of redundan
y is then
ru
ially performedby the new rule F1 whi
h returns an empty set of from
lauses in the
ase where the variable to be sought is alreadyde�ned�that is, it belongs to Σ�: in this
ase there isno
lause l to add in the
onstru
tion of the query as allde�nitions are already present. Rule F2 is straightforwardlymodi�ed.By applying these rules to the example of the previousse
tion we obtain the following CQL querysele
t <result> [!tls !pr
 ℄ from<(x0)>[bks::Book* ℄ in [do
℄,<(x1)>[tls::Title x2::Author+ x3::Publisher pr
::Pri
e℄ in bkswhi
h is indeed the one we expe
ted.

3.2.3 Nested queries without conditionWe extend the previous translation to a

ount for nestedqueries, that is, queries whose
onstru
t tableaux de
larevariables free in other
onstru
t tableaux (fv(C)∩dv(C) 6=∅).Intuitively, when during the translation of a query wemeet a variable, we must
he
k whether this variable is de-
lared in a �lter tableau (it is in dv(F)) or in a
onstru
ttableau (it is in dv(C)). In the former
ase we must pro-
eed as before, that is, insert the variable as it is in thesele
t expression and generate the from
lauses that de�neit. In the latter
ase, instead of inserting the variable in thesele
t expression we have to insert the query generated byre
ursively
alling the translation.This is done by modifying the R-rules for ⊢s (the F -rules,whi
h are for ⊢f -judgments, do not
hange) as shown in Fig-ure 14. In parti
ular this is done in rule R2 whi
h for ea
h
xi (independently from whether it is in dv(F) or in dv(C))
alls for its translation (premises F , C ⊢s xi → ei). If thevariable is de
lared in a �lter tableau, this results in
alling

x ∈ dv(F)

F , C ⊢s x → x
(R1)CT(x|tag|k|(a1, x1)...(ak, xk)|xk+1...xk+n) ∈ C

{xj1 , . . . , xjm
} = dv(F) ∩ {x1, . . . , xk+n}

F , C ⊢s xi → ei i=1..k+n

F , Σh−1 ⊢f xjh
→ (lh, Σh) h=1..m Σ0=∅

F , C ⊢s x → sele
t <tag a1=e1 . . . ak=ek>[!ek+1 . . . !ek+n℄ from l1, . . . , lm

(R2)
x 6∈ dv(F) ∪ dv(C)

F , C ⊢s x → Ω
(R6)(F1), (F2), (F3), (F4) as in Fig. 13Figure 14: Translation rules for nested queries without
ondition.the new rule R1 whi
h returns the variable (now
onsid-ered as a CQL expression), otherwise the rule R2 is
alledon the new variable and the
orresponding CQL expressiongenerated. The rule also generates the from
lauses for thevariables that are in dv(F), by the same te
hnique as before.The rule R6 is modi�ed sin
e variables free in a
onstru
ttableau may now be de�ned in another
onstru
t tableau(this modi�
ation is not ne
essary for F2).Bib # Book*do
 (x0, _) (bks , _)Book # Title Author+ Publisher Pri
ebks (x1, _) (tls , _) (a, _) (x2, _) (x3, _)Author # Last Firsta (x4, _) (ln , _) (fn, _)<auth> Last Firstp ln fn<result> Title <auth>[Last First℄q tls pFigure 15: Return titles and authors in a new element <result>,where the tag auth repla
es the tag author.Let us apply the translation to the tableaux of Figure 15whi
h
ontains nested
onstru
t tableaux:

C = {CT(q|result|0| |tls p) CT(p|auth|0| |ln fn)}.To translate the query q we apply R2 and in parti
ularevaluate F , C ⊢s tls → e′ and F , C ⊢s p → e′′. Sin
etls is de�ned in F , then e′ is the CQL variable tls. This,with the
all of ⊢f to generate the de�nitions for tls yields:sele
t <result>[!tls !e′′ ℄ from<(x0)>[bks::Book* ℄ in [do
℄,<(x1)>[tls::Title a::Author+ x2::Publisher x3::Pri
e℄ in bkswhere e′′ is the result of the evaluation of the query p. Thisbeing a variable de�ned in C �res the rule R2. Sin
e therow de�ning p only
ontains variables de�ned in F , thenthe translation is as in the previous se
tion, yielding:sele
t <result>[!tls!sele
t <auth>[!ln !fn℄from <(x0)>[books::Book*℄ in [do
℄,<(x1)>[tls::Title a::Author+x2::Publisher x3::Pri
e℄ in bks<(x4)>[ln::Last fn::First℄ in a℄from <(x0)>[bks::Book* ℄ in [do
℄,<(x1)>[tls::Title a::Author+ x2::Publisher x3::Pri
e℄ in bks9

