
Pattern by Example: type-driven visual
programming of XML queries

Véronique Benzaken1 Giuseppe Castagna2 Dario Colazzo1 Cédric Miachon3

1Université Paris-Sud 11, LRI, Orsay - France 2CNRS - PPS, Université Paris 7, Paris - France
3Courtanet - Paris - France

ABSTRACTWe present Pattern-by-Example (PBE), a graphial language thatallows users with little or no knowledge of pattern-mathing andfuntional programming to de�ne omplex and optimized querieson XML douments. We demonstrate the key features of PBEby ommenting an interative session and then we present itssemantis, by formally de�ning a translation from PBE graphi-al queries into CQL ones. The advantages of the approah aretwofold. First, it generates queries that are provably orret withrespet to types: the type of the result is displayed to the userand this onstitutes a �rst and immediate visual hek of the se-manti orretness of the resulting query. The seond advantageis that a semantis formally�thus, unambiguously�de�ned is animportant advanement over some urrent approahes in whihstandard usage and learning methods are based on �trial and er-ror� tehniques.
KeywordsVisual programming, Database programming languages, Fun-tional programming, Type systems.
1. INTRODUCTIONOne of the reasons, if not the main one, of the suessof relational databases is the query language SQL. The keyfeatures that made SQL the standard query language forrelational databases are its ease of use, its formal foundationand lear semantis, and its high delarativity. This lastpoint is quite important beause both it makes the writingof SQL queries independent from the physial organizationof data and, for the same reason, makes SQL queries highlyoptimizable.As we disuss in the related work setion, a further boostto relational databases was given by the introdution ofgraphial query languages, suh as Query-by-Example (QBE).Despite the simpliity of SQL and of the relational modelthese graphial query languages allowed more persons to a-ess relational databases and in a more user friendly way.This is done without missing most of the advantages of theprevious approah sine the semantis of these languages isgiven by a translation into the relational algebra or alulus.Nowadays there is a lear trend to inreasingly use XMLto make data available on the Web. Querying data in thisformat poses the same hallenges as for relational data andeven ampli�es the problems. The arbitrary strutural nest-ing of XML due to its tree-based struture is at the ori-gin of the absene of a lear andidate language to querybases of XML douments. W3C puts forward the XQuerylanguage [4℄ and other proposals suh as XDue [12℄ or
CDue [1℄ exist. While XQuery relies on XPath to deon-

strut XML trees, and on a for operator to iterate over thisdeonstrution the other rely on pattern-mathing for deon-struting values and, in the ase of CQL, on aselet-from-whereiterator. While XPath is good for a deonstrution that nav-igates vertially in the doument it is not able to performa �ne grained seletion on horizontal navigation, that is onsequenes of elements. For instane, imagine that we haveto selet in an XML doument bib.xml ontaining a bibli-ography (see Figure 2 for an instane), all the titles of bookspublished by Addison Wesley after 1991 that have exatlytwo authors. In XQuery we annot diretly selet these ti-tles but we have to stop at books' level, and then performthree subseletions one for authors, one for titles and onefor pries as in (iterator keywords are underlined)<bib> for $b indoument("bib.xml")/bib/book[ount(./author)=2℄ where$b/publisher="Addison-Wesley" and $b/�year>1991 return<book year="$b/�year">$b/title </book> </bib>It would be better if we ould apture in a variable exatlythe titles of the books that math the required onditions,that is, that have a spei� given form. In funtional lan-guages the form of a value an be desribed by patterns.Patterns then an be used to perform horizontal seletion,by mathing them against heterogeneous sequenes of el-ements in order to apture only some given subparts. Forthis reason in a previous work [2℄ we proposed CQL an XMLoriented query language that ombines the vertial seletionapabilities of XPath-like expressions with the horizontalseletion apabilities of CDue patterns [1℄, whih are pat-terns designed for XML elements. In CQL the query aboveis written as<bib>selet <book year=y> t from<book year=y&(1992--*)>[t::Title Author Author<publisher>"Addison-Wesley" (_\Author)* ℄in load_xml("bib.xml")/Book
CQL syntax is an enrihed form of the SQL's one: (i) inthe selet part we an use fully strutured expressions in-stead of just relations, (ii) on the right of a � in � in fromlauses, simple relations (that is, sets of tuples) are replaedby XPath-like expressions that allow vertial navigation toselet heterogeneous sequenes of elements and (iii) ratherthan simply aptured by variables (as in SQL) the extratedsequene is navigated horizontally by patterns that maththe sequene elements and apture subparts in variables. Inthe expression above the pattern on the left of the � in �keyword selets all and only the book elements whose at-tribute year is in the interval (1992,∞) and that have exatlytwo author subelements followed by a publisher element thatontain the string "Addison-Wesley", this followed by any1

element (the wild-ard �_�) that is not (the di�erene sign\) an author (the * denotes a regular expression that indi-ates that there may be zero or more suh elements);1 of theseleted book elements the pattern aptures the year in thevariable y and the title in the variable t.
CQL not only makes it possible to ombine vertial andhorizontal navigation but provides a very preise type infer-ene and better logial optimizations whih make it moree�ient in main memory exeution than major implemen-tations of XQuery [2℄. However, the use of patterns maybe di�ult to a basi programmer, espeially in advaned(e.g. nested) queries. In this ontext a graphial interfaeto de�ne queries is muh more neessary than in the SQLase. This is the goal of our work that, mimiking whatwas done for SQL, will �rst de�ne a tableau-based graphi-al representation of queries for XML-douments and thengive its semantis via a translation into CQL. The rih stru-ture of XML makes the task muh more hallenging than forthe relational model: we do not work on a set of �xed and�at relations; instead the information we extrat may havea omplex struture. In order to generate the table orre-sponding to some extrated data our system will heavily relyon the type system. For instane in the query example wegave above, one we have extrated the data on books thegraphial interfae will use the type system and the givenDTD to generate a table that ontains a olumn for the year,another for the authors, a third for the publisher and a lastone for the prie: the users will then have just to �ll the ellswith the orresponding onditions and apture variables toomplete the query.

Related workThe use of graphial languages for expressing queries is notnew in the database �eld. This is mainly due to the require-ment that non-expert users should be able to interat withthe database system while not being aquainted with thesubtleties of the underlying query language whih may beomplex to use.Query-by-Example (QBE) [16℄ is the �rst graphial querylanguage for relational databases. It has been developed inthe 70's by Zloof at IBM and gave rise to a wide ategory ofommerial graphial languages suh as, for example, Para-dox or Mirosoft Aess. The entral onept of QBE is thenotion of tableaux. A tableau is a graphial interfae (a ta-ble indeed) allowing the user to express some queries simplyby de�ning spei� variables in the table.In the ontext of XML, many attempts to de�ne graphi-al query languages have been proposed: QSByE (QueryingSemi-strutured data by Example) [11℄, XQBE [6℄, Miro-web [5℄, EQUIX [9℄, BBQ [14℄, Pesto [7℄, QURSED [15℄,Xerpt [3℄ and Xing [10℄. Due to spae limitations, we shallgive the spirit of these approahes rather than giving an ex-haustive state of the art. Hene, we hoose to present XQBEXQuery by Example as it is the most omplete language. Werefer the reader to [13℄ for a omplete survey.Unlike QBE, rather than manipulating tableaux, XQBEmanipulates XML trees. The purpose was to o�er an in-tuitive interfae in order to automatially generate XQuery1The di�erene sign is used for the sake of the example but here isompletely useless. The DTD of �bib.xml� given in Setion 2.1 ensuresthat a publisher element is followed just and exatly by one elementof type Prie. Therefore a single wildard �_� would have su�ed.

