Semantic subtyping: dealing set-theoretically
with union, intersection, and negation types

Alain Frisch Giuseppe Castagna
INRIA Roquencourt Ecole Normale Supérieure de Paris

Véronique Benzaken
LRI - Université Paris Sud

Abstract

Subtyping relations are usually defined either syntactically by a for-
mal system or semantically by an interpretation of types into an untyped
denotational model. This work shows how to define a subtyping rela-
tion semantically in the presence of Boolean connectives, functional types
and dynamic dispatch on types, without the complexity of denotational
models, and how to derive a complete subtyping algorithm.

1 Introduction

Many recent type systems rely on a subtyping relation. Its definition generally
depends on the type algebra, and on its intended use. We can distinguish two
main approaches for defining subtyping: the syntactic approach and the seman-
tic one. The syntactic approach by far the more used consists in defining
the subtyping relation by axiomatising it in a formal deduction system (a set of
inductive or co-inductive rules); in the semantic approach (for instance, [1, 12]),
instead, one starts with a model of the language and an interpretation of types
as subsets of the model, then defines the subtyping relation as the inclusion of
denoted sets, and, finally, when the relation is decidable, derives a subtyping
algorithm from the semantic definition.

The semantic approach has several advantages but it is also more constrain-
ing. Finding an interpretation in which types can be interpreted as subsets of
a model may be a hard task. A solution to this problem was given by Haruo
Hosoya and Benjamin Pierce [20, 18, 21] with the work on XDuce. The key
idea is that in order to define the subtyping relation semantically one does not
need to start from a model of the whole language: a model of the types suffices.
In particular Hosoya and Pierce take as model of types the set of values of the
language. Their notion of model cannot capture functional values. On the one
hand, the resulting type system is poor since it lacks function types. On the
other hand, it manages to integrate union, product and recursive types and still

keep the presentation of the subtyping relation and of the whole type system
quite simple.

In a previous work [16, 14] we extended the work on XDuce and re-framed
it in a more general setting: we show a technique to define semantic subtyping
in the presence of a rich type system including function types, but also arbi-
trary Boolean combinations (union, intersection, and negation types) and in the
presence of lately bound overloaded functions and type-based pattern matching.
The aim of [16, 14] was to provide a theoretical foundation on the top of which to
build the language CDuce [4], an XML-oriented transformation language. The
key theoretical contribution of the work is a new approach to define semantic
subtyping when straightforward set-theoretic interpretation does not work, in
particular for arrow types. Here we focus and expand on this aspect of the work
and we get rid of many features (e.g. pattern matching and pattern variable
type inference) which are not directly related to the treatment of subtyping.

The description of a general technique to extend semantic subtyping to gen-
eral types systems with arrow and complete Boolean combinator types is just
one way to read our work, and it is the one we decided to emphasise in this
presentation. However it is worth mentioning that there exist at least two other
readings for the results and techniques presented here.

A first alternative reading is to consider this work as a research on the defi-
nition of a general purpose higher-order XML transformation language: indeed,
this was the initial motivation of [16, 14] and the theoretical work done there
constitutes the fundamental basis for the definition and the implementation of
the XML transformation language CDuce.

A second way of understanding this work is as a quest for the generalisa-
tion of lately bound overloaded functions to intersections types. The intuition
that overloaded functions should be typed by intersection types was always felt
but never fully formalised or understood. On the one hand we had the long-
standing research on intersection types with the seminal works by the Turin
research group on typed lambda calculus [3, 11]. However functions with inter-
section types had a uniform behaviour, in the sense that even if they worked
on arguments of different types they always executed the same code on all of
these types!. So functions with intersections types looked closer to parametric
polymorphism (in which we enumerate the possible domains) rather than over-
loaded functions which are able to discriminate on the type of the argument and
execute a different code for each different type. On the other hand there was
the research on overloaded functions as used in programming languages which
accounted for functions formed by different pieces of code selected according to
the type of the argument the function is applied to. However, even if the types
of these functions are apparently close to intersection types, they never had the
set theoretic intuition of intersections. So for example in the A\&-calculus [§]
overloaded functions have types that are characterised by the same subtyping
relation as intersection types, but they differ from the latter by the need of spe-

T A notable exception to this is John Reynolds work on the coherent overloading and the
language Forsythe [22, 23].

cial formation rules that have no reasonable counterpart in intersection types.
The overloaded functions defined here and, even more, those defined in [16] fi-
nally reconcile the two approaches: they are typed by intersection types (with a
classical /set-theoretic interpretation) and their definitions may intermingle code
shared by all possible input types with pieces of code that are specific to only
some particular input types. Therefore they nicely integrate the two styles of
programming.

Finally it is important to stress that although here we deploy our construc-
tion for a A-calculus with higher-order functions, the technique is quite general
and can be used mostly unchanged for quite different paradigms, as for instance
it is done in [9] for the m-calculus.

Plan of the article. The presentation is structured in three parts:

1. In the first part (Section 2) we lengthy discuss the main ideas, the under-
lying intuitions, and the logical entailment of the whole approach.

2. In the second part (Sections 3 5) we succinctly and precisely define the
system: the calculus and its typing relation (Section 3), the subtyping
relation (Section 4), and their properties (Section 5).

3. The last part (Section 6) presents the technical details of the properties
stated in the second part.

Section 7 concludes our presentation.

2 Overview of the approach

When dealing with syntactic subtyping one usually proceeds as follows. First,
one defines a language, then, somewhat independently, the set of (syntactic)
types and a subtyping relation on this set. This relation is defined axiomatically,
in an inductive (or co-inductive, in case of recursive types) way. The type
system, consisting of the set of types and of the subtyping relation, is coupled
to the language by a typing relation, usually defined via some typing rules by
induction on the terms of the language and possibly a subsumption rule that
accounts for subtyping. The meaning of types is only given by the rules defining
the subtyping and the typing relations.

The semantic subtyping approach described here diverges from the above
only for the definition of the subtyping relation. Instead of using a set of de-
duction rules, this relation is defined semantically: we do it by defining a set-
theoretic model of the types and by stating that one type is subtype of another
if the interpretation of the former is a subset of the interpretation of the latter.
As for syntactic subtyping, the definition is parametric in the set of base types
and their subtyping relation (in our case, their interpretation).

2.1

A five steps recipe

In principle, the process of defining semantic subtyping can be roughly sum-
marised in the following five steps:

1.

Take a bunch of type constructors (e.g., —, X, ch, ...) and extend the
type algebra with the following Boolean combinators: union V, intersection
A, and negation -, yielding a type algebra 7.

. Give a set-theoretic model of the type algebra, namely define a function

[1p: T — Z(D), for some domain D (where (D) denotes the power-
set of D). In such a model, the combinators must be interpreted in a
set-theoretic way (that is, [sAt], = [s], N [t] 5, [sVtlp = [s]p U [t ps
and [-t], = D\ [t]5), and the definition of the model must capture the
essence of the type constructors.

There might be several models, and each of them induces a specific sub-
typing relation on the type algebra. We only need to prove that there
exists at least one model and then pick one that we call the bootstrap
model. If its associated interpretation function is [], then it induces the
following subtyping relation:

s<at <L [s],C [, (1)

Now that we defined a subtyping relation for our types, find a subtyping
algorithm that decides (or semi-decides) the relation. This step is not
mandatory but highly advisable if we want to use our types in practice.

Now that we have a (hopefully) suitable subtyping relation available, we
can focus on the language itself, consider its typing rules, use the new
subtyping relation to type the terms of the language, and deduce I' 4 e :
t. In particular this means to use in the subsumption rule the bootstrap
subtyping relation <4 we defined in step 2.

. The typing judgement for the language now allows us to define a new nat-

ural set-theoretic interpretation of types, the one based on values [t],, =
{ve?| Fguv:t} and then define a “new” subtyping relation as we

did in (1), namely s <y ¢ & [s], C [t] . The new relation <y might
be different from <g we started from. However, if the definitions of the
model, of the language, and of the typing rules have been carefully chosen,
then the two subtyping relations coincide

s<agzt < s<yt
and this closes the circularity. Then, the rest of the story is standard (re-
duction relation, subject reduction, type-checking algorithm, etc ...).

While the five steps above outline a nice framework in which to fit and under-
stand what follows, in practice, however, the starting point never is the model of
types but the calculus: in particular one always starts from the calculus and its

values, and tries to slightly modify these so that the values outline some model
that can then be formalised. This is what we also do here: while we follow
the five-steps processes above to give, in the rest of this section, an overview of
the approach, in Section 3 we introduce a A-calculus with overloaded functions
and dynamic dispatch, in Section 4 we introduce a model to semantically de-
fine a subtyping relation inspired from the previous calculus, and in Section 5
discuss the main results, namely, the soundness of the typing relation, the cor-
respondence between the values of Section 3 and the model of Section 4, and
the decidability of the various relations.

2.2 Advantages of semantic subtyping

The semantic approach is more technical and constraining, and this may explain
why it has obtained less attention than syntactic subtyping. However it presents
several advantages:

1. When type constructors have a natural interpretation in the model, the
subtyping relation is by definition complete with respect to its intuitive
interpretation as set inclusion: when t < s does not hold, it is possible
to exhibit an element of the model which is in the interpretation of ¢ and
not of s, even in presence of arrow types (this property is used in CDuce
to return informative error messages to the programmer); in the syntactic
approach one can just say that the formal system does not prove t < s, and
there may be no clear criterion to assert that some meaningful additional
rules would not allow the system to prove it. This argument is particularly
important with a rich type algebra, where type constructors interact in
non trivial ways; for instance, when considering arrow, intersection and
union types, one must take into account i.e., introduce rules for ~many
distributivity relations such as, for instance?, (t; Vt2) — s ~ (t; —
s) A (ta — s). Forgetting any of these rules yields a type system that,
although sound, does not match (that is, it is not complete with respect
to) the intuitive semantics of types.

2. In the syntactic approach deriving a subtyping algorithm requires a strong
intuition of the relation defined by the formal system, while in the semantic
approach it is a simple matter of “arithmetic”: it simply suffices to use the
interpretation of types and well-know Boolean algebra laws to decompose
subtyping on simpler types (as we show in Section 6.2). Furthermore, as
most of the formal effort is done with the semantic definition of subtyping,
studying variations of the algorithm (e.g., optimisations or different rules)
turns out to be much simpler (this is common practise in database theory
where, for example, optimisations are derived directly from the algebraic
model of data).

3. While the syntactic approach requires tedious and error-prone proofs of
formal properties, in the semantic approach many of them come for free:

2We write s ~ t as a shorthand for s <t and s > t.

for instance, the transitivity of the subtyping relation is trivial (as set-
containment is transitive), and this makes proofs such as cut elimination
or transitivity admissibility pointless. Other examples of properties that
come easily from a semantic definition are the variance of type construc-

tors, and distributivity laws (e.g. t1 X% (taVits) ~ (t1Xt2)V(t1X13)).

Although these properties look quite appealing, the technical details of the ap-
proach hinder its development: in the semantic approach, one must be very care-
ful not to introduce any circularity in the definitions. For instance, if the type
system depends on the subtyping relation as this is generally the case one
cannot use it to define the semantic interpretation which must thus be untyped;
also, usually the model corresponds to an untyped denotational semantics, and
types are interpreted as ideals and this precludes the set-theoretic interpretation
of negative types (as the complement of ideals is not an ideal). For these reasons
all the semantic approaches to subtyping previous to our work presented some
limitations: no higher-order functions, no complement types, and so on. The
main contribution of our work is the development of a formal framework that
overcomes these limitations.

Excursus. The reader should not confuse our research with the
long-standing research on set-theoretic models of subtyping. In that
case one starts from a syntactically (i.e. axiomatically) defined sub-
typing relation and seeks a set-theoretic model where this relation
is interpreted as inclusion. Our approach is the opposite: instead of
starting from a subtyping relation to arrive to a model, we start by
defining a model in order to arrive to a subtyping relation. Thus in
our approach types have a strong substance even before introducing
the typing relation.

2.3 A model of types

To define semantic subtyping we need a set-theoretic model of types. The
source of most of (if not all) the problems comes from the fact that this model
is usually defined by starting from a model of the terms of the language. That is,
we consider a denotational interpretation function that maps each term of the
language into an element of a semantic domain and we use this interpretation
to define the interpretation of the types (typically but not necessary, e.g. PER
models [2] as the image of the interpretation of all terms of a given type). If we
consider functional types then in order to interpret functional term application
we have to interpret the duality of functions as terms and as functions on terms.
This yields the need to solve complicated recursive domain equations that hardly
combines with a set-theoretic interpretation of types, whence the introduction
of restrictions in the definition of semantic subtyping (e.g. no function types, no
negation types, etc ...).

Note however that in order to define semantic subtyping all we need is a
set-theoretic model of types. The construction works even if we do not have a

model of terms. To push it to the extreme, in order to define subtyping we do
not need terms at all, since we could imagine to define type inclusion for types
independently from the language we want to use these types for. More plainly,
the definition of a semantic subtyping relation needs neither an interpretation for
applications (that is an applicative model) nor, thus, the solution of complicated
domain equations.

The key idea to generalise semantic subtyping is then to dissociate the model
of types from the model of terms and define the former independently from the
latter. In other words, the interpretation of types must not forcedly be based
on, or related to an interpretation of terms (and actually in the some concrete
examples we will give we interpret types in structures that cannot be used for an
interpretation of terms), and as a matter of fact we do not need an interpretation
of terms even to exist for the semantic subtyping construction to go through?®.