We noti
e that a new form of redundan
y appears as the
lauses for x0 and x1 are uselessly
omputed twi
e. This isdue to the fa
t that the work done for translating the in-ner query was already done when
omputing the translationof the outer query. The solution is as before, that is, wememoize the variables already met by the translation, withthe di�eren
e that the variables to be stored are now de-�ned in C and the environment that stores them is addedto ⊢s-judgments.
3.2.4 Redundancy elimination for nested queries with-

out conditionWe need to modify only the R-rules, whose judgmentsspe
ify now a environment Σ both as input and as output.These two Σ's respe
tively store and return all the vari-ables de�ned in the
onstru
t tableau being translated, sothat these variables are taken into a

ount (when generatingfrom
lauses) just on
e. F -rules instead need no modi�
a-tion, even though these rules (in parti
ular F2) now workon ri
her Σ's that
onvey more information.
x ∈ dv(F)

F , C , Σ ⊢s x → (Σ, x)
(R1) x 6∈ dv(F) ∪ dv(C)

F , C , Σ ⊢s x → Ω
(R6)CT(x|tag|k|(a1, x1)...(ak, xk)|xk+1...xk+n) ∈ C

{xj1 , . . . , xjm
} = dv(F) ∩ {x1, . . . , xk+n}

F , Σh−1 ⊢f xjh
→ (lh, Σh) h = 1 . . . m

F , C , Σm ⊢s xi → (Σ′

i, ei) i = 1 . . . k+n

F , C , Σ0 ⊢s x → (Σm, sele
t <tag a1=e1..ak=ek>[!ek+1..!ek+n℄ from l1..lm)

(R2)(F1), (F2), (F3), (F4) as in Fig. 13Figure 16: Memoization for nested queries without
ondition.In parti
ular, R1 and R2 are straightforwardly extended(by adding the
ontext environment and, for R1, return-ing it unmodi�ed). R2 �rst generates all the from
lausesneeded at the top level, and then it translates possibly nestedqueries under the environmentΣm whi
h re
ords all the vari-able de�ned in the generation of the top-level from
lauses.The rules in Figure 16 translate the tableaux of Figure 15into the following (expe
ted) query:sele
t <result>[!tls!sele
t <auth>[!ln !fn℄from <(x4)>[ln::Last fn::First℄ in a℄from <(x0)>[bks::Book* ℄ in [do
℄,<(x1)>[tls::Title a::Author+ x2::Publisher x3::Pri
e℄ in bksThe rules in Figure 16 are not
omplete, though. A rule isstill missing. The problem is that if in rule R2 Σ0 = Σmholds, then the various sub-
alls to the F -rules would notgenerate any
lause, thus yielding an empty from part (anda syntax error). This in parti
ular happens when all
lausesneeded for the de�nition of the variables free in some
on-stru
t tableau were already generated. To see an instan
eof the problem, it su�
es to repla
e in Figure 15 the �rst
onstru
t tableau (the one that de�nes the p variable), bythe following one. <auth> Author+p a

for whi
h the sole rules of Figure 16 would returnsele
t <result>[!tls!sele
t <auth>[!a℄from ℄from <(x0)>[bks::Book* ℄ in [do
℄,<(x1)>[tls::Title a::Author+ x2::Publisher x3::Pri
e℄ in bkswhose syntax is in
orre
t sin
e the grayed from
lause isempty. To avoid this problem it su�
es to add to the rulesof Figure 16 the following rule R4 that for Σ0 = Σm returns[e℄ instead of "sele
t e from ":(if Σ0 = Σm)CT(x|tag|k|(a1, x1)...(ak, xk)|xk+1...xk+n) ∈ C