queries. XQBE o�ers most of XPath expressive power,2 per-mits the de�nition of nested queries, to build new elementset. In order to give the reader a �avor of XQBE let usonsider the following query whih orresponds to query Q1of XML Query Use Cases [8℄. List all books published by�Addison-Wesley� sine 1991. This is exatly the query wepresented in the introdution without the ondition on thenumber of authors. Thus to de�ne it it su�es to remove inthe XQuery expression the prediate on the path. In XQBEsuh a query is expressed as shown in Figure 1.
Figure 1: XQBE Q1In XQBE, the workspae is divided in two separate zones:the soure spae (on the left) and the result spae (on theright). Eah zone ontains labeled graphs whih representfragments of the XML doument to be proessed. XML ele-ments are represented by retangles annotated by their tag,attributes are represented by blak disks together with theirnames. For instane, on Figure 1 the soure zone expressesa query whih extrats all books elements <book> having anattribute year whose value is greater than 1991, and havinga hild <publisher> with value "Addison-Wesley". In theorresponding result spae, again the result is desribed bya tree. For our example, the graph states that the result willonsist of all the titles of <book> elements whih have beenseleted in the soure spae (suh a binding is materializedby the ar onneting the respetive node from soure toresult spae). These will then be enapsulated in a uniquefresh element <bib> (the trapezoidal shape indiates the fatthat the result is onsidered as new).Most of graphial query languages for XML use graph-based representations of both douments and queries. Theirmain limitations are that no semantis is formally assignedto those graphs hene they do not aount for orretnessproofs of the translation (usually to XQuery) they imple-ment and last they never exploit the underlying type systemin order to yield optimized versions of the resulting queries.Unlike those, (i) we formally assign a semantis to ourgraphial tableaux-based interfae and (ii) formally establisha (partial) orretness proof of the translation to CQL.We will proeed as follows. First we present in Setion 2the system by showing and ommenting an interative ses-sion with our prototype. To that end we also introdue

CQL, sine its regular expression types are used as ondi-tions in the graphial interfae whose use will result in thegeneration of a CQL expression. The formal developmentfollows in Setion 3. In partiular we formally introdue thenotions of tableau and PBE query and de�ne their seman-tis by translating PBE queries into CQL queries. Sine thetranslation in far from being trivial we de�ne the translationinrementally, by progressively inreasing the omplexity of2Apart from some funtions suh as for instane position()2

the translated queries. This will allow us to point out themost di�ult or subtle points of the translation. A partialorretness result of this translation is also given.Throughout the presentation we use some onventions andsyntati sugar of CDue/CQL, most of whih are quite in-tuitive and need no explanation. On the same vein, we justpresent a very simpli�ed version of the language. Spae on-straints do not allow us to do a omplete treatment, whihanyhow would not bring any further insight. The inter-ested reader an onsult the doumentation available on the
CDue web site (www.due.org) and try the distribution ofthe full featured language available there too.
2. A GUIDED TOURIn this setion we present a guided tour of PBE (Pat-tern by Example) our graphial query language designed tohelp non-expert users to write omplex queries. PBE uses
CQL as a bak-end sine it generates and evaluates opti-mized CQL queries, but other bak-ends an be onsidered.Atually, PBE an be used independently from CQL, sineits usage only requires the knowledge of the types that CQLborrow from CDue, types that are very lose to other typesystems for XML. However, the presentation of PBE seman-tis is far simpler in CQL, whih is the reason why we startthis presentation by an overview of CQL.
2.1 Presentation of CQLThe goal is not to give a full presentation of CQL (for thatsee [2℄) but rather to present a minimum set of features thatare enough to present PBE. The most important feature aretypes. PBE and CQL use CDue's types, whih an be seenas a ompat notation for DTDs (atually, for Relax-NG):Types T ::= btype | [t℄ | <tag {A}>[t℄ | Any | v

| T|T | T&T | T \ TRegEx t ::= T | t t | t|t | t? | t* | t+ | εAttrs A ::= a=TA | εTypes are either type onstrutors, that is: basi types (e.g.,Int, Bool, Char, . . .); heterogeneous sequenes types (delim-ited by square brakets and whose ontent is desribed bya type regular expression t); XML elements (that is, taggedsequenes whose tag may ontain a possibly empty list ofattribute type delarations whih assign types to attributenames�ranged over by a�); Any, the type of all values; v,the singleton type that ontains only the value v. Or theyare type ombinators, that is, union, intersetion, or di�er-ene of types. Regular expression types, ranged over by t,are obtained from types and the empty string (denoted by
ε) by juxtaposition, union, and the onstrutors for optionalelements, possibly empty, and nonempty sequenes.We will use some onventions, in partiular the undersore�_" to denote Any, PCDATA to denote the regular expressiontype Char*, and String to denote the type [Char*℄. We alsouse identi�ers to denote types (and follow the onvention ofapitalizing them), as in the following delarationstype Bib = <bib>[Book*℄type Book = <book year=String>[Title (Author|Edit)+ Publisher Prie℄type Author = <author>[Last First℄type Edit = <editor>[Last First℄type Title = <title>[PCDATA℄type First = <first>[PCDATA℄type Last = <last>[PCDATA℄type Publisher = <publisher>[PCDATA℄type Prie = <prie>[Int℄

whih de�nes the types for the bibliography example we willuse throughout the paper.For this paper, CQL expressions are variables (ranged overby x, y, . . .), onstants (e.g. true, 1, 2, . . . ranged over by
c), the selet_from_where expression, the onstrutors forsequenes (a juxtaposition of blank-separated expressionsdelimited by square brakets), and XML elements (a se-quene expression e labeled by a tag and a possibly emptyset of attributes), banged expressions !e (whih �opens�the sequene e so that, for instane, if e1, e2, . . . , en are se-quenes, then [!e1 !e2 . . . !en℄ returns their onatenation),and operators (e.g. =, >, max, if_then_else, ...). Values,ranged over by v, are losed expressions that do not ontain�selet�, operators, or banged sub-expressions.
e ::= x | c | [e . . . e℄ | <tag a=e . . . a=e>e | !e | op(e, .., e)

| selet e from p in e, . . . ,p in e where eThe expression selet es from p1in e1,...,pnin en where ewdeserves explanation. The expression ew in the where lausemust be of boolean type, while the expressions ei's in thefrom lauses must return sequenes. Selet iterates on thesesequenes mathing eah element of ei against the orre-sponding pattern pi. Pattern variables apture subparts ofthe mathing elements and these variables an then be usedin es or in the suessive from lauses. The result of a seletis the sequene of evaluations of the expression es in the en-vironments obtained by iterating on the from lauses.Patterns are nothing but types with apture variables.We distinguish two kinds of patterns for apture variables:�simple variables patterns� that have the form of a variableand an our wherever a type an, and �sequene apturepatterns� that have the form x::t, an our wherever aregular expression type an, and apture in x the sequeneof all values mathed by the regular expression t. So in the
CQL query given in the introdution y is a simple apturevariable (the intersetion of two patterns sueeds only ifeah pattern sueeds, therefore y aptures the value of at-tribute year only if this is of type 1992--*), while t apturesthe sequene of all titles of the book (in this ase just one).Di�erently from union types, that are symmetri, union pat-terns implement a �rst math poliy: the right pattern isheked only if the left one fails. So, for instane when thepattern [(x::Author|_)*℄ is mathed against a sequene itaptures in x the sequene of all (values of type) authorspresent in it (if an element is of type Author, then it is ap-tured by x, otherwise is disarded by mathing it againstthe wildard �_��i.e. the type Any).We apply the onvention to use single quotes to delimitharaters and double quotes to delimit strings (whih aresequenes of haraters). For formal and omplete de�ni-tions of the syntax, the semantis, and the typing of CQLthe reader an refer to [2℄.
2.2 A tour of PBEWe demonstrate PBE by querying the doument in Fig-ure 2 and assuming that it onforms to the CDue typeBib de�ned by the delarations given in the previous se-tion (from whih we omit Edit in order to limit the size of�gures) that we will have entered in the tab �Data� of ourPBE interfae, visible in Figures 3�11. 3Queries are expressed by means of tableaux. Two di�erentkinds of tableaux are presented: Filter tableaux and Con-3Delarations are generated from a DTD by the program dtd2due.3