2.4 Types as sets of values

Nevertheless, to ensure type safety (i.e. well-typed programs cannot go wrong)
the meaning of types has to be somewhat correlated with the language. A
classical solution, that belongs to the types folklore* is to interpret types as
sets of values, that is, as the results of well-typed computations in the language.
More formally, the values of a typed language are all the terms that are well-
typed, closed, and in normal form. So the idea is that in order to provide an
interpretation of types we do not need an interpretation of all terms of the
language (or of just the well-typed ones): the interpretation of the values of the
language suffices to define an interpretation of types. This is much an easier
task: since a closed application usually denotes a redex, then by restricting to
the sole values we avoid the need to interpret application and, therefore, also
the need to solve complicated domain equations. This is the solution adopted
by XDuce, where values are XML documents and types are sets of documents
(more precisely, regular languages of documents).

But if we consider a language with arrow types, that is a language with
higher order functions, then the applications come back again: arrow types
must be interpreted as sets of function values, that is, as sets of well-typed
closed lambda abstractions, and applications may occur in the body of these
abstractions. Here is where XDuce stops and it is the reason why it does not
include arrow types.

3 As Pierre-Louis Curien suggested, the construction we propose is a pied de nez to (it cocks
a snook at) denotational semantics, as it uses a semantic construction to define a language
for which, possibly, no denotational semantics is known.

4A survey on the “Types” mailing list traces this solution back to Bertrand Russell and
Alfred Whitehead’s Principia Mathematica. Closer to our interests it seems that the idea
independently appeared in the late sixties early seventies and later back again in seminal works
by Roger Hindley, Per Martin-L6f, Ed Lowry, John Reynolds, Niklaus Wirth and probably
others (many thanks to the many “typers” who answered to our survey).

2.5 A circularity to break

Introducing arrow types is then problematic because it slips applications back

again in the interpretation of types. However this does not mean that we need

a semantic interpretation for application, it just implies that we must define

how application is typed. Indeed, functional values are well-typed lambda ab-

stractions, so to interpret functional types we must be able to type lambda

abstractions and in particular to type the applications that occur in their body.

Now this is not an easy task in our context: in the absence of higher order

functions the set of values of type constructors such as products or records can

be inductively defined from basic types without resorting to any typing rela-

tion (this is why the XDuce approach works smoothly). With the arrow type

constructor, instead, this can be done only by using a typing relation, and this

yields to the circularity we hinted at in the introduction and that is shown in

Figure 1: in order to define the subtyping relation we need an interpretation of

the types of the language; for this we have to define which are the values of an

arrow type; this needs that we define the typing relation for applications, which
in turns needs the definition of the subtyping relation.

Thus, if we want to define the semantic subtyping of

Subtyping arrow types we must find a way the avoid this circu-

relation larity. The simplest way to avoid it is to break it, and

the development we did so far clearly suggests where

to break it. We always said that to define (semantic)

subtyping we must have a model of types; it is also

clear that the typing relation must use subtyping;

Typing On the contrary it is not strictly necessary for our

relation model to be based on the interpretation of values,

this is just convenient as it ties the types with the

language the types are intended for. This is there-

fore the weakest link and we can break it. So the

Figure 1: Circularity jdea is to start from a model (of the types) defined

independently (but not too much) from the language

the types are intended for (and therefore independently from its values), and

then from that define the rest: subtyping, typing, set of values. We will then

show how to relate the initial model to the obtained language and recover the

initial “types as set of values” interpretation: namely, we will “close the circle”.

Well-typed
values

2.6 Set-theoretic models

Let us then show more in details how we shall proceed. We do not need to define
a particular language, the definition of types will suffice. Here, we assume that
types are defined by the following syntax:

tu=0 | 1 | t—t | txt | =t | tVE | AL

where 0 and 1 respectively correspond to the empty and universal types (these
are sometimes denoted by the pair 1, T or Bottom, Top). The formal defini-

tion of the type algebra, which includes recursive types and basic types, will be
given in Section 3.1.

The second step is to define precisely what a set-theoretic model for these
types is. As Hindley and Longo [17] give some general conditions that char-
acterise models of A-calculus, so here we want to give the conditions that an
interpretation function must satisfy in order to characterise a set-theoretic model
of our types. So let .7 be the set of types, D some set, and [] an interpretation
function from 7 to (D). The conditions that [_] must satisfy to define a
set-theoretic model are mostly straightforward, namely:

1. [[t1Vt2]] = [[tl]] U [[tgﬂ

2. [[tl/\tg]] = [[tl]] N [[tgﬂ
3. [~1] = D\[1]

4 []=D

5. [0]=2

6. [txs] = [t] x [s]

7 [t—s) = 7

The first six conditions convey the intuition that our model is set theoretic:
so the intersection of types must be interpreted as set intersection, the union
of types as set-theoretic union and so on (the sixth condition requires some
closure properties on D but we prefer not to enter in such a level of detail at
this point of our presentation). But the definition is not complete yet as we
still have to establish the seventh condition (highlighted by a x) that constrains
the interpretation of arrow types. This condition is more complicated. Again it
must convey the intuition that the interpretation is set theoretic, but while the
first six conditions are language independent, this conditions strongly depends
on the language and in particular on the kind of functions we want to implement
in our language. We give detailed examples about this in [14]. The set theoretic
intuition we have of function spaces is that a function is of type t—s if whenever
applied to a value of type ¢ it returns a result of type s. Intuitively, if we
interpret functions as binary relations on D, then [t—s] is the set of binary
relations in which if the first projection is in (the interpretation of) ¢t then the
second projection is in s, namely {f C D? | ¥(d1,ds) € f. dy € [t] = da € [s] }.
Note that this set can also be written Z([t] x [s]), where the overline denotes
set complement. If the language is expressive enough, we can do as if every
binary relation in this set was an element of [t—s]; thus, we would like to say
that the seventh condition is:

[t—s] = 2([t] * [s]) (2)

But this is completely meaningless. First, technically, this would imply that
P (D?) C D, which is impossible for cardinality reasons. Also, remember that

we want eventually to re-interpret types as sets of values of the language, and
functions in the language are not binary relations (they are syntactic objects).
However what really matters is not the exact mathematical nature of the ele-
ments of D, but only the relations they create between types. The idea then is
to do as if the above condition held.

Since this point is central to our model, let us explain it differently. Recall
that the only reason why we want to accurately state what set-theoretic model
of types is, is to precisely define the subtyping relation for syntactic types. In
other words, we do not define an interpretation of types in order to formally
and mathematically state what the syntactic types mean but, more simply, we
define it in order to state how they are related. So, even if we would like to say

that a type t—s must be interpreted in the model as 2 ([t] x H) as stated by
(2), for what it concerns the goal we are aiming at, it is enough to require that
a model must interpret functional types so as the induced subtyping relation is
the same as the one the condition (2) would induce, that is:

[t1—=s51] C [t2—s2] = 2([t1] x [s1]) € 2([ta] x [52])

and similarly for any Boolean combination of arrow types.

Formally, we associate (see Definition 4 in Section 4.2) to [_] an extensional
interpretation E(_) that behaves as [] except for arrow types, for which we
use the condition above as definition:

E(t—s) = 2([t] x [3])

Note that we use [_] in the right-hand side of this equation, that is, we only
re-interpret top-level arrow types. Now we can express the fact that [] behaves
(from the point of view of subtyping) as if functions were binary relations. This
is obtained by writing the missing seventh condition, not in the form of 7*, but
as follows:

7. [t]l=9 < E{t)=90

or, equivalently, [t;] C [t2] < E(t1) C E(t2).°

To put it otherwise, if we wanted an interpretation [] of the types that
were faithful with respect to the semantics of the language, then we should
require for all ¢ that [t] = E(¢). But for cardinality reasons this is impossible in
a set-theoretic framework. However we do not need such a strong constraint on
the definition of [] since all we ask to [] is to characterise the containment
of types, and to that end it suffices to characterise the zeros of [_], since

s<t <= [s]C[t] = [s]N[t]=92 < [sA—t] =2

Therefore, instead of asking that [] and E(_) coincide on all points, we require
a weaker constraint, namely that they have the same zeros:

[fl=2 < LE({t)=0

SIndeed, [t1] C [t2] <= [t1i] \[t2] = @ < [tuA—t2] = @ <= E(tiA-t2) = O —
E(t1) \ E(t2) = & <= E(t1) C E(t2).

10

This is the essence of our definition of models of the type algebra (Definition 5
in Section 4.2).

We said that the above seventh condition (actually, the definition of the
extensional interpretation) depends on the language the type system is intended
for. Previous work [14] shows different variations of this conditions to match
different sets of definable transformations. However, we can already see that
the condition above accounts for languages in which functions possibly are

1. Non-deterministic: since the condition does not prevent the interpretation
of a function space to contain a relation with two pairs (d,d;) and (d, d2)
with dy # ds.

2. Non-terminating: since the condition does not force a relation in [t—s]
to have as first projection the whole [t]. A different reason for this is that
every arrow type is inhabited (note indeed that the empty set belongs to
the interpretation of every arrow type), so in particular are all the types
of the form t—0; now, all the functions in such types must be always non-
terminating on their domain (if they returned a value this would inhabit

0).

3. Owerloaded: this is subtler than the two previous cases as it is a conse-
quence of the fact that condition does not force [(t1Vtz2)—(s1As2)] to be
equal to [(t1—s1)A(t2—s2)], but just the former to be included in the
latter. Imagine indeed that the language at issue does not allow the pro-
grammer to define overloaded functions. So it may be not possible to
define functions that distinguish the types of their argument, and in par-
ticular to have a function that when applied to an argument of type t;
returns a result in s; while returns a (possibly different) so result for to
arguments. Therefore the only functions in (t1—s1)A(t2—s2) are those in
(t1Vt2)—(s1As2) (this point is discussed thoroughly in Section 4.5 of our
related survey [5]).

2.7 Bootstrapping the definition

Now that we have defined what a set-theoretic model for our types is, we can
choose a particular one that we use to define the rest of the system. Suppose
that there exists at least one pair (D, []) that satisfies the conditions of set-
theoretic model, and choose any of them, no matter the one. Let us call this
model the bootstrap model. This bootstrap model defines a particular subtyping
relation on our set of types J:

s<t = [s] < [t]

We can then pick any language that uses the types in .7 (and whose semantics
conforms with the intuition underlying the model condition on function types),
define its typing rules and use in the subsumption rule the subtyping relation
< we have just defined. We write I' e : t for the typing judgement of the

11

language. In this paper, we will consider a A-calculus with overloaded functions
and dynamic type-dispatch. See Section 3.1 for the syntax of the calculus,
Section 3.3 for its type system and Section 3.2 for its semantics (which depends
on the type system because of the dynamic type-dispatch construction).

2.8 Closing the circle

In order to obtain type-safety for our calculus, we want the type system to enjoy
properties such as subject reduction (Theorem 8) and progress (Theorem 9)
stated in Section 5.1. Because of the subsumption rule in the type system, this
can only be obtained if our definition of set-theoretic models is meaningful with
respect to the semantics of our calculus. This is a first sanity-check for our
notion of model.

But there is another important question: what are the relations between
the bootstrap model and the calculus? And in particular, what is the relation
between the bootstrap model and the values of the calculus? Have we lost all
the intuition underlying the “types as sets of values” interpretation?

To answer these questions, we consider a new interpretation of types as sets
of values in the calculus:

[ty ={v| Fv:t}
A second sanity-check for our notion of model is then to require that this

interpretation [_], is a model. If this is the case, we can use it to define a new
subtyping relation on J:

s<yt = [s], € [ty

We could imagine to start again the process, that is to use this subtyping relation
in the subsumption rule of our language, and use the resulting sets of values to
define yet another subtyping relation and so on. But this is not necessary as
the process has already converged. This is stated by one of the central results
of our work (Theorem 12 in Section 5.2):

s<t <= s<yt

that is, the subtyping relation induced by the bootstrap model already defines
the subtyping relation of the “types as sets of values” model of the resulting
calculus. We have closed the circle we broke.

3 The calculus

In this section, we define formally the syntax of types and expression in our
calculus (Section 3.1), the semantics (Section 3.2) and the type system (Sec-
tion 3.3). The semantics actually depends on the type-system, which in turn
depends on a subtyping relation to be defined (next section). As a consequence,
we consider here the subtyping relation as a parameter of the definitions of the
type system and of the semantics.

12

3.1 Syntax

Expressions To define the calculus, we choose a set of constants " ranged
by the meta-variable ¢ (they will be elements of basic types).

The terms of the calculus are called expressions and are defined by the fol-
lowing grammar.

e = ¢ constant
| (e,e) pair
| wf(t—t;...;t—t). \x.e abstraction
| x variable
| ee application
| (x=ect?ele) dynamic type dispatch
| mi(€) projection (i € {1,2})
| rnd(t) non-deterministic choice

where t ranges over types, defined in the next paragraph.

We write & for the set of expressions. The syntax for the calculus deserves
a few comments. We introduce an explicit construction for recursive functions,
which combines A-abstraction and a fix-point operator. The reason is that we
want to express non-terminating expressions, but still restricting recursion only
to functions. The identifiers f and z act as binders in the body of the function.
The M-abstraction comes with an non-empty sequence of function types (we
call it the interface of the function): if more than one type is given, we are in
presence of an overloaded function.

The non-deterministic choice construction rnd(¢) picks an arbitrary expres-
sion of type t. We introduced this operator in the calculus in order to demon-
strate subtle typing issues coming from non-determinism.

Types Types are essentially those introduced in Section 2.6 (modulo boolean
equivalence) to which we add basic types (the types of constant expressions).
In order to simplify the presentation of recursive types, we are going to consider
potentially infinite regular terms produced by the following signature:

t b basic type

txt product type
t—t function type
tVt union type

-t complement type

0 empty type

By regular, we mean that terms have only but a finite number of different
sub-terms. The meta-variable b ranges over a fixed set of basic types. We write
t1\t2 as an abbreviation for t;A—ts, t1At2 as an abbrevation for =(—t; V —ts),
and 1 as an abbreviation for =0. We will call atom the immediate applications
of type constructors: basic types, product types, function types (these are the
“atoms” for boolean combinators). Since we want types to denote sets, we need

13

to impose some constraints to avoid ill-formed types such as a solution to t = tVt
(which does not carry any information about the set denoted by the type) or to
t = =t (which cannot represent any set). Namely, we say that a term is a type
if it doesn’t contain any infinite branch without an atom. Let’s call .7 the set
of types.