{xj1 , . . . , xjm
} = dv(F) ∩ {x1, . . . , xk+n}

F , Σh−1 ⊢f xjh
→ (lh, Σh) h = 1 . . . m

F , C , Σm ⊢s xi → (Σ′

i, ei) i = 1 . . . k+n

F , C , Σ0 ⊢s x → (Σm, [<tag a1=e1 . . . ak=ek>[!ek+1 . . . !ek+n℄ ℄) (R4)With this new rule the previous example translates to:sele
t <result>[!tls ![<auth>[!a℄℄ ℄from <(x0)>[bks::Book*℄ in [do
℄,<(x1)>[tls::Title a::Author+ x2::Publisher x3::Pri
e℄ in bks
3.2.5 Nested queries with condition.Finally, the most general
ase, in whi
h Θ 6=∅ needs thenew rules C1-C7 of Figure 17. These have as inputF , Σ and
Θ and generate a CQL
ondition C that translates the rowsthat use variables in Σ (that is, variables used by the querybeing translated). The output also in
ludes the list l offrom
lauses that were
reated during the
onstru
tion of C.These
lauses are
reated when Θ uses variables not alreadytreated (hen
e, not belonging to Σ). Of
ourse, we need tokeep tra
k of these variables for subsequent analysis steps, inorder to avoid the
reation of dupli
ated from
lauses. Thisexplains the third output of ⊢c, an environment Σ′ that
olle
ts all the newly en
ountered and treated variables.The �rst two C-rules handle the base
ases where thereare no
onditions to
reate, either be
ause Σ is empty andthus the query being translated does not de�ne any newvariable (C1) or be
ause there are no more
ondition rowsto translate (C2). Rule C3 handles the
ase where the se-le
ted
ondition uses only one variable x and this variableis not already de�ned by a from
lause (i.e., x 6∈ Σ) . Thismeans that the
ondition is not relevant for the query be-ing
reated, and therefore we may drop this
ondition-boxrow and
ontinue with other
onditions. Rule C4 handlesthe
ase of one-variable
ondition where the variable wasalready treated. Rules C5 and C6 are the two-variables
ounterparts of C3 and C4, respe
tively (in this sense C1is an optimization of C3 and C5). Finally, rule C7 handlesthe
ase of a two-variable
ondition, where just one of thetwo variables has not been treated (it is not in Σ). Sin
e oneof the two variables is already de�ned, we have to generatethe from
lauses that de�ne the other one, whi
h is doneby the last premise in the rule. We omitted the symmetri

ases of C3, C4, and C7 in whi
h operands are swapped.The R-rules are modi�ed as well, in parti
ular by the ad-dition of Θ to the inputs and of the
alls to ⊢c to generate
onditions. When these
alls do not generate any
ondition(rules R2, R4), then the rules work as before. If insteadthe
alls generate a
ondition C, then this is added to thetranslation. Rule R3 adds C as the where
lause of thegenerated sele
t expression (plus all the generated from10

x ∈ dv(F)

F , C , Σ, Θ ⊢s x → (Σ, x)
(R1)(if Σ0 6= Σm)CT(x|tag|k|(a1, x1) . . . (ak, xk)|xk+1 . . . xk+n) ∈ C

{xj1 , . . . , xjm
} = dv(F) ∩ {x1, . . . , xk+n}

F , Σh−1 ⊢f xjh
→ (lh, Σh) F , C , Σm, Θ ⊢s xi → (Σ′

i, ei)
F , Σm, Θ ⊢c (∅, ∅, Σm) i = 1 . . . k+n h = 1 . . . m

F , C , Σ0, Θ ⊢s x → (Σm, sele
t <tag a1=e1 . . . ak=ek>[!ek+1 . . . !ek+n℄ from l1, . . . , lm)

(R2)(if Σ0 6= Σ′)CT(x|tag|k|(a1, x1) . . . (ak, xk)|xk+1 . . . xk+n) ∈ C

{xj1 , . . . , xjm
} = dv(F) ∩ {x1, . . . , xk+n}

F , Σh−1 ⊢f xjh
→ (lh, Σh) F , C , Σm, Θ ⊢s xi → (Σ′

i, ei)
F , Σm, Θ ⊢c (C, lc, Σ

′) i = 1 . . . k+n h = 1 . . . m

F , C , Σ0, Θ ⊢s x → (Σ′, sele
t <tag a1=e1..ak=ek>[!ek+1..!ek+n℄ from l1..lm,lc where C)