<bib><book year="1995"><title>TCP/IP Illustrated</title><author><last>Stevens</last><first>W.</first></author><publisher>Addison-Wesley</publisher><prie>65</prie></book><book year="1992"><title>Advaned Programming in Unix</title><author><last>Stevens</last><first>W.</first></author><publisher>Addison-Wesley</publisher><prie>65</prie></book><book year="2000"><title>Data on the Web</title><author><last>Abiteboul</last><first>Serge</first></author><author><last>Buneman</last><first>Peter</first></author><author><last>Suiu</last><first>Dan</first></author><publisher>Morgan Kaufmann Publishers </publisher><prie>39</prie></book></bib> Figure 2: referene XML doumentstrut tableaux. The former are used for extrating infor-mation (they are entered in the upper half of the interfae),while the latter are used for building the sequene of XMLvalues that onstitutes the result of the query (they are en-tered in the lower half of the interfae). PBE tableaux allowfor expressing a wide variety of queries. Let us start witha simple query: �return all books in the bibliography�. As-sume that the doument to be queried is stored in the do(persistent) variable. The �lter tableau o�ers a list of persis-tent XML douments and the user will hoose among themthe do variable as shown in the left part of Figure 3.

Figure 3: Filter tableau reationOne the doument is seleted, PBE displays the �lter tableauassoiated to the type of do (i.e., Bib) as shown in Figure 4.The olumn marked by a # symbol represents the tag whihan be tested and aptured4 while the fat that the ontent4In the full version of CQL/CDue XML tags are full �edged ex-

of Bib elements is a sequene of Book elements (reall, Bib= <bib>[Book*℄) is represented by Book*. In the row, PBEprovides fresh variables x1, x2 to apture the orrespond-ing omponents and a default (type) onstraint Any whihis always satis�ed
Figure 4: Filter tableau for doThe user who wants to apture all the books of the bibliog-raphy do in a variable books (Figure 5), has just to delarethis variable in the orresponding olumn (the one labeledby Book*). The right part of the ell remains unhanged(Any), sine we do not need to express further onstraintson variable books.

Figure 5: Adding variable books in the �lter tableauGetting and, presumably, re-struturing the result is per-formed by means of a onstrut tableau that is de�ned inthe lower part of the window as illustrated in Figure 6.Construt tableaux are de�ned by adding new olumns and�lling the ells by using the variables introdued in the othertableaux. From the ontent that is �lled in a ell, PBE de-dues and inserts the type that labels the orrespondingolumn. Not only does the onstrut tableau indiates howthe result is re-strutured (here we hoose to enapsulate allbooks in a <result> tag) but it also provides a fresh vari-able q1 that denotes the query so that it an be later reused(e.g. for de�ning nested queries).Cliking on the �View query� button right below a onstruttableau, makes PBE ompute and display in the �Queries�tab the orresponding CQL query and its result (Figure 7).PBE also infers that the type of q1 is [<result>[Book*℄*℄,an information useful in ase q1 was reused in other queries.As with any other variable, q1 an be reused by seleting it inthe pull down menu of Figure 3 to whih it is automatiallyadded at the moment of its de�nition.This �rst example was very simple. We shall now presenttwo more advaned examples that illustrate (i) how to pro-gram nested queries and (ii) what is the use of several rowspressions that an ontain namespaes and have arbitrary om-plex types suh as type AorB = <(`a|`b)>[Any*℄.4

Figure 6: Construt tableau reation for q1

Figure 7: CQL ode and result for q1.in a �lter tableau. Imagine that we want to de�ne a querythat returns a sequene of elements tagged by <entry> whereeah suh element orresponds to a book of our examplebibliography and ontains its title element as well as theauthors' last name elements enapsulated in a <auth> tag.While the plain English semantis is a little bit twisted, themeaning should be quite learer by looking at how the queryis expressed in Figure 8.The �rst �lter tableau is de�ned for the books variablethat was introdued (and automatially added in the pull-down menu) by the previous query, and extrats in titleand a the list of titles (well, just one) and of authors ofeah book, respetively. This row aptures for eah bookthe relationship between its title and its authors. In orderto extrat for eah author in a his/her last-name we usea seond �lter tableau whih aptures in the variable lastthe orresponding information. To enapsulate eah <last>element in a tag <auth>, we de�ne the onstrut tableau q3.

Figure 8: A nested PBE queryThis tableau is then reused in the onstrut tableau of thequery q4, in whih the title is requested as well as the resultof q3 for this title.The de�nitions of the queries q3 and q4 and their respe-tive results are shown in Figure 9. When it is exeuted

Figure 9: CQL ode for queries q3 and q4standalone q3 returns a single list ontaining all the authorsin the bibliography (sine in that ase a is bound to all au-thors), as shown in the �rst � Result � setion of Figure 9.Instead when it used inside q4 the query q3 enapsulates5

the authors of the book urrently seleted by the outer it-eration. It is important to notie that q3 does not our inthe ode for q4. As a matter of fat, it would be wrong to doit, as the ode that ours in q4 at the position of q3 is notthe ode de�ned for q3 as a stand-alone query. Indeed whengenerating the ode q4 PBE must generate ustom ode forthe all of q3, that takes into aount the environment inwhih the nested query is evaluated. The tehnique we useto keep trak of the environment in whih nested queriesare alled and to minimize the number of possible patternsneeded for expressing the query are formally explained fromSetion 3.2.3 on.

Figure 10: Multiple rows tableauOur last example illustrates the use of several rows in a�lter tableau. Assume that we want to selet the bookswhose title begins either by letter �T� or by letter �D�.Theseonstraints are expressed in the CQL type algebra respe-tively as ['T' _*℄, ['D' _*℄. Their �or� is obtained by thetableaux in Figure 10, sine in PBE multiple rows are inter-preted as union patterns. Note that eah row delares thesame variables: rows di�er only for their onstraints (seealso De�nition 3.2 whih enfores this property). It is worthstressing that by using the knowledge of the DTD and thestated onstraints of the �lter tableau, PBE dedues type :['D'|'T' Char*℄ for the apture variable text in the on-strut tableau. The CQL query generated by the systemand its result are given on Figure 11.
Figure 11: Result of the multi-row query

3. FORMAL DEVELOPMENTIn this setion we give the the formal de�nition of PBEby �rst preisely de�ning its syntax and then stating itssemantis via a translation into CQL.
3.1 PBE syntaxThe syntax of PBE is onstituted by three distint kindsof tableaux, �lter tableaux and onstrut tableaux that wereinformally presented in the previous setion, and onditiontableaux (or ondition boxes). Let us disuss eah of them.
3.1.1 Filter tableauxFilter tableaux are tables in whih (i) rows are labeledby already de�ned variables, (ii) olumns are labeled by at-tribute names, by a hash sign (exatly one olumn), and/orby type regular expressions and (iii) ells ontain fresh vari-ables and regular expression type onstraints. For instane,in the previous setion we de�ned the following tableauBook # Title Author+ Publisher Priebooks (x1,t1) (x2,t2) (x3,t3) (x4,t4) (x5,t5)whih �lters the elements that ompose the sequene de-noted by the variable books. The user de�nes only theontent of the row, the rest (that is the number of olumnsand their labels) are automatially dedued from the type of�ltered variable books, that is Book. But how is that PBEdeided to insert a single olumn labeled Author+ insteadof�equivalently�, say, three olumns respetively labeledAuthor?, Author, Author*? The reason to prefer the formerto the latter should be pretty lear: we want to minimize thenumber of �lter olumns in order to use as few variables aspossible. In order to formalize the way in whih this hoieis made, we need the de�nition of sequene maximal produt.First notie that every type regular expression t is of theform R1R2 . . . Rn (with n≥1) where Ri's are type regularexpressions di�erent from the juxtaposition. Let us all
R1 . . . Rn the expanded form of t. Notie also that every
Ri in an expanded form is of the form tR◦ (where ◦ is either*, +, ?, or the empty string�in the latter ase tR is either aregular expression union or a type): we all tR the base of
R. Finally, we write T1 ≃ T2 if and only if T1 and T2 denotethe same type (e.g. [(A|B) C℄≃[(A C)|(B C)℄; see [1℄ forde�nition).Definition 3.1. Let R1 . . . Rn be a type regular expres-sion in its expanded form and let us denote the base of
Ri by tRi