The conditions above says that the binary relation > C 7?2 defined by t; Vo>
t;, -t >t in noetherian. This gives an induction principle on .7 that we will use
without any further explicit reference to the relation .

3.2 Semantics

Because of the dynamic type dispatch, the semantics of the calculus depends on
its type system. For now, we simply assume that a relation between expressions
and types, written - e : ¢t is given. It will be defined in the next section.

Definition 1 An expression e is a value if it is closed (no free variable), well-
typed (- e :t for some type t), and produced by the following grammar:

viu=c| (v,v) | uf(...) z.e

We write ¥ for the set of all values.

We define a small-step operational call-by-value semantics ~ for the calculus.
There are four basic reduction rules (we write e[x; := e1;x2 := ea;...] for the
expression obtained from e by a capture-avoiding substitution of x; by €;):

/

ev~e[fi=eixi=v] ife=pf(...) e

_ o eiflz:=v] if Fo:t
(z vet.el|eg)«/>{ ool = o] f -t
mi(v1,02) ~ v

rnd(t) ~e if Fe:t
The relation ~» is further extended by an inductive context rule:
Cle] ~ Cle'] ife~é
where the notion of (immediate) context is defined by:

C i:: E][],r) [|] (e, 1)
| (x=[€e€t?ele)|(x=ect?[le)| (x=ect?e|])
| m(l)
i)l

As usual, a type safety result will be obtained by a combination of two
lemmas: subject reduction (or type preservation) and progress (closed and well-
typed expressions which are not values can be reduced).

The reduction rule for application requires the argument to be a value
(call-by-value). In order to understand why, let us consider the application

14

(uf(t — txt;s — sxs).A\x.(z,2))(rnd(tVs)). The type system will assign to
the abstraction the type (t—txt)A(s—sxs). A set-theoretic reasoning shows
that this type is a subtype of (tVs) — ((txt)V(sxs)). The type system also
assigns to the argument rnd(tVs) the type tVs. It will thus also assign the
type (txt)V(sxs) to the application. If the semantics permits to reduce this
application, we would get as a result the expression (rnd(¢Vs), rnd(tVs)) whose
most precise static type is (£Vs)X (tVs). Clearly, this type is (in general) a strict
supertype of (txt)V(sxs). So, if the semantics does not force the argument to
be a value in order to reduce an application, we could not obtain the subject
reduction lemma.

Similarly, the reduction rule for projection requires its argument to be a
value. To understand why, consider the expression e = m(e1,e2) where e is
an expression of type e; and e is a looping expression of type 0 (e.g. (uf(1 —
0).A\z.fx)c). The type system will assign the type ¢1 X0 to e, but in our system
t1x0 is an empty type because, intuitively, a set-theoretic Cartesian product
with an empty component is itself empty. If e could be reduced to ey, it would
be a violation of type preservation.

The same argument applies to the dynamic type dispatch. If we allowed to
reduce (zx = e €t 7 e1]es) to er[x := e] when F e : ¢, even if e is not a value,
we could break type preservation. Consider for instance the case where F e : 0.
In this case, the type system does not check anything about the branches e
and ey (the reason for this is explained in details later on) and so e; could be
ill-typed. Note that when e is a value, then the dynamic type dispatch can
always be reduced. Indeed, because our type connectives will be interpreted in
a set-theoretic way, we always have - v : ¢t or - v : =t (for any value v and any

type t).

3.3 Type system

The semantics we just introduced depends on the typing judgment I' - e : ¢
where I is a finite mapping from variables to types (we write - e : ¢ when T’
is empty). This judgment, in turn, depends on a subtyping relation < between
types that we are going to introduce later on. For now, we assume it is a
parameter of the type system.

For each constant ¢, we assume given a basic type b.. The rules are:

I‘I—e:tl t1§t2
F'_eitg
Fl—ettlxtg
Tk me):t;

(subsum) ————— (const) (var)

I'kc: b, 'ta:I'(x)
F|_61:t1—>t2 Fl_egltl
F"@legitg

(proj)

(appl)

t= /\ (ti—si)A\ ~(th—s}) £ 0
i=1..n j=1l..m

Vi=1lnD,(f:t),(x:t;)Fe:s;
Tk uf(ti—s1;.. .5 tn—8n) Aze: t

(abstr)

15

Fhe:t to £t = T,(z:toAt)Fer:s
o toZt = T,(z:to\t)Fea:s

F'F(x=e€ct?eiles):s

case)

The rule (subsum) causes the type system to depend on the subtyping re-
lation to be defined. The rules (const), (pair), (var), (proj), (rnd), and (appl)
are standard or straightforward.

The rule (abstr) is a little bit tricky. Each arrow type t;—s; in the function
interface is interpreted as a constraint to be checked. The body of the abstrac-
tion is thus type-checked once for each such function. When considering the
type t;—s;, the variable x is assumed to have type ¢; and the body is checked
to have type s;. Also, the variable f is assumed to have type ¢, which is also
the type given to the whole function. Quite intuitively, this type is obtained
by taking the intersection of all the types t;—s;. But we also add to this in-
tersection any finite number of complement of arrow types, provided the type ¢
does not become empty. This might sound surprising, but the reason is actually
simple: we want types to be interpreted as sets of values in such a way that
boolean connectives behave as their set-theoretic counterpart. In particular, the
union of ¢ and —¢ must always be equivalent to 1, that is, we need to have the
following property: Yo.Vi.(F v : t) or (F v : =t). In particular, since a (closed
and well-typed) abstraction is value, it must have type (t—s) or type —(t—s)
for any choice of t and s. If (t—s) is a supertype of the intersection A t;—s;,
the abstraction is known, thanks to the subsumption rule, to have type (t—s).
Otherwise, we need to provide a way to prove it has type —(t—s). This is why
we introduce such complements of arrow types in the rule (abstr).

The rule (case) is easier to read. First, we need to find a type to for the
expression whose result will be dynamically type-checked. If this type has a
non-empty intersection with ¢ (¢ € —t), then the first branch might be used.
In this case, in order for the whole expression to have type s, we need to check
that e; has also type s, assuming that = has type tAty. Indeed, at runtime, the
variable z will be bound to a value resulting from the evaluation of ey. Because
of subject reduction, this value is necessarily of type tg. But in order to type-
check e;, we can also assume that the value has type t. If tg < —t, then the
first branch cannot be used, and we don’t need to type-check e;. Similarly for
es, replacing ¢ with —¢. The ability to ignore e; and/or es when computing the
type for (e €t 7 ey | e2) is important to type-check overloaded function. As an
example, consider the abstraction pf(b1—b1;ba—ba). Ax.(x € by 7 ¢1 | ¢2) where
b1 and by are two non-intersecting basic types and ¢; (resp. c¢2) is a constant of
type by (resp. b2). The rule (abstr), when it considers the arrow type b;—bs,
checks that the body has type b; assuming that x has type b;. Clearly, the
typing rule for the dynamic type dispatch must discard in this case the type of
the second branch.

As an aside note that the use of the ex falso quodlibet rule yields a simpler

16

formulation of the case rule:

The:tg T,(x:toNt)ber:s T (z:to\t)Fea:s
F,x:@l—e:t(efQ) 'F(z=ect?eiles):s

(case)

The reason why we preferred the previous formulation is that it permits a
stronger and simpler substitution lemma. A second reason to prefer the previ-
ous formulation is that simpler (case) rule above does not easily extend to the
full version of CDuce with general pattern matching, since it would need special
treatment for patterns without any free variable (since these would not produce
any x : 0 hypothesis in the environment).

4 Subtyping

At this point, we have given the calculus a semantics which depends on its type
system, which, in turn, depends on a subtyping relation still to be defined.

The last missing step to complete the definition of our system is the sub-
typing relation. This will be defined by formalizing the ideas we outlined in
Sections 2.6-2.8.

4.1 Set-theoretic interpretations of types

Definition 2 A set-theoretic interpretation of .7 is given by a set D and a func-
tion [| : .7 — (D) such that, for any types t1,ta,t:

o [t1vta] = [t1] U [to]
o [-t] =D\[1]
° [[@ﬂ =9

(A consequence of the conditions is that [t;Ate] = [t1] N [t2], [t1\t2] =
[t:1\[t2], and [1] = D.)

This definition does not say anything about the interpretation of atoms.
Actually, using an induction on types, we see that set-theoretic interpretations
with domain D correspond univocally to functions from atoms to & (D).

A set-theoretic interpretation [] : & — Z(D) induces a binary relation
<< 72 defined by:

tg[[]] s <— [[tﬂ - [[S]]

This relation actually only depends on the set of empty types. Indeed, we
have: [[tl]] - [[tg]] < [[tlﬂ n (D\[[tg]]) = J <= [[tl/_ltgﬂ = @. We also
get properties of the relation < « for free », such as its transitivity, or the
monotonicity of the V and A constructors, and so on.

17

4.2 Models of types

We are going to define a notion of model of the type algebra. Intuitively, a model
is a set-theoretic interpretation such that type constructors are interpreted in
such as way that the induced relation <pj capture their essence (in the type
system of the calculus), at least as long as subtyping is concerned.

As we explained in Section 2.6, the way to formalize it consists in associating
to the interpretation [] another interpretation E(_), called extensional, and
then to require, for [_] to be a model, that [_] and E(_) behave the same for
what concerns subtyping (that is: [t] C [s] <= E(t) C E(s) or, equivalently,
[t] =9 < E(t) =92).

For any basic type b, we assume given a set of constants B[b] C € whose
elements are called constants of type b. Note that for two basic types by, ba, the
sets B[[b;] can have a non-empty intersection. For any constant ¢, we assume
that the type b. is a singleton: B[b.] = {c}.

A product type t; Xty will of course be interpreted extensionally as the Carte-
sian product [t1]x [t2].

Things are more complicated for a function type t;—t5. Its extensional
interpretation should be the set of set-theoretic functions (that is, functional
graphs) f such that Vd. d € [t1] = f(d) € [t2]. However, the calculus we have
in mind can express non-terminating and/or non-deterministic functions as well.
This suggests to consider arbitrary binary relations instead of just functional
graphs. Also, the calculus has a notion of type error: it is not possible to
apply an arbitrary function to an arbitrary value. We are going to take Q
as a special element to denote this type error. Following this discussion, we
interpret the function type t;—to as the set of binary relations f C D x Dgq
(where Dg = D + {Q}) such that V(d,d') € f. d € [t1] = d' € [t2]-

Definition 3 If D is a set and X,Y are subsets of D, we write Dq for D+{Q}
and define X — 'Y as:

X—>Y={fCDxDq|V(dd)efdeX=deY}

Note that if we replace Dq with D in this definition, then X — Y is always a
subset of D — D. As we will see shortly, this would imply that any arrow type
is a subtype of 1—1. Thanks to the subsumption rule, the application of any
well-typed function to any well-typed argument would then be itself well-typed.
Clearly, this would break type-safety of the calculus. With Definition 3, instead,
we have X - Y C D — D if and only if D = X.

We can now give the formal definition of the extensional interpretation as-
sociated to a set-theoretic interpretation.

Definition 4 Let[_]: 7 — (D) be a set-theoretic interpretation. We define
its associated extensional interpretation as the unique set-theoretic interpretation

E(_): T — P(ED) (where ED = € + D* + P (D x Dq)) such that:

E(b) = B[] c%
[E(tl)(tg) = [[tlﬂ X [[tgﬂ - D?
E(ti—t2) = [t1i] — [t2] <€ P(D x Dgq)

18

Finally, we can formalize the fact that a set-theoretic interpretation induces
the same subtyping relation as if the type constructors were interpreted in an
extensional way.

Definition 5 A set-theoretic interpretation [| : T — (D) is a model if it
induces the same subtyping relation as its associated extensional interpretation:

th,tg c 7. [[tlﬂ - [[tg]] < [E(tl) - [E(tg)

Thanks to a remark in Section 4.1, the condition for a set-theoretic interpreta-
tion to be a model can be reduced to:

Vie 7. [t]=9 < E{t)=0

At this point, we can derive many properties about < which directly follow
from the fact that it is induced by a model. For instance, the co-/contra-variance
of the arrow type constructor, and equivalences such as (t1—$)A(ta—s) ~
(t1Vta)—s, can be immediately derived from the definition of the extensional
interpretation. The meta-theoretic study of the system relies in a crucial way
on many of such properties. With a more axiomatic approach for defining the
subtyping relation, e.g. by a system of inductive or coinductive rules, we would
probably need much more work to establish these properties, and we would not
have the same level of trust that we did not forget any rule.

4.3 Well-foundedness

The notion of model captures the intended local behavior of type constructors
with respect to subtyping. However, it fails to capture a global property of the
calculus, namely that values are finite binary trees (where leaves are either
constants or abstractions). For instance, let us consider the recursive type
t = txt. Intuitively, a value v has this type if and only if it is a pair (v1, va) where
v1 and ve also have type t. To build such a value, we would need to consider an
infinite tree, which is ruled out. As a consequence, the type t contains no value.

We will introduce a new criterion to capture this property of finite decom-
position of pairs.

Definition 6 A set-theoretic interpretation |]| : .7 — (D) is structural if:
e D2CD
o for any types t1,ta: [t1xt2] = [t1] x [t=]
e The binary relation on D induced by (dy,d2) > d; is noetherian.

Definition 7 A model |] : 7 — (D) is well-founded if it induces the same
subtyping relation as a structural set-theoretic interpretation.