(R3)(if Σ0 = Σm)CT(x|tag|k|(a1, x1) . . . (ak, xk)|xk+1 . . . xk+n) ∈ C

{xj1 , . . . , xjm
} = dv(F) ∩ {x1, . . . , xk+n}

F , Σh−1 ⊢f xjh
→ (lh, Σh) F , C , Σm, Θ ⊢s xi → (Σ′

i, ei)
F , Σm, Θ ⊢c (∅, ∅, Σm) i = 1 . . . k+n h = 1 . . . m

F , C , Σ0, Θ ⊢s x → (Σm, [<tag a1=e1 . . . ak=ek>[!ek+1 . . . !ek+n℄ ℄) (R4)(if Σ0 = Σm)CT(x|tag|k|(a1, x1) . . . (ak, xk)|xk+1 . . . xk+n) ∈ C

{xj1 , . . . , xjm
} = dv(F) ∩ {x1, . . . , xk+n}

F , Σh−1 ⊢f xjh
→ (lh, Σh) F , C , Σm, Θ ⊢s xi → (Σ′

i, ei)
F , Σm, Θ ⊢c (C, ∅, Σm)

i = 1 . . . k+n h = 1 . . . m

F , C , Σ0, Θ ⊢s x → (Σm, if C then [<tag a1=e1 . . . ak=ek>[!ek+1 . . . !ek+n℄ ℄ else [℄) (R5)
x 6∈ dv(F) ∪ dv(C)

F , C , Σ, Θ ⊢s x → Ω
(R6)

x ∈ Σ

F , Σ ⊢f x → (∅, Σ)
(F1)

x 6∈ Σ ∪ dv(F)

F , Σ ⊢f x → Ω
(F2)

x 6∈ Σ ∃f ∈ F , x ∈ dv(f) y ∈ fv(f) ∩ P

F , Σ ⊢f x → (pattern(f) in [y℄, Σ ∪ dv(f))
(F3)

x 6∈ Σ ∃f ∈ F , x ∈ dv(f) y ∈ fv(f)
y 6∈ P F\f, Σ ∪ dv(f) ⊢f y → (li, Σ

′)

F , Σ ⊢f x → (li , pattern(f) in y, Σ′)
(F4)

F , ∅, Θ ⊢c (∅, ∅, ∅)
(C1)

F , Σ, ∅ ⊢c (∅, ∅, Σ)
(C2)

r = CB(op, x, v) ∈ Θ x 6∈ Σ
F , Σ, Θ\r ⊢c (C, l, Σ′)

F , Σ, Θ ⊢c (C, l, Σ′)
(C3)

r = CB(op, x, v) ∈ Θ x ∈ Σ
F , Σ, Θ\r ⊢c (C, l, Σ′)

F , Σ, Θ ⊢c (C and (x op v), l, Σ′)
(C4)

r = CB(op, x1, x2) ∈ Θ x1 6∈ Σ x2 6∈ Σ
F , Σ, Θ\r ⊢c (C, l, Σ′)

F , Σ, Θ ⊢c (C, l, Σ′)
(C5)

r = CB(op, x1, x2) ∈ Θ x1 ∈ Σ x2 ∈ Σ
F , Σ, Θ\r ⊢c (C, l, Σ′)

F , Σ, Θ ⊢c (C and (x1 op x2), l, Σ′)
(C6)

r = CB(op, x1, x2) ∈ Θ x1 ∈ Σ x2 6∈ Σ
F , Σ, Θ\r ⊢c (C, l1, Σ

′) F , Σ′ ⊢f x2 → (l2, Σ
′′)

F , Σ, Θ ⊢c (C and (x1 op x2) , l1,l2 , Σ′′)
(C7)Figure 17: Translation rules for nested queries with
ondition.
lauses). Rule R5 handles the spe
ial
ase in whi
h the var-ious sub-
alls generates an empty set of from
lauses (it isthe non-empty
ondition
ounterpart of rule R4) and there-fore there is no sele
t expression to whi
h sti
k C as awhere
lause: in this
ase an if_then_else CQL operatoris used instead.Bib # Book*do
 (x0, _) (bks, _)Book # Title Author+ Publisher Pri
ebks (x1, _) (tls1, _) (x2, _) (x3, _) (x4, _)Entries # Entry*bstore2 (x5, _) (reviews , _)Entry # Title Pri
e Reviewreviews (x6, _) (tls2, _) (x7, _) (x8, _)<result> Titleq tls1 CONDITION BOXtls1=tls2Figure 18: Titles that appear both in do
 and in bstore2.