. R1 . . . Rn is a sequene maximal produt if[tRi
℄ 6≃ [tRi+1

℄ for i = 1...(n−1).For example, � B* B+ C B � is not a maximal produt sinethe �rst two elements have the same base. There existsa naive algorithm to transform every type regular expres-sion into a maximal produt and onsisting in merging on-seutive expressions with the same base (e.g., � t* t � be-omes t+ and � B* B+ C B � beomes � B+ C B �). There-fore, heneforward we onsider all type regular expressionsbe maximal produts. Notie, however, that this is just asyntati property with no semanti impliation. It heav-ily depends on way the user wrote DTD's for data: for in-stane, � (A|B)* (A*C+|B*C+) � is a maximal produt al-though � (A|B)* C+ � would be a smarter denotation.Definition 3.2. Let T be an XML type, a �lter tableauassoiated to T is:6

T # a1 · · · ak R1 · · · Rn

y (x0, t1
0
) (x1, t1

1
) · · · (xk, t1

k
)(xk+1, t1

k+1
) · · · (xk+n, t1

k+n
)...

y (x0, tm0) (x1, tm1) · · · (xk, tm
k

)(xk+1, tm
k+1

) · · · (xk+n, tm
k+n

)where1. y is a variable of type [T*℄ or a persistent root oftype T ,2. T = <tag {a1=T1 . . . ak=Tk}>[R1 . . . Rn℄,3. R1 . . . Rn is a maximal produt,4. xj are fresh variables (j = 0 . . . k + n),5. ti
j are regular expression types (i = 1..m, j = 0..k +n).Heneforth we will mainly work on what we all (improperlyin the ase of �lter tables) rows of a tableau and we use thefollowing ompat notation to denote the (set of) row(s) ofa �lter tableauFT(y|tag|k|(x0, ~t0)|(x1, ~t1) . . . (xk , ~tk)|(xk+1, ~tk+1) . . . (xk+n, ~tk+n))where tag is the tag of the XML type assoiated to y, k thenumber of its attributes and eah ~ti represent the vetor

t1i , . . . , t
m
i

3.1.2 Construct tableauxA onstrut tableau is a single row table that de�nes thestruture of the result of a query. The user spei�es the tagin whih the result must be enapsulated and adds as manyolumns as (subsequenes of) elements in the result. Eahelement is spei�ed by �lling the ell in the orrespondingolumn with a variable whose type will determine the la-bel of the olumn. For instane, the onstrut tableau ofFigure 10 is: <title> [('D'|'T') Char* ℄q5 textIn general, users an de�ne not only the tag of the resultbut also its attributes, whih yields the de�nition:Definition 3.3. If x1, ..., xk+n are variables, a1, ..., ak areattribute names and tag is an expression denoting a tag, thenthey de�ne the following onstrut tableautag a1 · · · ak R1 · · · Rn

y x1 · · · xk xk+1 · · · xk+nwhere Ri is the (regexp) type of xk+i (i = 1 . . . n−k) and y afresh variable of type [(<tag {a1=t1 . . . ak=tk}>[R1 . . . Rn℄)*℄.As we did for �lter tableaux we introdue a ompat nota-tion to denote a row of onstrut tableau, that is
CT (y|tag|k|(a1, x1) . . . (ak, xk)|xk+1 . . . xk+n),where k is the number of attributes.

3.1.3 Condition BoxPBE ondition boxes are the same as in QBE, that is, theyCONDITION BOX
e1...
en

are used to speify onstraints. Inpartiular, ondition boxes are usefulfor delaring join onditions betweentwo variables. Condition boxes are ofthe form as shown on the side, that isthey are single olumn tables whoserows ontain a CQL expression of boolean type. Usuallythese expressions are appliations of operators to variables,

suh as the equality of two variables x=y (a typial onditionused for joins) or to a variable and onstants, suh as y>5. Aswe did for �lter and onstrut tableaux we introdue somespeial notation to reord rows of ondition boxes. For thesake of the presentation we onsider just a very speial aseof onditions formed by the appliation of a binary booleanoperator to either variables or values. Then a row of a on-dition box ontaining expression e1 op e2 will be representedas CB(op, e1, e2).
3.1.4 PBE QueriesDefinition 3.4. A PBE query is de�ned by a non-emptyset of persistent roots, a �nite set of �lter tableaux, a �nitenon-empty set of onstrut tableaux, and an optional ondi-tion box.In order to be well de�ned every free variable used in a querymust be either a persistent root or de�ned elsewhere. Notiealso that in the result of a query (i.e. in a onstrut tableau)we do not let the user speify general expressions but justvariables (it is a design hoie); therefore we also require thatno persistent root appears free in a onstrut tableau, sinethis would be the same as speifying a onstant. In orderto formally state when a PBE query is orretly de�ned weneed to introdue the notions of free and delared variablesof a tableauDefinition 3.5. Let f , c, and d denote the following threegeneri objets: f = FT(y|tag|k|(x0,~t0)|(x1,~t1) . . . (xk,~tk)|
(xk+1,~tk+1) . . . (xk+n,~tk+n)), c = CT(y|tag|k|(a1, x1) . . .

(ak, xk)|xk+1 . . . xk+n), and d = CB(op, e1, e2). The freeand delared variables of these objets respetively are
fv(f) = {y}
fv(c) = {x1 . . . xk+n}
fv(d) = var(e1)∪var(e2)

dv(f) = {x0 . . . xk+n}
dv(c) = {y}
dv(d) = ∅where var denotes the funtion that returns the free variablesof a CQL expression.If O is a set of objets, then we denote by fv(O) and dv(O)the union of the respetive sets of free and delared variablesof its objets.Definition 3.6. For a given PBE query let us denote by

P the set of its persistent roots, by F the set of all rows ofits �lter tableaux, by C the set of all rows of its onditiontableaux and by Θ the rows of a possible ondition box. Thequery is well de�ned if and only if1. fv(F) ∪ fv(C) ∪ fv(Θ) ⊆ dv(F) ∪ dv(C) ∪ P2. fv(C) ∩ P = ∅Note that the freshness onditions in tableaux de�nitionsensure that every variable is delared in one and only onetableau row that it univoally identi�es.
3.2 SemanticsThe semantis of PBE is de�ned via an (e�etive) transla-tion from PBE queries (more preisely, from variables denot-ing PBE queries) to CQL queries. The translation is de�nedin form of inferene rules. For the sake of presentation, thetranslation is introdued gradually in several steps: �rst,we de�ne a naive translation for unnested queries withoutondition box. Then, we observe that the de�nition re-ates some redundanies and modify the translation to avoidthem. Next we add nested queries, that is, PBE querieswith several interrelated onstrut tableaux and, �nally, theondition box.7

3.2.1 Unnested queries without conditionLet P , F , C , and Θ be de�ned as in De�nition 3.6. Westart by onsidering the ase in whih both Θ and fv(C) ∩
dv(C) are empty (no ondition and no nesting).CT(x|tag|k|(a1, x1) . . . (ak, xk)|xk+1 . . . xk+n) ∈ C

F ⊢f xi → li i = 1 . . . k+n

F , C ⊢s x → selet <tag a1=x1 . . . ak=xk>[!xk+1 . . . !xk+n℄ from l1, . . . , lk+n

(R2)
∃f ∈ F , x ∈ dv(f) y ∈ fv(f) ∩ P

F ⊢f x → pattern(f) in [y℄ (F3)
∃f∈F , x∈dv(f) y∈fv(f) y 6∈P F\f ⊢f y → l

F ⊢f x → l , pattern(f) in y
(F4)

x 6∈ dv(C)