19

5 Main results

Let us fix an arbitrary model [] : .7 — £?(D), which we call the bootstrap model.
It induces a subtyping relation, which we simply write <. In turn, this subtyp-
ing relation defines a typing judgment I" F e : ¢ for the calculus and thus also a
notion of value and a reduction relation e ~ ¢’. We can now state four groups of
theoretical results about our system. This first group (Section 5.1) expresses the
fact that our notion of models implies that the type system and the semantics
are mutually coherent. The second group (Section 5.2) justifies our approach
for defining the subtyping relation with a detour through the notion of models:
indeed, we can in fine re-interpret types as sets of values, and this creates a new
model equivalent to the bootstrap model (if it is well-founded). The third group
of results (Section 5.3) shows that the notion of model is not void, by express-
ing the existence of (several different) models satisfying the various conditions.
Finally, we focus (Section 5.4) on the effectiveness of the subtyping and typing
relations and devise simple subtyping algorithms.

5.1 Type soundness

As announced earlier, we have the two classical lemmas which entail type sound-
ness.

Theorem 8 (Subject reduction) Let e be an expression and t a type. If
(Tke:t) and (e~ ¢€'), then (T € :1).

Theorem 9 (Progress) Let e be a well-typed closed expression. If e is not a
value, then there exists an expression €' such that e ~ €.

It is worth noticing that the proof of Theorem 9 (given in Section 6.6) does
not use reductions under abstractions or inside the branches of dynamic type
dispatch, thus the result holds true also in that case. Of course, subject re-
duction holds also if these reductions are disallowed. This means that a weak
reduction strategy (as implemented typically in programming languages) enjoys
type soundness, too. In the setting of programming languages, proving the sub-
ject reduction property also for a semantics that includes strong reduction rules
is useful because these rules correspond to possible compile-time optimizations.

Theorem 10 For every types t and t1 such that t < t1—1, there exists a type
ty such that, for every value v:

Fuity <= Jup,vp. (Vpve S 0) A(Fop i t) A(F oy ty)
This type is the smallest solution to the equation t < t1—s.
The type s in the statement of the theorem above represents exactly all the
possible results (i.e. is the set of all values that) we may get when applying
a closed expression e; of type t; to a closed expression es of type t5. Since
t1 < to—s, the type system allows us to derive type s for the application ejes.

In other words, the typing rule (appl) is locally exact: it does not introduce any
new approximation to those already made when typing its arguments.

20

5.2 Closing the loop

The type system naturally defines a new interpretation of types as sets of values:
[1y: T —->2)t—{v]| Fov:t}

It turns out that this interpretation satisfies the conditions of Definitions 2
and 6:

Theorem 11 The function [_]., is a structural set-theoretic interpretation.

A natural question is whether this set-theoretic interpretation is a model. If
this is the case, we would like to compare the subtyping relation it induces with
the one used to define the type system (which was induced by the bootstrap
model). The following theorem answers both questions.

Theorem 12 The following properties are equivalent:
1. The interpretation [], is a model.
2. The interpretation [_], and [_] induce the same subtyping relation.

3. The bootstrap model [] is well-founded.

When the interpretation [_], is a model, we could use it as a new bootstrap
model, define a new type system, and so one. The theorem says that it is
useless, because the old and the new bootstrap model induce the same subtyping
relation.

Note that the type soundness results does not depend on the fact that the
interpretation [_], is a model. It holds even if the bootstrap model is not
well-founded.

5.3 Construction of models

All the results above would be void if we could not build a model. In this section,
we actually build models with specific properties. Models can be compared by
the amount of subtyping they allow. If [_], and [_], are two models, we write

L] =[]y if:
vt,s € T[], < [s], = [t < [s],

A model [_], is universal if [_], < [_], for any other model [_],. Clearly, two
universal models induce the same subtyping relation.

Theorem 13 There exists a well-founded and universal model.

The next theorem shows that the notions of universality and well-foundedness
are not automatic.

Theorem 14 There exists a model which is not well-founded. There exists a
well-founded model which is not universal.

21

5.4 Decidability results

Finally, our system would be of little practical use if we were not able to decide
the subtyping and typing relations. Fortunately, the decidability of the inclusion
of basic types implies the following theorem.

Theorem 15 The subtyping relation induced by universal models is decidable.

The proof of decidability (Section 6.9) essentially relies on three components: ()
the regularity of types, (i) some algebraic properties of universal models, and
(#91) the equivalence between subtyping and type emptiness problems (remember
that s <t <= s\t ~ 0.). The algebraic properties of the model can be used to
decompose a type t into a set of types ¢;’s such that: (i) ¢t ~ 0 if and only if all
t; ~ 0 and (47) the ¢;’s are boolean combinations of sub-terms of ¢ (Section 6.2).
We also introduce the concept of simulation (Section 25) which characterizes
sets of types that are closed with respect to the previous decomposition. By
construction a type is equivalent to 0O if and only if there exists a simulation
containing it (the simulation representing a co-inductive proof of its emptiness).
A regular type has only a finite number of sub-terms, therefore it suffices to
enumerate all the possible sets of boolean combinations of its sub-terms and
test whether any of them is a simulation (which is decidable for finite sets).
Decidability of subtyping does not immediately yield decidability of the typ-
ing relation, the problem being that the use of the negated arrows in the typing
rule (abstr) makes the minimum typing property fail. Therefore we need to
introduce a new syntactic category, type schemes: a type-scheme represents the
set of all the types of a well typed expression (Section 6.12). This technical
construction allows us to state the decidability of the type-checking problem.

Theorem 16 When the subtyping relation is decidable, the type checking prob-
lem (deciding whether T\ e : t for given T, e, t) is decidable.

6 Formal development

In this section, we establish the theorems stated in the previous section and
other intermediate lemmas.

6.1 Disjunctive normal forms for types

We write o/ for atoms and we use the meta-variable a to range over atoms.
There are three kinds of atoms (and values), which we denote by the meta-
variable u ranging over the set U = {prod, fun, basic}.

We write @yn for atoms of the form t1—t9, proa for atoms of the form
t1Xta, and hasic for basic types. We have & = “fun + Pprod + Dbasic- For
what concerns values, their kinding too is straightforward: values of the form
¢, (v1,v2), and pf(...).Azx.e have respectively kind basic, prod, and fun.

Every type can be seen as a finite boolean combination of atoms. It is
convenient, to work with disjunctive normal forms.

22

Definition 17 A (disjunctive) normal formal 7 is a finite set of pairs of finite
sets of atoms, that is, an element of F (P () x F4 (<)) (where & denotes
the finite powerset).

If[_]: 7 — Z(D) is an arbitrary set-theoretic interpretation and T a
normal form, we define [7] as:

1= U ([() D\

(P,N)eT acP a€N

(Note that, with the convention that an intersection over an empty set is taken
to be D, [r] € D.)

Lemma 18 For every type t € 7, it is possible to compute a normal form
A (t) such that for every set-theoretic interpretation [_], [t] = [/ (®)]-

Proof: We will actually define two functions .4 and .4, both from types to
G (P () x P (<)), by mutual induction over types.

A(0) = O

Ha) = {({a}2))

N (V) = N () U (1)

H(=t) = o

A(0) = {(2,9)}

A(a) = {(@,{a})}

</V’(t1Vt2) = {(Pl U Py, Ny UNQ) | (Pl,Nl) S JVI(tl), (PQ,NQ) S </Vl(t2)}
=) = (W)

We check by induction over the type t the following property:

[t] = [(®)] = D\[A'(1)]

As an example, consider the type ¢t = a;A(a2V-as) where a1, as, as are three
atoms. Then A (t) = {({a1, a2}, D), {a1}, {as})}. This corresponds to the fact
that t and (a1Aa2)V(a1A—as) have the same interpretation for any set-theoretic
interpretation of the type algebra.

Note that the converse result is true as well: for any normal form 7, we can
find a type t such that [t] = [7] for any set-theoretic interpretation. Normal
forms are thus simply a different, but handy, syntax for types. In particular,
we can rephrase in Definition 5 the condition for a set-theoretic interpretation
to be a model as: for any normal form 7, [7] = @ <= E(r) = @.

For these reason henceforth will will often confound the notions of types
and normal form, and we will often speak of the type 7, taking the latter as a
canonical representative of all the types in A4 ~1(7).

23

6.2 Study of the subtyping relation

Definition 5 is rather intensional. In this section, we establish a more extensional
criterion for a set-theoretic interpretation to be a model.

Let [_] be a set-theoretic interpretation. We are interested in comparing
the assertions E(7) = @ and [r] = @, for a normal form 7. Clearly, E(7) = @
is equivalent to:

V(P,N)er. () E@) C | E() (3)
aceP aeN
Let us write EP2sicD = @, EPredD = D% Efm = (D x Dg). We have
ED = J,cp E“D where U = {prod, fun, basic}. We can thus rewrite (3) as:

Vu e UV(P,N) €. ()(E(a)NE"D) C | J (E(a) NE“D) (4)
acP aeEN
Since [a]NE*D = @ if a & o, and [a] NE“D = [a] if a € &,, we can rewrite (4)
as:
Vu € UY(P,N) € 1.(P C o,) = <ﬂ Fa@< J [E(a)> (5)
acP aeNN,,

(where the intersection is taken to be E*D when P = &.)

To further decompose these predicates, we will rely on two set-theoretic facts,
one for product types, one for arrow types. Let us introduce some new notation
and then start with product types.

Notation 19 Let S1,S5 denote two sets such that S1 C Sy. We use 5_182 to
denote the complement of S1 with respect to Sa, that is So\Si.

Lemma 20 Let (X;)icp, (Xi)ien (resp. (Yi)iep, (Yi)ien) be two families of
subsets of Dy (resp. Ds). Then:

<ﬂX7;><Y;>\<UXiin>: U <ﬂX7;\UXi>>< Ay U %

iepP ieEN N'CN \ieP i€EN’ i€eP 1EN\N'’

(with the conventions: (\;cp Xi X Y; = D1 X Da; (;ep Xi = D1 and ;o Y =

D)

i€

Proof: First, we notice that:
Xix ¥ = (X7 < D2 U (D x Vi)
From that we get:
m mm xDs _

iEN
U ﬂ (ZDI ng)ﬁ ﬂ (D1 x?iDz) -
N'CN \ieN’ JEN\N'
U (n=e n v
N'CN \ien’ JEN\N'

24

And finally:

(ﬂ X; ><Y> N <ﬂ WDN%) _

i€P 1EN
U {(nxnn®)< (nre 0 7
N'CN i€P iEN’ 1€P 1EN\N’

We get the expected result by applying De Morgan laws.

We get an immediate corollary.
Lemma 21 Let P, N be two finite subsets of “proa. We have:

() E) < | E() <=

a€P aeN

VN’ C N. ﬂ A un A ﬂtlu =ovi| A toA AN | =2
t1Xt2€P t1Xt2 €N’ t1Xt2€EP tiXta € N\N’
(with the convention (e E(a) = EP™9D).

We will now establish a similar result for arrow types. We first decompose the
set-theoretic — operator (Definition 3) into more primitive operators: powerset,

complement, Cartesian product.

Lemma 22 Let X,Y C D. Then:
7_DD><DSZ
X—-Y=2 <X xY * >

Proof: The result comes from a simple computation:

X—=Y = {fCDxDq|V(z,y ecf (zcXNygY)}

{(fCDxDg| fAXxY"® =02}
DXDQ

= {fCDxDq|fCXxY’" 1}

Lemma 23 Let (X;)icp and (X;)ien be two families of subsets of D. Then:

2x)c|]2X) < Ji,eN. []XiCX,

iepP iEN i€eP

25

Proof: The < implication is trivial. Let us prove the opposite direction. We
assume that (),cp Z(Xi) C U;en Z(Xi). The set [),cp X; belongs to all
the #(X;) for i € P. It is thus in the union of all the #(X;) for i € N. We
can thus find some ig € N such that (. p X; € (X,), which concludes the
proof. O

Lemma 24 Let P and N be two finite subsets of Sfgun- Then:

N E@ < [E@

aEP aEN
<~
P+P
I(to—so) € N. VP’ C P. Ilm(V t)ﬂ —ovV ﬁ A s |\sof =2
t—seP’
t—sC P\ P’

(with the convention (., E(a) = EM™D).

acgd

Proof: The result follows from Lemmas 22, 23, and 20, by noticing that in the
condition (,_, ;¢ p\ pr [8] < [s0] which appears, the convention is to interpret

the intersection as being Dgq if P = P’, which makes the inclusion impossible.
O

Lemmas 21 and 24, together with the property (5) suggest the following
definition and give immediatly the result of Theorem 26 below.

Definition 25 (Simulation) Let . be an arbitrary set of normal forms. We
define another set of normal forms E.% by:

ES ={r|VYueUV(P,N)er. (PC, = Cf,ngfu)}

26

where:

Commie == €0) B] C | Bl
beP beN
,/V< /\ tA /\ —-t1> €.y
t1 Xt EP t1XtoEN'
Cg;ivd = VN'CN. \

AN tr N | es

t1 Xt EP t1Xt2€N\N,

N (to/\ /\ —-t) 4
t—sec P’
vV

P,N
Cfun

n= dtg—sg € N. VPIQP P#P/

A (mso)A /\ s|ed

t—scP\P’

We say that . is a simulation if:
S CEY

The intuition is that if we consider the statements of Lemmas 21 and 24 as if
they were rewriting rules (from right to left), then E.% contains all the types
that we can deduce in one step reduction to be empty when we suppose that the
types in . are empty. A simulation is thus a set that is already saturated w.r.t.
such a rewriting. In particular, if we consider the statements of Lemmas 21
and 24 as inference rules for determining when a type is equal to 0, then E.&%
is the set of immediate consequences of ./, and a simulation is a self-justifying
set, that is a co-inductive proof of the fact that all its elements are equal to 0.
Of course this latter property will play a crucial role to decide the subtyping

relation (see Section 6.9).