The PBE query of Figure 18 de�nes the query Q5 of XMLQuery Use Cases [8℄, whi
h is interesting sin
e it
ontains ajoin
ondition tls1 = tls2. The generation of the
orrespond-ing CQL query, relies on rule C7, when the from
lause fortls1 o

urring Θ has been
reated, but tls2 has not beende�ned yet. The result is:sele
t <result>[!tls1from <(x0)>[bks::Book*℄ in [do
℄,<(x1)>[tls1::Title x2::Author+ x3::Publisher x4::Pri
e℄ in bks,<(x5)>[reviews::Entry*℄ in [bstore2℄,<(x6)>[tls2::Title x7::Pri
e x8::Review ℄ in reviewswhere tls1=tls2The translation of well-de�ned PBE queries always termi-nates and yields well-typed CQL expressions, as stated bythe following theoremTheorem 3.8. Let Q = (F , C , P, Θ) be a PBE query.For every x ∈ dv(C) there exists a unique e su
h that thejudgment F , C , ∅,Θ ⊢s x → e is provable. Furthermore, if
Q is well de�ned, then e is a well-typed CQL expression (in11

parti
ular, e 6= Ω) up to exhaustiveness of pattern mat
h-ing.5
3.3 Further design issuesSo far the interpretation of tableaux, although te
hni
allydi�
ult, is rather un
ontroversial: the given semanti
s im-plements what one intuitively expe
ts from tableaux. Thereare however some design
hoi
es that are not so obvious andthat
an be interesting to allow more advan
ed uses of thelanguage. In parti
ular, should
onstraints given in some �l-ter tableau for a variable de�ned in a di�erent �lter tableauapply lo
ally or globally? Note that the latter
hoi
e isthe one done by QBE Also, should we relax the restri
tionson variables de
lared on multiple rows of a �lter tableau,a

ept rows that de
lare distin
t variables, and
onsideredthem as interse
tion patterns? For spa
e reasons the dis-
ussion of these two options (whi
h are easily implementedand
urrently under
onsideration for in
lusion in PBE) areavailable at www.
du
e.org/paper/pbe.pdf.
4. CONCLUSION AND FUTURE WORKPBE is a graphi
al interfa
e that allows users with littleor no knowledge of XPath, XQuery, or CQL to de�ne
om-plex and optimized queries on XML do
uments. The onlyrequired skill is to be able to understand XML types writtenusing pretty intuitive and standard
onventions of type reg-ular expressions. At road test we found the usage of PBEquite simple and intuitive. Of
ourse this is a subje
tiveview, but PBE has two obje
tive and important advantageswith respe
t to other graphi
al query languages. The �rst isthat it generates queries that are provably
orre
t with re-spe
t to types. The type of the result is displayed to the userand this
onstitutes a �rst and immediate visual yardsti
kto
he
k semanti

orre
tness of the resulting query. These
ond advantage is that its semanti
s is formally�thus,unambiguously�de�ned, and this is an important advan
e-ment over some
urrent approa
hes in whi
h the standardusage and learning methods are based on �trial and error�te
hniques (a.k.a. �
li
k and hope�).The implementation of PBE developed in OCaml is inalpha-testing and available at www.lri.fr/~mia
hon/pbe.It relies for its graphi
al part on LablGTK, on the CDu
e'stype engine for
omputing table entries, and uses CQL asba
k-end. Its kismet is its in
lusion in the o�
ial CDu
e dis-tribution (www.
du
e.org), but before some improvementsare still needed. Some are purely ergonomi
, su
h as thepossibility of de�ning DTDs by using tableaux, the earlydete
tion of useless �lter tableaux rows (see Footnote 5),the elimination of expli
it variables by repla
ing them by�drag-and-drop� te
hniques. Others are enhan
ement fea-tures: foremost we want to allow the user to split an auto-mati
ally generated
olumn into several equivalent ones (forinstan
e, if a user wants to
apture exa
tly the se
ond authorof a book, (s)he should be allowed to split the Author+
ol-umn of the �rst �lter tableau in Figure 8 into three
olumns,one for the �rst author, another for the se
ond author, and5The de�nition of well-de�ned query does not ensure that all the rowsof a �lter tableau are useful. For instan
e, every row following a rowwith all
onstraints equal to Any will never be used. This property
an be easily
he
ked at
onstru
tion time but its de�nition wouldhave required the introdu
tion of several te
hni
al de�nitions of the
CDu
e type system. We preferred to keep the de�nition simple, asthese errors are stati
ally dete
ted as soon as the query is generated(more pre
isely, as soon as the pattern() fun
ion is
alled).