F , C ⊢s x → Ω
(R6) x 6∈ dv(F)

F ⊢f x → Ω
(F2)Figure 12: Naive translation of unnested queries without ondition.The inferene rules are given in Figure 12. The mainjudgment is F , C ⊢s x → e whih translates a variable

x identifying a query�that is, a variable delared by arow in C�into a CQL query e. This is done in rule R2whih straightforwardly generates the selet lause (justnotie that element variables are banged sine they denotesequenes) and relies on a new form of judgment to generatethe from lauses. A judgment F ⊢f x → l generates a list
l of from lauses of the form � p in e �, where p is a CQLpattern and e is a CQL expression whose form is either [y℄or y. As we assume that there are no nested queries, then allvariables free in C must be delared by one (and only one)row in F (reall that these variables annot be persistentroots). For this reason we just need two rules to generatethe from lauses: we use F3 when the free variable of the
F -row at issue is a persistent root (in whih ase we anstop the searh sine the variable is ompletely de�ned); weuse F4 when the free variable of the F -row at issue is aapture variable de�ned in some other row (in whih asewe have to �nd this row and reall the judgment ⊢f un-der an environment F from whih this row is removed�toavoid loops�in order to generate the lauses l that de�nethis variable: these lauses must preede the de�nition ofthe variable, of ourse). Finally the pattern orrespondingto a �lter tableau row is generated by the funtion pattern()whih has the following de�nition.Definition 3.7. Let f be a �lter tableau row of the formFT(y|tag|k|(x0, ~t0)|(x1, ~t1)..(xk, ~tk)|(xk+1, ~tk+1)..(xk+n, ~tk+n)),where y is of type either <s0{a1=s1..ak=sk}>[R1..Rn℄ (i.e.,
y is a persistent root), or [<s0{a1=s1..ak=sk}>[R1..Rn℄*℄(i.e., y is a apture variable), and m denotes the arity ofthe various ~ti's. Then pattern(f) = p1| . . . |pm where, forj=1..m, pj is de�ned as:<(x0&tj

0&sj
0) a1=x1&tj

1&sj
1 . . . ak=xk&tj

k&sj

k>[
xk+1::s

j

k+1
. . . xk+n::sj

k+n℄where for i = 1..n

s
j
i+k =

t
j

i+k&Ri if Ri is a type
t
j

i+k&[Ri℄ otherwiseThe j-th row of a �lter table generates the pattern pj om-posing a union pattern. In eah pj , if xi is a variable that

aptures an attribute, then the pattern assoiated to xi is
ai=xi&tj

i . Otherwise we use regular expressions and thepattern is xi+k :: s
j
i+k. The s

j
i+k is di�erent aording tothe form of the regular expression type Ri. In the ase

Ri is a type (e.g. the type regular expression Title), then
s

j

i+k = t
j

i+k&Ri, otherwise (e.g. the type regular expressionBook*, whih is not a type) s
j

i+k = t
j

i+k&[Ri℄.Finally, rules R6 and F2 expliitly manage the ase ofill-de�ned PBE queries by generating an error, denoted by
Ω.Let us follow the translation on a PBE query q that groupsthe title and the prie of eah book in do under a new tag<result> and is de�ned as followsBib # Book*do (x0, _) (bks, _)Book # Title Author+ Publisher Priebks (x1, _) (tls, _) (x2, _) (x3, _) (pr, _)<result> Title Prieq tls prFormally C = {CT(q|result|0| |tls pr)}, F = {FT(do|bib|0|(x0, Any)| |(bks, Any)),FT(bks|book|0|(x1, Any)|(tls, Any)
(x2, Any)(x3, Any)(pr, Any))}, Θ = ∅.Rule R2 is evaluated �rst sine there exists a row in Cwhih delares the query q. Thus we have:. C , F ⊢s q → selet <result> [!tls !pr ℄ from l1,l2Sine tls is based on the variable bks whih is not a persis-tent root, then for the omputation of l1 orresponding totls we apply rule F4, whih gives:
F ⊢f tls → l3,<(x1)>[tls::Title x2::Author+x3::Publisher pr::Prie℄ in bksTo ompute l3 we repeat the operation on bks whih beingbased on the persistent root do triggers F3 :

F ⊢f bks → <(x0)> [bks::Book* ℄ in [do℄Thus l1 denotes the list:<(x0)>[bks::Book* ℄ in [do℄,<(x1)>[tls::Title x2::Author+ x3::Publisher pr::Prie℄ in bksand the same omputation gives for l2:<(x0)>[books::Book* ℄ in [do℄,<(x1)>[tls::Title x2::Author+ x3::Publisher pr::Prie℄ in bksIn onlusion the rules of Figure 12 translate the PBE query
q into the following CQL query:selet <result> [!tls !pr ℄ from<(x0)>[bks::Book* ℄ in [do℄,<(x1)>[tls::Title x2::Author+ x3::Publisher pr::Prie℄ in bks,<(x0)>[bks::Book* ℄ in [do℄,<(x1)>[tls::Title x2::Author+ x3::Publisher pr::Prie℄ in bksIt is lear that half of the lines in the from lauses are useless.This redundany is due to the fat that the rules omputeseveral times the lauses that de�ne the variables tls andpr. To avoid this dupliation we add a new memoizationenvironment that reords the set of variables already de�nedduring the dedution, as we show in the next setion.
3.2.2 Redundancy elimination for unnested queries

without conditionThe rules in Figure 13 de�ne a modi�ation of the previ-ous translation that eliminates the redundany we pointedout, by using in the ⊢f -judgments a new environment Σthat stores the variables ourring in patterns returned by
pattern().The rules F3 and F4, besides returning the list of lauses l,8

CT(x|tag|k|(a1, x1)...(ak, xk)|xk+1...xk+n) ∈ C

F , Σi−1 ⊢f xi → (li, Σi) Σ0=∅ i=1..k+n

F , C ⊢s x → selet <tag a1=x1...ak=xk>[!xk+1 . . . !xk+n℄ from l1, . . . , lk+n

(R2)
x ∈ Σ

F , Σ ⊢f x → (∅, Σ)
(F1)

x 6∈ Σ ∃f ∈ F , x ∈ dv(f) y ∈ fv(f) ∩ P

F , Σ ⊢f x → (pattern(f) in [y℄, Σ ∪ dv(f))
(F3)

x 6∈ Σ ∃f ∈ F , x ∈ dv(f) y ∈ fv(f) y 6∈ P

F\f, Σ ∪ dv(f) ⊢f y → (li, Σ
′)

F , Σ ⊢f x → (li , pattern(f) in y,Σ′)
(F4)

x 6∈ dv(C)

F , C ⊢s x → Ω
(R6) x 6∈ Σ ∪ dv(F)

F , Σ ⊢f x → Ω
(F2)Figure 13: Memoization for unnested queries without ondition.they now also return a new environmentΣ that that enrihesthe urrent one with the variables de�ned in l.The overall reording of the de�ned variables is performedin the rule R2 by the premises F , Σi−1 ⊢f xi → (li, Σi)where the Σi's are used as aumulators. Eah Σi indeedontains all variables de�ned in the preeding environments,that is in any Σk, suh as k < i (where Σ0 = ∅). The lastenvironment Σn will then ontain all the de�ned variables.The elimination of redundany is then ruially performedby the new rule F1 whih returns an empty set of fromlauses in the ase where the variable to be sought is alreadyde�ned�that is, it belongs to Σ�: in this ase there isno lause l to add in the onstrution of the query as allde�nitions are already present. Rule F2 is straightforwardlymodi�ed.By applying these rules to the example of the previoussetion we obtain the following CQL queryselet <result> [!tls !pr ℄ from<(x0)>[bks::Book* ℄ in [do℄,<(x1)>[tls::Title x2::Author+ x3::Publisher pr::Prie℄ in bkswhih is indeed the one we expeted.