Theorem 26 Let[| : T — (D) be a set-theoretic interpretation. We define
a set of normal forms . by:

S =A{r|Ir] =2}

Then:
E ={r | E(1) = &}

Corollary 27 Let[_] be a set-theoretic intepretation of types and . = {7 | [7] =
@}. Then [_] is a model if and only if ¥ = E7.

This Corollary implies that the condition for a set-theoretic interpretation to
be a model depends only on the subtyping relation it induces.

27

Corollary 28 Let [[, : T — Z(D1) be a model and [, : T — P(D2) be

a set-theoretic interpretation. Then the following assertions are equivalent:
e [_], is a model and it induces the same subtyping relation as [_];.
o for any type t, [t], = @ <= [t], = @.

The following lemma, which is an immediate corollary of Lemma 24 gives
several properties about subtyping between arrow types in a model, which will
be needed for to study the meta-theory of the type system.

Lemma 29 (Strong disjunction for arrows) Let < be the subtyping rela-
tion induced by a model, and P,N two finite sets of arrow types. Then:

/\a§ Va(z) EIaOEN./\agao

aceP aeN a€P

If P,N are finite sets of arrow types and if ag is an arrow type, then:

Naz\a

a€P _ a€EN A a< ao
/\ = V a a€eP
a€eP a€ENU{ao}

If P,N1,N5 are finite sets of arrow types, then:

INTAE
a€P a€N; — ﬁ
Naz' Vo TNtV o

ac€P a€Na

6.3 Syntactical meta-theory of the type system

In this section and in the following one, we fix a bootstrap model [] : 7 —
P (D), we write < for the induced subtyping relation and ~ for the associated
equivalence relation, and we study the resulting typing judgment I' - ¢ : ¢.

Lemma 30 (Strengthening) Let 'y and I'y be two typing environments such
that for any x in the domain of I'1, we have I'y(x) < Ty(z). If Ty ke : t, then
I'sHe:t.

Proof: Induction on the derivation of I'y F e : t. We simply introduce an
instance of the subsumption rule below each instance of the (var) rule. O

Lemma 31 (Admissiblity of the intersection rule) IfT'Fe: ¢ and I' -
e:ty, then 'k e:t1ALs.

28

Proof: By induction on the structure of the two typing derivations.
Let us first consider the case when the last rule applied to one of the two
derivations is (subsum), say:

The:sy s1<t; ..
I'ke:ty I'ke:ty

The induction hypothesis gives I' - e : s1Ats. But siAts < t1Ats because
s1 < t1, and a new application of (subsum) gives I I- e : t1 Aty as expected.
In all the remaining cases, the two derivations ends with an instance of the
same rule (which depends on the toplevel constructor of e).

Rules (const), (var), (rnd): Those rules give only one possible type ¢ for e,
and tAt ~ t.

Rule (appl): The situation is as follows:

Fl_elltl—)tg Fl_eQ:tl Pkelztll_)té P'_eQ:tll
F'_elegitg I‘I—eleg:t’g

The induction hypothesis gives I' - ey : (t1—t2)A(t)—th) and T'F eg : 11—t
To conclude, it is enough to check that (t;—t2)A(t]—t5) < (t1AL])— (t2ALh),
which can be proved as follows:

E((t1—t2)A(t)—t5))

([ta] = [t=D) 0 (4] — Tt2])

{feE™ D |V(z,y) € f(xe[ta] =>yet])A@elt]=yelt])}
{f e E™D | Y(z,y) € f.(x € [L] N [] = y € ([ta] N [t5])}
E((t1At))— (taAth))

I

Rule (pair): The situation is as follows:

P"@litl P"@Qifg P'_elit/l P"@Qité
Tk (61,62) i1 Xty 'k (61,62) : t’lxt’z

Let t] = t1At) and t§ = t3At,. By applying the induction hypothesis twice,
we get T'F ey :t] et Tk eq: ¢y, The rule (pair) gives ' F (e1,e2) : t{xt]. To
conclude, it is enough to see that ¢ Xt} ~ (t1xt2)A(t) xt5). Indeed:

E(tyxt5) = ([][]) < ([L0n[t5]) = [aAta]N[E ALy] = E((t xt2)A (£ x15))

Rule (case): Let us consider this situation:

F'ke:ty (w:t),Tkei:s The:ty (x:t),I'Fe:s
'F(z=ect?eiles):s F'F(x=ect?eles):s

with ¢ = toAt, ta = to\t, t] = toAL, th = ti\t. The induction hypothesis
gives: T' I e : ¢ with t{j = toAty. Let us define ¢] = t{At and t4 = tj\t. Let

29

i € {1,2}. We have t// < t; and thus, according to Lemma 30, (z : ¢t/),T
e; : s. Similarly, we get (z : t/),' F e; : &', and thus, applying again the
induction hypothesis (z : t;’),F Fe; : s where s” = sAs’. Then, with the
(case) rule, we establish T+ (r=e €t ? eilez) : s” as expected.

The special cases (where ¢t; ~ 0 or ¢, ~ 0) are similar.

Rule (abstr): Let us consider two applications of the rule (abstr) to the same
abstraction puf(t;—s1;. .. ;ty—8,).A\x.e with the following types:

t = N timson N\ -(t—s))

i=1l..n j=1l..m
t = /\ (ti—si)A /\ ~(ti—s))
i=1..n j=m—+1l..m’

where ¢t 22 0 and ' 2 0. We define:

i=1..n j=1l..m’

We have t” ~ tAt’. We only need to verify that some instance of the rule
(abstr) allows us to deduce the type t” for the abstraction. For i = 1..n,
we have, by hypothesis (f : ¢),(x : ¢;),I' F e : s;, and thus, according to
Lemma 30, (f : t"),(x : ¢;),T' F e: s;. Then, we check that ¢ 2 0, which re-
sults immediatly from Lemma 29. In this case, we have not used the induction
hypothesis. O

Corollary 32 Let T be a typing environment and e an expression which is well-
typed under I'. Then the set {t € T | T ke:t)V (IFe:t)} contains 0 and
is stable under V and = (and thus A).

Proof: Let E be the set introduced in the statement. It is clearly stable under
- and invariant under the equivalence ~. We have I' - e : 1 = =0 because of
the subsumption rule, and thus 0 € E. What remains is to prove that E is
stable under V. So let us take two elements ¢; and t5 in E. If '/ e : t1Vto,
then because of (subsum), we get T'I/ e : t; and ' I/ e : t5. Because t; and
to are in E, we thus have I' - e : =ty and I' - e : =t5. Lemma 31 then
gives I' ke : =t1A—ty. And —t1A—ty ~ = (t1ViEe). We have thus proved that

Pke:t1Via or I'F e : =(t1Via).]
Lemma 33 (Substitution) Let e,eq,...,e, be expressions, x1, ..., x, dis-
tinct variables, t,t1,...,t, types, and I' a typing environment. Then:

=>Thelr;=e1;...;0n =€) t

(1 :t1)y. oy (1 tn), T et
Wzl..n.I‘l—ei:ti

30

Proof: By induction on the typing derivation for (x1 : t1),...,(z, : t,), T F
e : t. We simply “plug” a copy of the derivation for I" I e; : ¢; wherever the
rule (var) is used for variable z;. O

6.4 Interpreting types as sets of values

The syntactical properties obtained in the previous section are used here to
prove some properties about the interpretation of types as sets of values, as
defined in Section 5.2: [t], = {v | Fv:t}

Lemma 34 Ift < s, then [t], C [s],. In particular, if t ~ s, then [t]., =

[s]y-

| Proof: Consequence of the subsumption rule. O

Lemma 35 [0], = @.
Proof: We prove that (- v : t) = t # 0 by induction on the typing deriva-

tion. There are four cases to consider (one per value constructor, one for the
subsumption rule). All of them are trivial. o

Lemma 36 [tiAt2], = [t1], N [t2], -

Proof: Lemma 34 gives [tiAtz] ., C [ti], for i € {1,2}, and thus [t1At2],, C
[t1], N [t2], - Lemma 31 gives the opposite inclusion. O

Lemma 37 (Inversion)

[[tl)(tgﬂni/ = {(Ul,vg) | F o Ztl,'_UQ Itg}
[[b]]“I/ = {C | bc S b}
[t—=s]y, = {(uf(ti—=s1;...ith—=sn).Ax.e) € V. | /\ ti—s; < t—s}

1=1..n

Moreover, if v is a value and a is an atom of a different kind, then F v : na.

Proof: For the three equalities, the D inclusion is straightforward.

To prove the three opposite inclusion, let us start with a general remark.
A derivation for v : t can always be described as an instance of the rule
corresponding to the kind of v (rule (const) for constants, (pair) for pairs,
and (abstr) for abstractions), followed by zero or more instance of (subsum).

31

That is, we can always find another type ' < t such that F v : ¢ is obtained
by a direct application of the typing rule corresponding to v. If ¢ is an atom
a, then v is necessarily of the same kind as a. Indeed, if v is a pair, then ¢/
is a product type; if v is a constant, ¢’ is a basic type; if v is an abstraction,
t' is an intersection of one or more arrow types (and maybe of zero or more
negation of arrow types). In all cases, # Na ~ 0 if a and v does not have the
same kind, but since ¢’ < a, this means that ¢’ ~ 0, which is impossible. We
also have proved the final remark in the statement of the Lemma (because if
a and v does not have the same kind, then ¢’ < —a, and thus F v : —a).

Case | v : t1Xt5:. The value is necessarily a pair (v1,v2) such that F vy : ¢,
F ooy s th, and ¢ xth < t1Xta. But t] % 0 and ¢}, % 0 because of Lemma 35,
and thus ¢} <t and t§ < 3. By subsumption, we get - vy : 1 and F vy : to.
Case F v : b: The value is necessarily a constant ¢ such that b, < b.

Case F v : t—s: The value is necessarily an abstraction
uf(ti—s1;...;ty,—sy,). Ax.e. Here, the type t' has the form:

/\ (t;—s;)A /\ ~(th—s))

i=1..n j=1l..m

with ¢’ 2 0 and ¢’ < t—s. Lemma 29 thus gives:

/\ (ti—si) < t—s

i=1..n

Lemma 38 [t], = 7\[t],.

Proof:
We have (tA-t) ~ 0 and, thus, [t], N [-t], = [tA-t], = [0], = . So it
remains to prove that [t],, U [t], = ¥, that is:

Yovt. (Fv:t) Vv (Fov:-t)

We proceed by induction over the pair (v,t). Thanks to Lemma 32, we can
assume that ¢ is an atom a. Lemma 37 gives F v : ¢ if a and v do not have
the same kind. Now, we assume they have the same kind.

Case v = c: We have - ¢ : b.. The set E(b.) is a singleton (namely {c}),
and thus E(b.) C E(a) or E(b.) C E(—a), that is: b. < a or b, < —a. By
subsumption, we get F b. : a or F b, : 1a.

Case v = (v1,v2), a = t1Xty: If F vy : ¢; and - vy : to, we get - v : a.
Otherwise, say F/ vy : t1, we get - v1 : =1 by the induction hypothesis, and
F vy : 1 always holds, and thus we get - v : (=t1)x1. We conclude this case
by the observation that (—t;)x1 < =(t;Xta).

Case v = pf(t1—81;...;th—8n).Ax.€, a = t—s: It is easy to see that Fv : a
if A;_; ,,ti—si < aand F v:-a otherwise.]

32

Lemma 39 [t,Vts], = [t1], U [t2], -

Proof: Using Lemmas 38, 36 and 34, we get: [tivta], =
%“%(“tl)/\(“h))ﬂv/ = V\([-t:1ly N [=t2]y) = P\N\[t1]\[t2]) = [t:] 4 U
to 5 O

From Lemmas 38, 39 and 35, we get that [_]., is a set-theoretic interpreta-
tion.

To conclude the proof of Theorem 11, we need to check that it is structural.
Clearly ¥? C ¥ and Lemma 37 gives [tixt2], = [ti]y X [t2],. Also, the
relation induced by (v1,v2) > w; is clearly noetherian.

6.5 Closing the loop

Lemma 40 For every non-empty and finite family of arrow types t1—s1, ..., th,—Sn,
the expression pf(t1—s1; ... ;tn—8n). 2. fx is a value.
| Proof: Direct application of the typing rules. O

Lemma 41 In every model, [t] = @ <= [1 —] C [1 — 0] holds true.

Lemma 42 The set-theoretic interpretation [], is a model if and only if it
induces the same subtyping relation as [_].

Proof: The < implication is given by Corollary 28. Let us assume that [_],,
is a model and prove that [t],, = @ <= t ~ 0 for any type t. The <
implication is given by Lemma 35. Let ¢ be a type such that [t], = @.
Because [_], is a model, Lemma 41 gives: [1 — t],, C [1 — 0],. Now we
consider the expression v = pf(1 — t).\z.fx. According to Lemma 40, it is a
value. According to Lemma 37, it is an element of [1 — t],, and thus also of
[1 — 0], , which means that 1 — ¢ <1 — 0 (again Lemma 37), and finally
that ¢t ~ 0 (Lemma 41 for the model [_J). 0

Lemma 43 If the bootstrap model is well-founded, then [_],, is a model.

Proof: Since the type system, and thus [_],,, depends only on the subtyping
relation induced by the bootstrap model, we can assume that it is not only
well-founded, but also structural. We will use the noetherian relation > from
Definition 6.