a last one for the remaining authors); but we want also de-vise a way to express unions or
omplex
onstraints withoutthe ne
essity of writing
omplex type regular expressions in�lter tableau rows.In our future plans there also is the use for PBE of dif-ferent ba
k-ends, in primis XQuery. Su
h a modi�
ation isnot straightforward be
ause XPath sele
tions are not as �negrained on sequen
es as PBE ones. If for instan
e we querya do
ument of type <a>[B* C* B*℄ and insert a variable inthe �rst
olumn of the
orresponding �lter tableau, then thisvariable must be translated into an XPath expression witha non-trivial
ondition that
aptures all B elements whoseleft siblings do not in
lude C elements.
5. REFERENCES[1℄ V. Benzaken, G. Castagna, and A. Fris
h. CDu
e: anXML-friendly general purpose language. In ICFP '03, 8thACM Int. Conf. on Fun
tional Programming, pages 51�63.ACM Press, 2003.[2℄ V. Benzaken, G. Castagna, and C. Mia
hon. A fullpattern-based paradigm for XML query pro
essing. InPADL 05, 7th Int. Symp. on Pra
ti
al Aspe
ts ofDe
larative Languages, number 3350 in LNCS, pages235�252. Springer, 2005.[3℄ S. Berger, F. Bry, S. S
ha�ert, and Ch. Wieser. X
erpt andvisX
erpt: From pattern-based to visual querying of XMLand semistru
tured data. In VLDB, pages 1053�1056, 2003.[4℄ S. Boag, D. Chamberlin, M. Fernandez, D. Flores
u,J. Robie, J. Siméon, and M. Stefanes
u. XQuery 1.0: AnXML Query Language. W3C Working Draft,http://www.w3.org/TR/xquery/, May 2003.[5℄ L. Bouganim, T. Chan-Sine-Ying, T-T. Dang-Ngo
, J-LDarroux, G. Gardarin, and F. Sha. Miro web: Integratingmultiple data sour
es through semistru
tured data types.In The VLDB Journal, pages 750�753, 1999.[6℄ D. Braga, A. Campi, and S. Ceri. �XQBE (XQuery ByExample): A visual interfa
e to the standard XML querylanguage�. TODS, 30:398�443, 2005.[7℄ M. J. Carey, L. M. Haas, V. Maganty, and J. H. Williams.Pesto : An integrated query/browser for obje
t databases.In VLDB, pages 203�214, 1996.[8℄ D. Chamberlin, P. Fankhauser, D. Flores
u, M. Mar
hiori,and J. Robie. XML Query Use Cases. Te
hni
al Report20030822, World Wide Web Consortium, 2003.[9℄ S. Cohen, Y. Kanza, Y. A. Kogan, W. Nutt, Y. Sagiv, andA. Serebrenik. Equix easy querying in XML databases. InWebDB (Informal Pro
eedings), pages 43�48, 1999.[10℄ M. Erwig. Xing: A visual XML query language. Journal ofVisual Languages and Computing, 14(1):5�45, 2003.[11℄ I. Filha, A. Laender, and A. da Silva. QueryingSemi-stru
tured Data By Example: The QSByE Interfa
e.In Workshop on Information Integration on the Web, 2001.[12℄ H. Hosoya and B. Pier
e. XDu
e: A typed XML pro
essinglanguage. ACM Transa
tions on Internet Te
hnology,3(2):117�148, 2003.[13℄ C. Mia
hon. Langages de requêtes pour XML à base depatterns :
on
eption, optimisation et implantation. PhDthesis, Université Paris Sud, 2006.[14℄ K. D. Munroe and Y. Papakonstantinou. BBQ: A visualinterfa
e for integrated browsing and querying of XML. InVLDB, 2000.[15℄ M. Petropoulos, Y. Papakonstantinou, and V. Vassalos.Graphi
al query interfa
es for semistru
tured data: theQURSED system. TOIT, 5(2):390�438, May 2005.[16℄ M. Zloof. Query-by-example: A data base language. IBMSystems Journal, 16(4):324�343, 1977.

12