3.2.3 Nested queries without conditionWe extend the previous translation to aount for nestedqueries, that is, queries whose onstrut tableaux delarevariables free in other onstrut tableaux (fv(C)∩dv(C) 6=∅).Intuitively, when during the translation of a query wemeet a variable, we must hek whether this variable is de-lared in a �lter tableau (it is in dv(F)) or in a onstruttableau (it is in dv(C)). In the former ase we must pro-eed as before, that is, insert the variable as it is in theselet expression and generate the from lauses that de�neit. In the latter ase, instead of inserting the variable in theselet expression we have to insert the query generated byreursively alling the translation.This is done by modifying the R-rules for ⊢s (the F -rules,whih are for ⊢f -judgments, do not hange) as shown in Fig-ure 14. In partiular this is done in rule R2 whih for eah
xi (independently from whether it is in dv(F) or in dv(C))alls for its translation (premises F , C ⊢s xi → ei). If thevariable is delared in a �lter tableau, this results in alling

x ∈ dv(F)

F , C ⊢s x → x
(R1)CT(x|tag|k|(a1, x1)...(ak, xk)|xk+1...xk+n) ∈ C

{xj1 , . . . , xjm
} = dv(F) ∩ {x1, . . . , xk+n}

F , C ⊢s xi → ei i=1..k+n

F , Σh−1 ⊢f xjh
→ (lh, Σh) h=1..m Σ0=∅

F , C ⊢s x → selet <tag a1=e1 . . . ak=ek>[!ek+1 . . . !ek+n℄ from l1, . . . , lm

(R2)
x 6∈ dv(F) ∪ dv(C)

F , C ⊢s x → Ω
(R6)(F1), (F2), (F3), (F4) as in Fig. 13Figure 14: Translation rules for nested queries without ondition.the new rule R1 whih returns the variable (now onsid-ered as a CQL expression), otherwise the rule R2 is alledon the new variable and the orresponding CQL expressiongenerated. The rule also generates the from lauses for thevariables that are in dv(F), by the same tehnique as before.The rule R6 is modi�ed sine variables free in a onstruttableau may now be de�ned in another onstrut tableau(this modi�ation is not neessary for F2).Bib # Book*do (x0, _) (bks , _)Book # Title Author+ Publisher Priebks (x1, _) (tls , _) (a, _) (x2, _) (x3, _)Author # Last Firsta (x4, _) (ln , _) (fn, _)<auth> Last Firstp ln fn<result> Title <auth>[Last First℄q tls pFigure 15: Return titles and authors in a new element <result>,where the tag auth replaes the tag author.Let us apply the translation to the tableaux of Figure 15whih ontains nested onstrut tableaux:

C = {CT(q|result|0| |tls p) CT(p|auth|0| |ln fn)}.To translate the query q we apply R2 and in partiularevaluate F , C ⊢s tls → e′ and F , C ⊢s p → e′′. Sinetls is de�ned in F , then e′ is the CQL variable tls. This,with the all of ⊢f to generate the de�nitions for tls yields:selet <result>[!tls !e′′ ℄ from<(x0)>[bks::Book* ℄ in [do℄,<(x1)>[tls::Title a::Author+ x2::Publisher x3::Prie℄ in bkswhere e′′ is the result of the evaluation of the query p. Thisbeing a variable de�ned in C �res the rule R2. Sine therow de�ning p only ontains variables de�ned in F , thenthe translation is as in the previous setion, yielding:selet <result>[!tls!selet <auth>[!ln !fn℄from <(x0)>[books::Book*℄ in [do℄,<(x1)>[tls::Title a::Author+x2::Publisher x3::Prie℄ in bks<(x4)>[ln::Last fn::First℄ in a℄from <(x0)>[bks::Book* ℄ in [do℄,<(x1)>[tls::Title a::Author+ x2::Publisher x3::Prie℄ in bks9

We notie that a new form of redundany appears as thelauses for x0 and x1 are uselessly omputed twie. This isdue to the fat that the work done for translating the in-ner query was already done when omputing the translationof the outer query. The solution is as before, that is, wememoize the variables already met by the translation, withthe di�erene that the variables to be stored are now de-�ned in C and the environment that stores them is addedto ⊢s-judgments.
3.2.4 Redundancy elimination for nested queries with-

out conditionWe need to modify only the R-rules, whose judgmentsspeify now a environment Σ both as input and as output.These two Σ's respetively store and return all the vari-ables de�ned in the onstrut tableau being translated, sothat these variables are taken into aount (when generatingfrom lauses) just one. F -rules instead need no modi�a-tion, even though these rules (in partiular F2) now workon riher Σ's that onvey more information.
x ∈ dv(F)

F , C , Σ ⊢s x → (Σ, x)
(R1) x 6∈ dv(F) ∪ dv(C)

F , C , Σ ⊢s x → Ω
(R6)CT(x|tag|k|(a1, x1)...(ak, xk)|xk+1...xk+n) ∈ C

{xj1 , . . . , xjm
} = dv(F) ∩ {x1, . . . , xk+n}

F , Σh−1 ⊢f xjh
→ (lh, Σh) h = 1 . . . m

F , C , Σm ⊢s xi → (Σ′

i, ei) i = 1 . . . k+n

F , C , Σ0 ⊢s x → (Σm, selet <tag a1=e1..ak=ek>[!ek+1..!ek+n℄ from l1..lm)

(R2)(F1), (F2), (F3), (F4) as in Fig. 13Figure 16: Memoization for nested queries without ondition.In partiular, R1 and R2 are straightforwardly extended(by adding the ontext environment and, for R1, return-ing it unmodi�ed). R2 �rst generates all the from lausesneeded at the top level, and then it translates possibly nestedqueries under the environmentΣm whih reords all the vari-able de�ned in the generation of the top-level from lauses.The rules in Figure 16 translate the tableaux of Figure 15into the following (expeted) query:selet <result>[!tls!selet <auth>[!ln !fn℄from <(x4)>[ln::Last fn::First℄ in a℄from <(x0)>[bks::Book* ℄ in [do℄,<(x1)>[tls::Title a::Author+ x2::Publisher x3::Prie℄ in bksThe rules in Figure 16 are not omplete, though. A rule isstill missing. The problem is that if in rule R2 Σ0 = Σmholds, then the various sub-alls to the F -rules would notgenerate any lause, thus yielding an empty from part (anda syntax error). This in partiular happens when all lausesneeded for the de�nition of the variables free in some on-strut tableau were already generated. To see an instaneof the problem, it su�es to replae in Figure 15 the �rstonstrut tableau (the one that de�nes the p variable), bythe following one. <auth> Author+p a

for whih the sole rules of Figure 16 would returnselet <result>[!tls!selet <auth>[!a℄from ℄from <(x0)>[bks::Book* ℄ in [do℄,<(x1)>[tls::Title a::Author+ x2::Publisher x3::Prie℄ in bkswhose syntax is inorret sine the grayed from lause isempty. To avoid this problem it su�es to add to the rulesof Figure 16 the following rule R4 that for Σ0 = Σm returns[e℄ instead of "selet e from ":(if Σ0 = Σm)CT(x|tag|k|(a1, x1)...(ak, xk)|xk+1...xk+n) ∈ C