33

We need to prove that, for every type ¢, [t],, = @ <= t ~ 0. The «
implication is given by Lemma 35. We actually prove by induction (using the
> relation) that for all d € D, the following property holds: (Vt € 7. d €
[t] = [t # @)

Consider a type t such that d € [t]. If d = (d1,ds) € D?, then it is in the set

[[no*= J <D2ﬁ N lal\ | [[a]]>

(P,N)e#¥(t) acP aEN

We can thus find (P,N) € 4(t) such that d € D? N (,cp [a]\ Upen [al-
Note that if @ is an atom which is not a product type, then D% N [a] =
[1x1] N [a] = @, because E(1x1) N E(a) = @. We can thus assume that
P C %prod, and we have d € ﬂtlxtgeP([[tlﬂ x [t2])\ UtlxtgeN([[tl]] x [ta]). If
we write d = (dy,dz), then Lemma 20 gives some N’ C N such that d; € [s1]
and dj € [sz] for:

A o\ V ou

t1 Xt EP t1XtoEN'

S92 = A tQ\ V t2

t1 Xt EP tlxtQEN\N,

S1

The induction hypothesis applied to d; and da gives [s1], # @ and [s2],, #
@, and thus [[31X52]]7, # @. To conclude this case, we observe that s1xss < t,
using again Lemma 20.

Now, we assume that d ¢ D? = [1x1]. We thus have d € [t\1x1], which
implies that t\1x1 2 0. As a consequence E(t\1x1) # &, and thus E(¢) N
(ED\EP™4D) # @. We are in at least one of the two cases:

E(t) NE # @: let ¢c € E(t)NE. We have E(b.) = {c} C E(t), and thus b. < t.
We conclude that ¢ : £.

E(t) NEf"™D # &: we have:

E(t) NEf™D = U <[Ef'mD n () E@\ [E(a)>

(P,N)eEN(t) | PCpun a€P aEN

This set is not empty. We can thus find an element (P, N) in .4(¢t) such
that P = {t;—s1,...,thn—=8n}, N N pun = {ti—s), ... t,—s.}, and
t = Nicp ntimsi\Vjo1 i) # 0. We have ¢ < t and the value
v=pf(t1—81;. .. ;tp—8,).Az. fz has type ¢'. By subsumption, we get - v : ¢.

O

Lemmas 43 and 42 entail Theorem 12.

34

6.6 Type soundness

Here is the proof of the subject reduction property, Theorem 8 in Section 5.

Proof: If (T' e : t), then we prove by induction on the derivation for I' - e : ¢
that Ve'.(e ~ €) = (I' F € : t). We consider the last rule used in the
derivation of ' Fe : t.

Rule (subsum): we have ' e : s <t and e ~ ¢’. The induction hypothesis
gives ' k¢’ : 5, and by subsumption we get I' - e’ : .

Rules (const),(var): the expression e is a constant or a variable. It cannot be
reduced.

Rule (proj): we have e = m;(eg), t = t;, ' b eg : t1Xta. If € is obtained
by reducing eg, that is, eg ~ ef, and ¢’ = m;(e), we get, by the induction
hypothesis: T'F ef : t1Xt2 and thus I' e’ : ¢;. If €’ is obtained by reducing
the toplevel 7; in e, then necessarily ey is a value (vy,v9) (and thus, by
Lemma 37: T Fwv; : ¢;), and ¢/ =v;. We get T'F e’ : ¢;.

Rule (rnd): we have e = rnd(t). The reduction rule for this expression gives
ke’ : t, which implies T' F €’ : t by Lemma 30.

Rule (pair): we have e = (e1,e2), t = t1Xtg, and I' F¢; : t; for ¢ = 1..2. The
only possible way to reduce e is to reduce one of the e;, say e’ = (€}, e2) where
e1 ~ e}. The induction hypothesis gives I' - €} : t1, and we get T' - e’ : 1 Xts.
Rule (appl): we have e = ejea, T'F e : s - tand T' F ep @ s. If ¢
is obtained by reducing e; or ey, we proceed as in the case for the (pair)
rule. Otherwise, we have necessarily e; = pf(s1—t1;...; $p—tn). Az €0, €' =
eolf = e1;x := ea] and ey is a value vy. We have A,.; si—t; < s — t, where
I ={1,...,n}. According to Lemma 24, this means that s < \/,_; s; and
that for any non-empty I’ C I such that s £ Viel\l, si, we have A\, ., t; < t.
We take I' = {i € I | b vy : s;}. This set is not empty. Indeed, since - vy : s
and s < Viel s;, we have at least one 4 such that F vy : s; (Lemma 39). Now,
we claim that s £ \/iel\[, s;. Otherwise, we would find some 7 ¢ I’ such that
F v : s;, which contradicts the definition for I’. As a consequence, we get
Nicrti <t. We claim that T' ¢’ : A, t; (which by subsumption yields
'k €' :tie. the result). To prove our claim we show that for every ¢ € I’
we have I' F ¢’ : ¢;, which thanks to Lemma 31 yields our claim. So, let
us consider any ¢ € I’, that is, any ¢ such that - vy : s;. The abstraction
ey is well-typed under T' therefore in its derivation there is an instance of
the (abstr) rule (possibly followed by several applications of the subsumption
rule) which infers for e; a type ¢’ under I'. One of the premises of this rule
is (f:t),(z:t),T'Fey:t;. Wealsohave ' F ey : ¢ and T F vy : s
(Lemma 30), and thus ' F ¢’ : ¢; (Lemma 33) as expected.

Rule (abstr): the expression e is an abstraction, and the reduction can only
occur within its body. We proceed as in the case for the (pair) rule.

Rule (case): we have e = (x = ep € s 7 e1 | e2). If the reduction occurs
within one of the sub-expressions eg,e1,e2, we proceed as in the case for the
(pair) rule. Otherwise, the expression eq is necessarily a value v, and we have
either (Fv:s)A(e/ = ez :=0]) or (Fv:=s)A(e = ez[z:=v]). Let us

i€l

35

consider for instance the first case. The typing rule gives: I' - v : s9. Thanks
to Lemma 31, we get I' - v : sgAs. Because of Lemma 35, we know that
soAs % 0, that is so £ —s. So the typing rule (case) under consideration has
a premise for ey, namely (z : sgAs),[' ey : t. Lemma 33 gives I' ¢ : t as
expected. O

And here is the proof of the progress property, Theorem 9 in Section 5.

Proof: We write e % if e cannot be reduced (Ze’.e ~» ¢’). Suppose that
F e : t; we prove on induction on the derivation of | e : ¢ that either ¢ is a
value or it can be reduced. We consider the last rule used in this derivation.
Rule (subsum): straightforward application of the induction hypothesis.
Rule (var): a variable cannot be well-typed in an empty environment. This
case is thus impossible.

Rule (const): the expression e is a constant. It is thus a value.

Rule (abstr): the expression e is an abstraction which is well-typed under the
empty environment. It is thus a value.

Rule (proj): we have e = m;(eg), t = t;, - eg : t1Xt2. If eg can be reduced to,
say, e[, then e ~ m;(ef,). Otherwise, if eg 7%, then by the induction hypothesis
eo is a value. By Lemma 37, we get eg = (v1,v2), and thus e ~ v;.

Rule (rnd): we have e = rnd(t) and thus e ~ ¢’ for any e’ of type ¢ (for
instance, we can take for ¢/ an expression of type 0, which exists).

Rule (pair): we have e = (e1,ea), t = t1Xto, and F ¢; : t; for ¢ = 1.2. If
one of the e; can be reduced, then e can also be reduced. Otherwise, by the
induction hypothesis, we obtain that both e; and ey are values, and so is e.
Rule (appl): we have e = ejeq, Fe; : s — t and F eg : s. If one of the
e; can be reduced, then e can also be reduced. Otherwise, by the induction
hypothesis, we obtain that both e; and ey are values. By Lemma 37, we get
e1 = pf(s1—t1;.. .5 Sp—tn). Ax.e9. Then e~ eo[f := e1;2 := ea).

Rule (case): we have e = (x =eg € s 7 e1 | e2). If ey can be reduced, then e
can also be reduced. Otherwise, by the induction hypthesis, we obtain that
ep is a value v. Because of Lemma 39, we have - v : s or - v : s, and thus
e~ el =] or e~ egfx :=). O

6.7 Construction of models

A naive idea to build a model would be to look for an interpretation domain
D such that D = ED. Of course such a set cannot exist, since the cardinality

of Ef'"D, and thus of ED, is stricly larger than the cardinality of D. This

cardinality problem can be avoided by considering only finite graphs to interpret
functions.

For any set D, we write EfD = ¢ + D? + (D x Dgq) where & denotes

the restriction of the powerset to finite subsets.

36

Definition 44 A set-theoretic interpretation []| : 7 — (D) is finitely extensional
if:

1. D=E;D

2. [a] = E(a) N D for any atom a.

Lemma 45 If [] is a finitely extensional set-theoretic interpretation, then
[t] = E(t) N D for any type t, and [7] = E(T) N D for any normal formal T.

| Proof: Induction on ¢t. O

The next lemma shows that taking finite sets as extensional models for func-
tions does not change the subtyping relation between arrow types (compare it
with Lemma 23).

Lemma 46 Let (X;)icp and (X;)ien be two finite families of subsets of D.
Then:
N Z(x)c | #(Xi) < Ji,eN. [X:CX,

ieP 1EN S

Proof: The <« implication is straightforward. Let us prove =. We assume
that any finite subset of X = (,.p X; is a subset of one of the X;, with
ip € N. We need to prove that the same holds for X itself. Otherwise, we
could find for each iy € N an element x;, € X\X;, and we would obtain a
contradiction by considering the finite set {xz;, | io € N}. O

Lemma 47 Let P, N two finite sets of arrow types and [] an arbitratry set-
theoretic interpretation. Then:

() E(a) € | E(a) <= Z(D x Do) () E(a) € | E(a)

acP a€EN acP aeN
(By convention (., E(a) = 2(D x Dg).)
| Proof: Consequence of Lemmas 23, 46, and 22. O

It is, then, not surprising that finitely extensional interpretations are models.

Lemma 48 FEvery finitely extensional interpretation is a model.

37

Proof: Since [7] = E(7) N D, we need to prove that
E(r) =@ <= E(r)ND =2
for any normal form 7. We write:
En = U ([E“Dﬁ () E@\ [E(a)>
uelU (P,N)er acP aEN

So we need to prove that for any v € U and (P, N) two finite sets of atoms,
we have:

E“DN () E(a) € |J E(a) <= DNE“Dn () E(a) € | E(a)
acP aeN acP aeN

If u # fun, then E*D C D, and the equivalence is thus trivial. The case
u = fun comes from Lemma 47. O

6.8 A universal model

In this section, we define a structural and finitely extensional model and then
show that it is universal and, in the next section, that the subtyping relation
induced by this model is decidable.

We need to build a set D° such that D° = [EfDO, that is, a solution to the
equation D° = €+ D% x DY+ 2 (D x DY)). We will consider the initial solution
to this equation. Concretely, we define D as the set of finite terms generated
by the production d of the following grammar (¢ ranges over elements of €):

d == c|(dd)|{dd),...,(dd)}
d == d|Q

Now, we need to define a set-theoretic interpretation []° : 7 — 2(D°)
such that [t]° = E(a)® N D°. Because of the inductive structure of elements
of D°, this equation actually defines the function [[_]]0. To see this, we will
define a binary predicate (d : t) where d € D° and t € . The truth value
of (d : t) is defined by induction on the pair (d,t¢) ordered lexicographically,
using the inductive structure for elements of DY, and the induction principle we
mentioned earlier for types. Here is the definition:

. b) — ce B[y
dl,dg) : tlxtg) (dl : tl) A (dg : tg)
(dl,dll), ey (dn,dil)} : tl—)tg) = Vi (d7 : tl) = (d; : tg)

o

NN N N~
ISHRSHESHSRCS

: t1Vt2) = (d : tl) V (d : tg)
2t = =(d:t)
1) = false otherwise

38

Now we define [t]” = {d € D° | (d : t)}. It is straightforward from this
definition to see that []° is a set-theoretic interpretation and that it is struc-
tural (and thus well-founded). It is also clear that it is finitely extensional. It is
thus a model. It remains to prove that this model is universal. This is a direct
consequence of the next lemma.

Lemma 49 If #° = {7 | [r]" = @} and .% is a simulation, then & C .7°.