{xj1 , . . . , xjm
} = dv(F) ∩ {x1, . . . , xk+n}

F , Σh−1 ⊢f xjh
→ (lh, Σh) h = 1 . . . m

F , C , Σm ⊢s xi → (Σ′

i, ei) i = 1 . . . k+n

F , C , Σ0 ⊢s x → (Σm, [<tag a1=e1 . . . ak=ek>[!ek+1 . . . !ek+n℄ ℄) (R4)With this new rule the previous example translates to:selet <result>[!tls ![<auth>[!a℄℄ ℄from <(x0)>[bks::Book*℄ in [do℄,<(x1)>[tls::Title a::Author+ x2::Publisher x3::Prie℄ in bks
3.2.5 Nested queries with condition.Finally, the most general ase, in whih Θ 6=∅ needs thenew rules C1-C7 of Figure 17. These have as inputF , Σ and
Θ and generate a CQL ondition C that translates the rowsthat use variables in Σ (that is, variables used by the querybeing translated). The output also inludes the list l offrom lauses that were reated during the onstrution of C.These lauses are reated when Θ uses variables not alreadytreated (hene, not belonging to Σ). Of ourse, we need tokeep trak of these variables for subsequent analysis steps, inorder to avoid the reation of dupliated from lauses. Thisexplains the third output of ⊢c, an environment Σ′ thatollets all the newly enountered and treated variables.The �rst two C-rules handle the base ases where thereare no onditions to reate, either beause Σ is empty andthus the query being translated does not de�ne any newvariable (C1) or beause there are no more ondition rowsto translate (C2). Rule C3 handles the ase where the se-leted ondition uses only one variable x and this variableis not already de�ned by a from lause (i.e., x 6∈ Σ) . Thismeans that the ondition is not relevant for the query be-ing reated, and therefore we may drop this ondition-boxrow and ontinue with other onditions. Rule C4 handlesthe ase of one-variable ondition where the variable wasalready treated. Rules C5 and C6 are the two-variablesounterparts of C3 and C4, respetively (in this sense C1is an optimization of C3 and C5). Finally, rule C7 handlesthe ase of a two-variable ondition, where just one of thetwo variables has not been treated (it is not in Σ). Sine oneof the two variables is already de�ned, we have to generatethe from lauses that de�ne the other one, whih is doneby the last premise in the rule. We omitted the symmetriases of C3, C4, and C7 in whih operands are swapped.The R-rules are modi�ed as well, in partiular by the ad-dition of Θ to the inputs and of the alls to ⊢c to generateonditions. When these alls do not generate any ondition(rules R2, R4), then the rules work as before. If insteadthe alls generate a ondition C, then this is added to thetranslation. Rule R3 adds C as the where lause of thegenerated selet expression (plus all the generated from10

x ∈ dv(F)

F , C , Σ, Θ ⊢s x → (Σ, x)
(R1)(if Σ0 6= Σm)CT(x|tag|k|(a1, x1) . . . (ak, xk)|xk+1 . . . xk+n) ∈ C

{xj1 , . . . , xjm
} = dv(F) ∩ {x1, . . . , xk+n}

F , Σh−1 ⊢f xjh
→ (lh, Σh) F , C , Σm, Θ ⊢s xi → (Σ′

i, ei)
F , Σm, Θ ⊢c (∅, ∅, Σm) i = 1 . . . k+n h = 1 . . . m

F , C , Σ0, Θ ⊢s x → (Σm, selet <tag a1=e1 . . . ak=ek>[!ek+1 . . . !ek+n℄ from l1, . . . , lm)

(R2)(if Σ0 6= Σ′)CT(x|tag|k|(a1, x1) . . . (ak, xk)|xk+1 . . . xk+n) ∈ C

{xj1 , . . . , xjm
} = dv(F) ∩ {x1, . . . , xk+n}

F , Σh−1 ⊢f xjh
→ (lh, Σh) F , C , Σm, Θ ⊢s xi → (Σ′

i, ei)
F , Σm, Θ ⊢c (C, lc, Σ

′) i = 1 . . . k+n h = 1 . . . m

F , C , Σ0, Θ ⊢s x → (Σ′, selet <tag a1=e1..ak=ek>[!ek+1..!ek+n℄ from l1..lm,lc where C)

(R3)(if Σ0 = Σm)CT(x|tag|k|(a1, x1) . . . (ak, xk)|xk+1 . . . xk+n) ∈ C

{xj1 , . . . , xjm
} = dv(F) ∩ {x1, . . . , xk+n}

F , Σh−1 ⊢f xjh
→ (lh, Σh) F , C , Σm, Θ ⊢s xi → (Σ′

i, ei)
F , Σm, Θ ⊢c (∅, ∅, Σm) i = 1 . . . k+n h = 1 . . . m

F , C , Σ0, Θ ⊢s x → (Σm, [<tag a1=e1 . . . ak=ek>[!ek+1 . . . !ek+n℄ ℄) (R4)(if Σ0 = Σm)CT(x|tag|k|(a1, x1) . . . (ak, xk)|xk+1 . . . xk+n) ∈ C

{xj1 , . . . , xjm
} = dv(F) ∩ {x1, . . . , xk+n}

F , Σh−1 ⊢f xjh
→ (lh, Σh) F , C , Σm, Θ ⊢s xi → (Σ′

i, ei)
F , Σm, Θ ⊢c (C, ∅, Σm)

i = 1 . . . k+n h = 1 . . . m

F , C , Σ0, Θ ⊢s x → (Σm, if C then [<tag a1=e1 . . . ak=ek>[!ek+1 . . . !ek+n℄ ℄ else [℄) (R5)
x 6∈ dv(F) ∪ dv(C)

F , C , Σ, Θ ⊢s x → Ω
(R6)

x ∈ Σ

F , Σ ⊢f x → (∅, Σ)
(F1)

x 6∈ Σ ∪ dv(F)

F , Σ ⊢f x → Ω
(F2)

x 6∈ Σ ∃f ∈ F , x ∈ dv(f) y ∈ fv(f) ∩ P

F , Σ ⊢f x → (pattern(f) in [y℄, Σ ∪ dv(f))
(F3)

x 6∈ Σ ∃f ∈ F , x ∈ dv(f) y ∈ fv(f)
y 6∈ P F\f, Σ ∪ dv(f) ⊢f y → (li, Σ

′)

F , Σ ⊢f x → (li , pattern(f) in y, Σ′)
(F4)

F , ∅, Θ ⊢c (∅, ∅, ∅)
(C1)

F , Σ, ∅ ⊢c (∅, ∅, Σ)
(C2)

r = CB(op, x, v) ∈ Θ x 6∈ Σ
F , Σ, Θ\r ⊢c (C, l, Σ′)

F , Σ, Θ ⊢c (C, l, Σ′)
(C3)

r = CB(op, x, v) ∈ Θ x ∈ Σ
F , Σ, Θ\r ⊢c (C, l, Σ′)

F , Σ, Θ ⊢c (C and (x op v), l, Σ′)
(C4)

r = CB(op, x1, x2) ∈ Θ x1 6∈ Σ x2 6∈ Σ
F , Σ, Θ\r ⊢c (C, l, Σ′)

F , Σ, Θ ⊢c (C, l, Σ′)
(C5)

r = CB(op, x1, x2) ∈ Θ x1 ∈ Σ x2 ∈ Σ
F , Σ, Θ\r ⊢c (C, l, Σ′)

F , Σ, Θ ⊢c (C and (x1 op x2), l, Σ′)
(C6)

r = CB(op, x1, x2) ∈ Θ x1 ∈ Σ x2 6∈ Σ
F , Σ, Θ\r ⊢c (C, l1, Σ

′) F , Σ′ ⊢f x2 → (l2, Σ
′′)

F , Σ, Θ ⊢c (C and (x1 op x2) , l1,l2 , Σ′′)
(C7)Figure 17: Translation rules for nested queries with ondition.lauses). Rule R5 handles the speial ase in whih the var-ious sub-alls generates an empty set of from lauses (it isthe non-empty ondition ounterpart of rule R4) and there-fore there is no selet expression to whih stik C as awhere lause: in this ase an if_then_else CQL operatoris used instead.Bib # Book*do (x0, _) (bks, _)Book # Title Author+ Publisher Priebks (x1, _) (tls1, _) (x2, _) (x3, _) (x4, _)Entries # Entry*bstore2 (x5, _) (reviews , _)Entry # Title Prie Reviewreviews (x6, _) (tls2, _) (x7, _) (x8, _)<result> Titleq tls1 CONDITION BOXtls1=tls2Figure 18: Titles that appear both in do and in bstore2.

The PBE query of Figure 18 de�nes the query Q5 of XMLQuery Use Cases [8℄, whih is interesting sine it ontains ajoin ondition tls1 = tls2. The generation of the orrespond-ing CQL query, relies on rule C7, when the from lause fortls1 ourring Θ has been reated, but tls2 has not beende�ned yet. The result is:selet <result>[!tls1from <(x0)>[bks::Book*℄ in [do℄,<(x1)>[tls1::Title x2::Author+ x3::Publisher x4::Prie℄ in bks,<(x5)>[reviews::Entry*℄ in [bstore2℄,<(x6)>[tls2::Title x7::Prie x8::Review ℄ in reviewswhere tls1=tls2The translation of well-de�ned PBE queries always termi-nates and yields well-typed CQL expressions, as stated bythe following theoremTheorem 3.8. Let Q = (F , C , P, Θ) be a PBE query.For every x ∈ dv(C) there exists a unique e suh that thejudgment F , C , ∅,Θ ⊢s x → e is provable. Furthermore, if
Q is well de�ned, then e is a well-typed CQL expression (in11

partiular, e 6= Ω) up to exhaustiveness of pattern math-ing.5
3.3 Further design issuesSo far the interpretation of tableaux, although tehniallydi�ult, is rather unontroversial: the given semantis im-plements what one intuitively expets from tableaux. Thereare however some design hoies that are not so obvious andthat an be interesting to allow more advaned uses of thelanguage. In partiular, should onstraints given in some �l-ter tableau for a variable de�ned in a di�erent �lter tableauapply loally or globally? Note that the latter hoie isthe one done by QBE Also, should we relax the restritionson variables delared on multiple rows of a �lter tableau,aept rows that delare distint variables, and onsideredthem as intersetion patterns? For spae reasons the dis-ussion of these two options (whih are easily implementedand urrently under onsideration for inlusion in PBE) areavailable at www.due.org/paper/pbe.pdf.
4. CONCLUSION AND FUTURE WORKPBE is a graphial interfae that allows users with littleor no knowledge of XPath, XQuery, or CQL to de�ne om-plex and optimized queries on XML douments. The onlyrequired skill is to be able to understand XML types writtenusing pretty intuitive and standard onventions of type reg-ular expressions. At road test we found the usage of PBEquite simple and intuitive. Of ourse this is a subjetiveview, but PBE has two objetive and important advantageswith respet to other graphial query languages. The �rst isthat it generates queries that are provably orret with re-spet to types. The type of the result is displayed to the userand this onstitutes a �rst and immediate visual yardstikto hek semanti orretness of the resulting query. Theseond advantage is that its semantis is formally�thus,unambiguously�de�ned, and this is an important advane-ment over some urrent approahes in whih the standardusage and learning methods are based on �trial and error�tehniques (a.k.a. �lik and hope�).The implementation of PBE developed in OCaml is inalpha-testing and available at www.lri.fr/~miahon/pbe.It relies for its graphial part on LablGTK, on the CDue'stype engine for omputing table entries, and uses CQL asbak-end. Its kismet is its inlusion in the o�ial CDue dis-tribution (www.due.org), but before some improvementsare still needed. Some are purely ergonomi, suh as thepossibility of de�ning DTDs by using tableaux, the earlydetetion of useless �lter tableaux rows (see Footnote 5),the elimination of expliit variables by replaing them by�drag-and-drop� tehniques. Others are enhanement fea-tures: foremost we want to allow the user to split an auto-matially generated olumn into several equivalent ones (forinstane, if a user wants to apture exatly the seond authorof a book, (s)he should be allowed to split the Author+ ol-umn of the �rst �lter tableau in Figure 8 into three olumns,one for the �rst author, another for the seond author, and5The de�nition of well-de�ned query does not ensure that all the rowsof a �lter tableau are useful. For instane, every row following a rowwith all onstraints equal to Any will never be used. This propertyan be easily heked at onstrution time but its de�nition wouldhave required the introdution of several tehnial de�nitions of the
CDue type system. We preferred to keep the de�nition simple, asthese errors are statially deteted as soon as the query is generated(more preisely, as soon as the pattern() funion is alled).

a last one for the remaining authors); but we want also de-vise a way to express unions or omplex onstraints withoutthe neessity of writing omplex type regular expressions in�lter tableau rows.In our future plans there also is the use for PBE of dif-ferent bak-ends, in primis XQuery. Suh a modi�ation isnot straightforward beause XPath seletions are not as �negrained on sequenes as PBE ones. If for instane we querya doument of type <a>[B* C* B*℄ and insert a variable inthe �rst olumn of the orresponding �lter tableau, then thisvariable must be translated into an XPath expression witha non-trivial ondition that aptures all B elements whoseleft siblings do not inlude C elements.
5. REFERENCES[1℄ V. Benzaken, G. Castagna, and A. Frish. CDue: anXML-friendly general purpose language. In ICFP '03, 8thACM Int. Conf. on Funtional Programming, pages 51�63.ACM Press, 2003.[2℄ V. Benzaken, G. Castagna, and C. Miahon. A fullpattern-based paradigm for XML query proessing. InPADL 05, 7th Int. Symp. on Pratial Aspets ofDelarative Languages, number 3350 in LNCS, pages235�252. Springer, 2005.[3℄ S. Berger, F. Bry, S. Sha�ert, and Ch. Wieser. Xerpt andvisXerpt: From pattern-based to visual querying of XMLand semistrutured data. In VLDB, pages 1053�1056, 2003.[4℄ S. Boag, D. Chamberlin, M. Fernandez, D. Floresu,J. Robie, J. Siméon, and M. Stefanesu. XQuery 1.0: AnXML Query Language. W3C Working Draft,http://www.w3.org/TR/xquery/, May 2003.[5℄ L. Bouganim, T. Chan-Sine-Ying, T-T. Dang-Ngo, J-LDarroux, G. Gardarin, and F. Sha. Miro web: Integratingmultiple data soures through semistrutured data types.In The VLDB Journal, pages 750�753, 1999.[6℄ D. Braga, A. Campi, and S. Ceri. �XQBE (XQuery ByExample): A visual interfae to the standard XML querylanguage�. TODS, 30:398�443, 2005.[7℄ M. J. Carey, L. M. Haas, V. Maganty, and J. H. Williams.Pesto : An integrated query/browser for objet databases.In VLDB, pages 203�214, 1996.[8℄ D. Chamberlin, P. Fankhauser, D. Floresu, M. Marhiori,and J. Robie. XML Query Use Cases. Tehnial Report20030822, World Wide Web Consortium, 2003.[9℄ S. Cohen, Y. Kanza, Y. A. Kogan, W. Nutt, Y. Sagiv, andA. Serebrenik. Equix easy querying in XML databases. InWebDB (Informal Proeedings), pages 43�48, 1999.[10℄ M. Erwig. Xing: A visual XML query language. Journal ofVisual Languages and Computing, 14(1):5�45, 2003.[11℄ I. Filha, A. Laender, and A. da Silva. QueryingSemi-strutured Data By Example: The QSByE Interfae.In Workshop on Information Integration on the Web, 2001.[12℄ H. Hosoya and B. Piere. XDue: A typed XML proessinglanguage. ACM Transations on Internet Tehnology,3(2):117�148, 2003.[13℄ C. Miahon. Langages de requêtes pour XML à base depatterns : oneption, optimisation et implantation. PhDthesis, Université Paris Sud, 2006.[14℄ K. D. Munroe and Y. Papakonstantinou. BBQ: A visualinterfae for integrated browsing and querying of XML. InVLDB, 2000.[15℄ M. Petropoulos, Y. Papakonstantinou, and V. Vassalos.Graphial query interfaes for semistrutured data: theQURSED system. TOIT, 5(2):390�438, May 2005.[16℄ M. Zloof. Query-by-example: A data base language. IBMSystems Journal, 16(4):324�343, 1977.

12