Proof: Let . be a simulation. We need to prove that Vr € .%. [r]° = @,
that is:
vde D' Vre.7. d ¢ [r]°

We will prove this property by induction on d € D°. Let’s take d € D° and
T € .. Since . is a simulation, we also have 7 € E.¥, that is:

Yu € UV(P,N) € t. (P C o, = CPNNFu)} (6)

where the conditions CP*Y are as in Definition 25.
We need to prove that d ¢ [7]°. The set [r] is equal to:

U N Y "

(P,N)eTa€P aEN

We prove that d does not belong to any of the terms of this union. Let
(P,N) € 7 and u be the kind of d (as for values, it is straightforward to
associate a unique kind to each element of D). If a € &7\, then clearly
d & [a]®. As a consequence, if P ¢ <, then d & Nacp [a]°\ Usen [a]°. We
now assume that P C .o7,. We can apply (6). We obtain that C>VN"%u holds.
It remains to prove that:

0 0
d¢ (V™ U [l
a€P aENN,
u = basic, d = c¢. The condition CPN7u ig;

¢n () Bl < | Blo]

beP beN

AS a consequence, we get:
dg (VBRI U Bl = (V[U [al"
beP beN acP a€ NNbasic

u = prod, d = (d1, dz). The condition CDNu jg:

</V< A on A —-t1> €.
t1 XtoEP t1XtoEN'
VN’ C N N Hprod. Vv

AN tr N | es

t1Xta€EP tlxtQEN\N’

39

For each N’, we apply the induction hypothesis to d; and to do. We get:

0
dlg_iﬂ A on A ﬂtlu vda g || N A N

0

t1Xt2€P t1Xt2 €N’ t1Xt2€EP tiXta € N\N’
That is:
0 0 0 0
d¢ (N LI U [l) < () LI U [l
t1 Xt EP t1 Xt EN/ t1 Xt EP tlxtQEN\N'

According to Lemma 20 and to [t1]° x [ta]® = [t1xt2]", we thus get:
0 0
dg ™\ U
a€P a€ENNHprod

u="fun, d = {(dy,d}),...,(dn,d,)}. The condition CI*N"“u gays that there
exists tp—sg € N such that, for all P’ C P:

P#p
,/V<to/\ A —nf)ef\/ dEson A s|es

t—se P’
t—seP\ P’

Applying the induction hypothesis to the d; and d; (note that if d; = Q, then
d; & [7]° is trivial for all 7):

P+P

0 0
@ghAA'ﬁv dg | son A s

t—seP’
t—seP\ P’

Let us first assume that Vi. (d; € [to]° = d; € [s0]”). Then we have d €
[to—so]°. Otherwise, let us consider i such that d; € [to]° and d} & [s0]".
The formula above gives for any P’ C P:

<d7; e U [[t]]0> viP#pPadie{tu |]’

t—sepP’ t—seP\P’
Let’s take P’ = {t—s € P | d; € [t]°}. We have d; ¢ Uimssep [t]°, and thus
P'# P and dj € {Q} U sepy pr [-s]°. We can thus find t—s € P\P’ such

that d} ¢ [s]°, and because t—s ¢ P’, we also have d; € [t]°. We have thus
proved that d ¢ [t—s]° for some t—s € P.
In both cases, we get:

d¢ N U [a]°

a€P a€NNArun

40

6.9 Subtyping decidability for the universal model

We will now focus on Theorem 15. Let <¢ denote the subtyping relation induced
by the universal model []°. We have t; <o to <= [ti\t2]’ = & —
[L/V(tl\tg)ﬂo = ¢. Therefore we need to show how to decide, for a given normal
form 7y, whether [[Toﬂo = & or not. Thanks to the Lemma above, we get:
[7]° = @ if and only if there exists a simulation .7 such that 7o € ..

Actually, we can restrict our attention to a finite number of normal forms.
Indeed, let us consider the set A of all the atoms that occur in 7y (including
atoms nested in other atoms). Thanks to the regularity of types, this set A is
finite. Write .#(A) for the set of normal forms built only on top of these atoms,
that is: A (A) = P(F(A) x P(A)). This set is also finite, and looking at
Definition 25, we see that an intersection of a simulation and .4#"(A) is again a
simulation. As a consequence, we get: [[7'0]]0 = @ if and only if there exists a
simulation . C 4 (A) such that 79 € .. A naive algorithm can simply enu-
merate all the subset of .#"(A) which contains 7y and by applying Definition 25
check whether one of them is a simulation.

Of course, there exist better algorithms. For instance, we can interpret
the definition of a simulation as saturation rules: the algorithm starts from
the set {7p} and tries to saturate it until it obtains a simulation. Because
of the disjunctions in the definition of a simulation, this algorithm needs to
explore different branches. A branch cannot be infinite because the algorithm
will only consider the normal forms in .4 (A) which is a finite set. There exists
a simulation which contains 7y if and only if one of the branches succeeds in
reaching a simulation. The Ph.D. thesis [14] describes two algorithms which
improve over this simple saturation-based strategy.

6.10 Non-universal models

The interpretation domain D of a finitely extensional set-theoretic interpretation
must be a solution to the equation D = EyD. In the previous section, we
considered the initial solution to this equation and we obtained a universal
model. In this section, we will build non-universal models by considering non-
initial solutions to the equation D = E¢D.

A first attempt could be to consider infinite (or maybe regular) terms gen-
erated by the following productions:

d c|(d,d)|{(dd),...,(d,d)}
d == d|Q

But it is then impossible to build a finitely extensional interpretation on this
domain D*°. Indeed, if [] is such an interpretation, we consider the element
d € D> such that d = (d,d) and the type t such that ¢t = (—=t)x(—t). Since
d € D> and [t] = E(t) N D* = (D>®\[t]) x (D*°\[t]), we have: d € [t] <
(d,d) € (D>®\[t]) x (D*\[t]) < d ¢ [t]. Contradiction.

41

So, we will build domains which are intermediate between D° and D*>°. We
need to introduce some new notions.

For an arbitrary set X, we define DIX] as the set of finite terms generated
by the production d below:

d == z|c|(dd)|{(dd),. .. (dd)}

d == d|Q
where x ranges over elements of X. In other words, DX is the initial solution
D to the equation D = X + ¢ + D? + (D x Dg). We define the predicate
Ard:tforde DX t e 7, A e ()X by induction on the structure of d:

(A"dltlvtg) = (Al—d:tl)\/(Al—d:tQ)
(AFd:t) = —(AFd:t)

(AFc:b) = ce B[]

(A" (dl,dg) Ztlxtg) = (A"dl Ztl)/\(Ang Ztg)
(A"{(dl,dll),,(dn,d;)} Ztl—)tg) = Vi. (A"dl Ztl):> (A"d; Itg)
(Abz:a) = a€Ax)

(Akd:t) = false otherwise

A congruence on DX is an equivalence relation = such that (di = d? Ad}
d3) = (d}.d}) = (d3,d3) and (Vi.d! = d? Ad} = d?) = {(d},d}),...
{(d3,d}?),...}. Tf for all z, we choose an element d* € E;(DX!) = DX\ X
and if we consider the smallest congruence = such that Vx € X.x = d*, then
the quotient DE = DX/ = is such that [Ef(D[EX]) = DX (modulo an implicit
bijection). Let’s choose some A € (7)X. We require the predicate (A +d : t)
to be invariant under =, that is: d' = d?> = (A F d' : t) < (AF d?:1)).
This is the case if and only if Va.(A F 2z : t) <= (A d” :t), that is, if and
only if:

(*) Vo€ X. Alw) = {t | Ak d®:t}

When this property holds, we can define [], : . — W(D[EX]) by [t], =
{l[d]l= | (A + d : t)}, where [d]= denotes the equivalence class of d modulo
=. This defines a finitely extensional set-theoretic interpretation (and thus a
model).

Of course, the difficulty is now to choose X, the d* and A such that (x) holds.
Let us consider the case where X = Z, and each d*,k € Z is defined using only
d*=! in a uniform way. Formally, we consider a fixed element § € D{*} such
that § # e and we define d* = 6[e := k — 1] (that is, the element of DZ obtained
by substituting e by k—1in §). If A € 2(7)%, then A I d* : t is equivalent to
At é[e:=Fk —1]: t, and an induction on the structure of 4§ shows that this is
equivalent to (e — Ay_1) F §: ¢t. If we define the operator F': 2(.7) — P(T)
by F(T)={t| (e+— T)F §:t}, then the condition (%) can be rewritten as:

VkeZ. Ay = F(Akfl)

Building such a sequence is not straightforward. We will rely on a technical
lemma.

42

Lemma 50 Let A be a finite set, f : A — A, and a® € A. There exists a
unique periodic sequence (ay)rez € AZ such that:

dng € N.Vk > ng.ai, = fk(ao)

(where f™ denotes the n-th iterated composition of f with itself). This sequence
is such that:

Vk. a1 = f(ak)

Proof: We consider the sequence (a"),en defined by a™ = f"(a’). Since
A is finite, this sequence cannot be injective. We can find ng < ni such
that a™ = a™. A recurrence gives a" = a"+t("1=70) for any n > ng: the
sequence (a™)pen is ultimately periodic. As a consequence, there exists a
unique sequence (ay)rez which coincides ultimately with (a™),en.

Clearly, the property ag+1 = f(ar) holds for k large enough, and because
(ar)rez is periodic, it holds for any k. a

that:
o Vk € Z.AkJrl = F(Ak)

e For any type t, the sequence of the truth values of (t € Ag)rez is periodic
and 3ng € N.Vk > ng.(t € Ay < t € FF(T?))

Proof: Since the set () is not finite, we cannot use the lemma directly.
The regularity of types will come to the rescue. We define a cone as a finite
set of types which is closed under subterms decomposition (that is, if the set
contains a type, it also contains all its subterms). Any type belongs to some
cone because a type is a regular term. For a cone C, we can define the function
Fo : 2(C) — 2(C) by Fe(T) = F(T)nC. We can apply the lemma to
this function, because 2 (C) is finite. We write (T)rez for the sequence we
obtain. Now, we observe on the definition of the F predicate that for ¢t € C,
the assertion (e — T') F § : ¢ holds if and only if (e — (T'NC)) F 4 : ¢ holds.
This gives immediatly the following property:

VI'C 7.CNF(T'NC)=CnF(T)

From that, a recurrence gives FZ(T°) = F*(T°) N C. So, for t € C, we
have t € T¢ <= t € F¥(T,) when k is large enough. Since the sequence
(t € TE ez is periodic, it does not depend on the choice of the cone C which
contains t. We can thus define A as the set of types t such that ¢t € ch for
some/any cone C' that contains t. We have TC = Ay NC. It remains to check
that Agy; = F(Ay) for all k. Let ¢ be a type and C' a cone which contains
t. Wehavet € Ap11 <= t € Tk(i_l and according to the lemma, we have
TG, =F(I)NC =F(Ar)NC. So: t € Apyy <= t € F(Ay). Since this
property holds for an arbitrary ¢, we get A1 = F(Ag) as expected. a

43

We will give two examples of constructions based on this theorem. First,
we will build a model which is not well-founded. In a well-founded model, the
recursive type tg = tgXtg is empty. We will build a model where this type is not
empty. We take § = (o,) and we build (Ag)rez as given by the theorem. We
thus get a finitely extensional set-theoretic interpretation [_], : 7 — Z(DZ).
For any set of types T, we have tg € F(T) <= (e — T)Fd:t) < (e
T)F (e,0) : toxtyg < (e — T)F e :ty < ty € T. So if we choose
TP such that tg € T?, we have tqg € Ay, for all k, from which we conclude that
[to] o contains the [k]= for & € Z. In particular, it is not empty. To better
understand our construction, we can consider the type t; = (—t1)x(—t1). We
find that ¢, € F(T) <= t; ¢ T and we deduce that [t;], contains the [k]=
for all even k € Z (if t; € T°) or for all k € Z (if t; ¢ T°). For more complex
recursive types, we might see other periods that 2.

Now, we will build a structural (and thus well-founded) model which is not
universal. We consider the recursive type ¢ = (0—0)\(to—0). If [_] is a
finitely extensional set-theoretic interpretation, a simple computation gives:

[tol = {(di, ;) | Fi. di € [to]}

In particular, this set is empty for the universal model built in the previous
section (because its elements are finite trees). We take 6 = {(e,Q)} and we
proceed as above, with the following computation: ¢ty € F(T) < (e —T)
d:tg < (e—=>T)F {(e,2)}: (0=0)\(toX0) <= (e —>T)F e:ty <—
to € T. We conclude that the model [_], is not empty. It remains to see that
it is structural. The decomposition relation > is defined by ([d1]=, [d2]=) > [di]=.

Because of the definition of 4§, if [d]= > [d']=, then d must be a pair (di,d2) in
D? x D?. As a consequence, the relation > is noetherian.

6.11 Towards type-checking

In this section, we introduce notions that will be useful for deriving a type-
checking algorithm. We also give the proof of Theorem 10 (local exactness of
the application rule). The existence results in this section are effective (viz. it
is possible to compute the objets whose existence is asserted) provided that the
subtyping relation is decidable.

Lemma 52 Let t be a type such that t < 1x1. There exists a finite set of pairs
of types w(t) € Z(T?) such that:

ot~ \/ t1Xto

(tl,tQ)Eﬂ'(t)

(] V(tl,tg) G’]T(t). t1 ¢®At2¢®

44

Proof: We can write:

t V axA Ao\ o«

(P,N)eN(t) | PCHproa a€EP aENNHprod

Using Lemma 20, we can rewrite any intersection of product types and com-
plement of product types as a union of product types P’ C “prod:

We simply define 7(¢) as {(¢t1,t2) | t1Xte € P’ Aty £ 0 At £ 0}. O

Lemma 53 Let t be a type such that t < 0—1. Then there exists a finite set
of pairs of types p(t) € Z(7?) and a type Dom(t) such that:

t1 < Dom(t)

Vii,to. (t < t1—ty) <—
) { V(s1,82) € p(t). (t1 < s1) V (s2 < to)

Proof: We can write:

t o~ V (0—1)A /\ a\ V a

(P,N)eAN(t) | PCrun a€P aENNAran

Clearly, the Lemma is true for ¢ ~ 0 (with Dom(¢) = 1 and p(t) = @), and if it
holds for ¢ and ¢/, then it also holds for ¢tVt’ (with Dom(¢Vt") = Dom(¢)ADom(t')
and p(tvt') = p(t) U p(t')). We can thus assume with loss of generality that ¢

has the form:
t= /\ a\ V a

aceP aeEN
with P/ N C un, P # &, and t 2 0. We conclude easily with Lemma 24. O

Corollary 54 Let t and ty be two types. If t < t1—1, then t < ty—ty has a
smallest solution to which we write t o tq.

Proof: Since t < t;—1, we have t; < Dom(t). The assertion t < t;—ts is thus
equivalent to:
V(s1,82) € p(t). (t1 < s1) V (s2 < ta)

that is:
V s2] <t2
(s1,52)€p(t) | (t1€s1)
We write t e 1 for the left-hand side of this equation. o

45

We can now prove Theorem 10.

Proof: Let t,t; be two types such that ¢t < ¢;—1. Clearly, if F vy : ¢ and
F vy : t1, then - vpv, @ t @ ¢y, and thus, subject reduction gives - v : ¢t @ ¢y if

VU 5.
Let’s prove the opposite implication:

Vo. Foitety = Jup, v (vpvg S v) A(Fop i t) A(Fog s ty)

This property is clearly true for ¢ ~ 0, and if it is true for ¢ and ¢/, then it is
true for tVt’ (because O @ t; ~ 0 and (tVt') e t; ~ (t @ ¢1)V(t' @ t1)). We can
thus assume, as in the proof of Lemma 53, that ¢ has the form:

t= /\ a\ V a
aceP aeN

with P, N C @un, P # @, and t 2 0. Lemma 24 gives:

tet) = V /\ tlz

P'CP | 1ZVy Ly epr th \Hi—15EP\P!

and

n< \ o4

t)—tieP

Let v be a value of type tet;. We can find P’ C P such that ¢; € Vt’l—»t’QeP’ th
and - v : /\t’1—>t’2€P\P’ th. Let v, be a value of type tl\Vt,l_,t,QGP, th and vy
the abstraction

pfP)rz. (y=ze \| 7 fylv)

t)—thEP

It is then easy to check that - vy : t and vyv, . O

6.12 Type-checking algorithm

In this section, we assume that the subtyping relation < is decidable and we
give a type-checking algorithm for our type system.

The key difficulty to overcome is that the set of types ¢t such that I' e : ¢,

for a given environment I' and a given expression e has no smallest element
in general. Indeed, consider the case where e is a well-typed abstraction. The

(abstr) rule allows us to choose an arbitrary number of arrow types.

46

We will thus introduce a new syntactic category, called type scheme to de-
note such sets of types. The syntax for type schemes is given by the following
productions:

t o= ¢ te 7
| [t1—s1; .. tn—8n] 1> 1it,8, € T
| bt @t
| b, @
| Q
We will write [t;—8;]i=1..n for [t1—s1;. .. ;th—s,]. We define the function { }

which maps schemes to sets of types:

{t} = {s|t<s}
{lti—sili=1.n} = {s|3so= /\ ti—s;) A /\ t —»s .0 % sy < s}

i=1..n j=1l..m
{[tl & [l:g} = {S | dt, € {U:l},tg S {UZQ} t1 Xty < S}
{[|21 Q UZQ} = {8 | dt; € {[tl},tg S {UZQ} t1Vitg < 8}

{Q} = O

Lemma 55 Let b be a type schema. Then {t} = & if and only if Q0 appears in
t. Moreover, {t} is closed under subsumption (t € {t} At <t' = € {t}) and
intersection (t € {t} ANt € {t} = tAt' € {t}).

| Proof: Straightforward induction of the structure of t. a

Lemma 56 Let t be a type scheme and ty a type. We can compute a type
scheme, written ty ® t, such that:

{to®t} = {s | 3t € {t}. toAt < s}

Proof: We define to®t by induction on b. If b is a type ¢, we take to®t = toAt.
If t is a union Ve, we distribute: to ®t = (to ®t1) @ (to ®L2). If bis Q, or
if {t} = @, we take to ® t = Q. For the two remaining cases, we assume that
t # @, and we observe that:

to ~ V /\a/\/\—la

(P,N)e¥(t) aeP aEN

We can thus see ¢ as a boolean combination built with 0, 1, V, A, atoms and
complement of atoms. For ty ~ 0, we take tc ® t = 0. For tg ~ 1, we take
to®Lt =t. For ty >~ t1Vto, we take to Ot = (tl) [t) Q (tg D [t) For ty ~ t1Atg,
we take to ®t =t1 ® (t2 ® t). It remains to deal with the case of an atom or
a complement of an atom.

For the case t = t; ® bs, we take:

(tixt2) ® (L1 @) = (L1 O) @ (t2 O Ta)

47

A(t1xt) Ot @t) =(t1 0) @) © (b ® (1te O b))

and if a € '\ Fproa:
a® ([tl X UZQ) =0

—a® (b @) = (t @)

For the case t = [t;—s8;]i=1..n, we take:

[ti—Si)iz1.n i /\ ti—s; <t—s

1o8) @ [t . i=1l..n
() O [ti—si]i=1.n 0 si /\ ti—si £ t—s
i=1l..n
0 si /\ t;i—s; < t—s
“(t—s @ t;—S; i=1..n — A"
() O [tisili=1.n [ti—sili=1.n si /\ timsi £ t—>s
i=1l..n

and if a € &\ P pun:
a® [ti—sili=1.n =0

—a @ [ti—8i)i=1.n = [ti—Si]i=1.n

Lemma 57 Let t be a type scheme and t a type. We can decide the assertion
t € {t}, which we also write t < t.

Proof: First, we make the observation that ¢ € {t} if and only if 0 €
{(-t)ot}. Indeed: 0 € {(-t)OLt} < 3Fs € {t}. ("t)As < 0 <=
ds € {t}. s <t <= t e {t}. As a consequence, we only need to deal
with the case t = 0. If {t} = @, then 0 € {t} does not hold. Otherwise, we
conclude by induction over the structure of t:

0 e{t} — t~0

0 & {[ti—si|i=1.n}

0e {[|Z1 (9 U:Q} <~ (@ € {[tl}) V ((D S {UZQ})
0e {[|Z1 @ U:Q} <— (@ S {[tl}) A\ ((D S {UZQ})
0 ¢{Q}

Lemma 58 Let t by a type scheme and i € {1,2}. We can compute a type
scheme ;(t) such that

TQ(UZ) = {S | dti Xty € {[t}tz < S}

48

Proof: Let’s take for instance i+ = 1. Note that Jt1xts € {t}.t1 < s is
equivalent to sx1 € {t}.

If t £ 1x1, then we take {m (t)} = Q. Otherwise, we proceed by induction
over the structure of t. For t = t; @ by, we take 71(t) = 71(t1) @ m1(b2). For
t =1t ® Ly, we take m1 (k) = t;. For t = ¢, we take m (L) = \/(thtg)ew(t) t1.
The other cases are impossible. O

Lemma 59 Let t and ty be two type schemes. We can compute a type scheme
telt; such that

{[t ° [|21} = {8 | dt1—to € {[t}.tl S {[tl} Nita < 8}

Proof: We proceed by induction over the structure of t. For t = t! @ 2, we
take tol; =Lt'elt; @2 el;. Fort =t @t2 ort = Q, we take Lo t; = Q.
For t = [ti—s]]i=1.n, we take Loty = (A,_; , (ti—s))) o Ly, so the only
remaining case if t = t. We observe that 3t;—ts € {t}.t; € {ti} Aty < s'is
equivalent to 3t; € {t;}.t <t;—s. According to Lemma 53, this is equivalent
to: Jt; € {t1}.t1 < Dom(t) AV(s1,s2) € p(t). (t1 < 51) V (52 < s). We claim
that this is equivalent to t; < Dom(t) A V(s1,s2) € p(t). (1 < s1) V (s2 < s).
The = implication is immediate. Let us check the < implication. For every
(s1,82) € p(t) such that sy £ s, we have b1 < s; and it is thus possible to
find a type t] € {t1} such that ¢} < s;. We define ¢; as the intersection of all
these ¢} and of Dom(t), and we thus have ¢; € {t;} A ¢; < Dom(t) AV(s1,s2) €
p(t). (t1 < s1) V (s2 < 5). To conclude, we define ¢ e by as Q if t; £ Dom(¢),
and otherwise as:
Voo

(s1,52)€p(t). (L1 £ 51)

We can now describe a type-checking algorithm. We define a scheme environment
as a finite mapping [from variables to type schemes such that {I' (z)} # & for
every x in the domain of I'. The type-checking algorithm is formalized as a total
function which maps a scheme environment I" and an expression e to a scheme
written [[e]. This function is defined by induction on the structure of e by the

49

following equations:

Ilc] = be
[(e1, e2)] = Te1] ® [[ea]
Flpf(ti—s1;5. .. th—8n). Az.€ { EZ i)ftZ(Zer;vllsen Si < Si
where { = [t _)sl l L.n
() 7(i ((1 t;),N)e] (i=1.n)
x is define
Mzl = { Q o‘rherwwe
lmi(e)] = mi(Tle])
Tlerea] = Tle1] o Tes]
[F[(x =ect? €1|62)] =31 @S2
[|Z() = [F[e]
i =tDLy
by = (—t) O b
where § % b Dle] ik £ 0, (k) £ 2
Q if {[tl} =g

We are now going to prove soundness and completeness of the algorithm. If I”
is a scheme environment and I is a typing environment, we write ' < I when [
and I" have the same domain and for all in this domain I'(z) < T'(z). If T'; and
I's are two typing environment, we define I'yAT's by (I'1AL')(z) = T'1 (z)AT2(x)
(undefined when one of the I';(z) is not defined). Note that if [< I'; and
r S FQ, then [S F1/\F2.

Lemma 60 (Correctness) If T'[e] < ¢, then there exists T > T such that
I'-e:t.

Proof: By induction over the structure of e.

e =c. We have b, <t, and thus I ¢ : t. We can take for I an arbitrary typing
environment such that I' > I'. We use the A operator on typing environment
and Lemma 30 to reconcile different I'’s given by several uses of the induction
hypothesis.

e =x. We have I'(x) < t. We can choose I > I such that I'(z) = ¢

e = (e1,e2). We have [[e1] @ T[ea] < t. We can thus find ¢; > [[eq] and
to > [[es] such that t;xts < t. The induction hypothesis gives I'y > T such
that I'y F ey : ¢ty and I's > [such that I'g F e5 : t5. We take I' = I'1Al's.

e = ejea. We have [[e;] e[[es] < t. We can thus find ¢1, t2 such that t;—ts >
[[e1], t1 > [[ez] and t3 < ¢. The induction hypothesis gives I'y > I such that
Fl - €1 : tl—)tg and FQ Z I such that FQ H €9 tl. We take I' = Fl/\FQ.

e =m;(e’). We have m;([[e]) < t. We can thus find ¢, ¢3 such that ¢ Xty >
I[e/] and t; > t. The induction hypothesis gives I' > I such that T' F €’ :
t1Xty. We deduce that I' e : ¢; and by subsumption I' e : t.

50

e=(x=¢ €t Te|ey). Wetakely =T[e'], t; =¢ Oly and bty = (=t') B L.
We also take s; and sy as in the corresponding case of the definition of [[e].
We have s; @35 < t. We can thus find s; > 37 and s9 > s9 such that ¢ > s1Vss.
Let’s take ¢ € {1,2}. We will define a type ¢;. We have s; # (since s; > s;.
There remains two cases. If t; £ 0, we have s; = ((z : t;),I)[e;]. The
induction hypothesis gives I'; > I and ¢; > t; such that (z : ¢;),I; F e; : s;.
Otherwise, we have s; = 0 and we take t; = 0. In both case, we have t; > C;.
Let’s consider the type to = (t1At)V(t2A—t"). We now prove that to > L.
Since t1 > by = ¢/ ® bp, there exists ¢} > by such that ¢’At] < ¢;. Similarly,
we have t, > by such that (=t)At, < to. We get tg > (FAL)V((=t)AL) >
ANV ()AL AE,) ~ At > To.

Since ty > Lo, the induction hypothesis gives I'g > [such that T'g - €’ : ¢g.
Let’s consider the types t] = toAt <t and t§ = toA(—t) < t2. By considering
the intersection of I'g and of I'y and I's when they are defined, we find ' > I
such that I' - ¢’ : ¢t and (x; : t/),I' F ¢; : s; when t; £ 0. The rule (case)
gives I' - e : 51Vso. By subsumption, we get I' e : ¢.

e =puf(t1—s1;...;th—s,).Ax.e’. We take b and s; as in the definition of the
corresponding case for ['[e]. Since ['[e] # Q, we get t < ¢t and s; < s; for all
i = 1..n. The induction hypothesis gives, for each ¢, an environment I'; > T,
and two types t' > t, ¢/ > t; such that (f : '), (z : ¢/),T; €' : ;.

We define the type ¢’ as A,_; , t'At. We have t' >t = [t;—s;]i=1.,. We can
thus find a type ¢ of the form ¢ = A,_, ti=siA\;_, ,, ~(t;—s]) such
that ¢ > t” and t" 2 0.

If we take for T" the intersection of all the T';, we obtain (f : t"),(x : ¢;),T F
e’ : s; for all ¢ from which we conclude I' e : ¢/ and thus ' e : ¢. O

Lemma 61 (Completeness) IfT <T and ' e:t then I'e] < t.

Proof: By induction over the derivation of I' - e : ¢ and case disjunction over
the last rule used in this derivation. The proof is mechanical. We give the
details only for the rule (case).

The:t to £t = (z:toAt),['Fei:s
o togt = (z:to\t),TFes:s

F'F(zx=ect?eiles):s

We assume that I < I' and we take tg,t1, t2,51,52 as in the definition of
Il(z =e€t?eples)]. We need to prove that 51 @ sy < s, that is 51 < s and
sy < 5. We will do the proof for s; (the proof for sy is similar).

The induction hypothesis gives bty = [[e] < to, from which we get t; < tAL.
If t; <0, then 53 = 0 < s. Otherwise, since {l1} # &, we have s; = ((z :
t1),T)[e1]. We have tg £ —t, otherwise t; < 0. We thus have a sub-derivation
(z : toAt),I' F eq : s. The induction hypothesis, applied to the environment
(x:ty),T gives 51 < s. O

o1

By combining the two previous lemmas, we get an exact characterization of
the type-checking algorithm in terms of the type system.

Theorem 62 For any scheme environment [and expression e:
{Te]}={¢t| I >C.T'te:t}

Corollary 63 Let I' be a typing environment. It can also be seen as a scheme
environment. For any expression e and any type t, we have:

Fke:t < Tle] <t

As a special case, the expression e is well-typed under T if and only if {T[e]} # @.

7 Conclusion

Our original motivation for developing the theory presented in this article was
the addition of first-class functions to XDuce while preserving the set-theoretic
approach to subtyping. This was the starting point of the CDuce project [10],
aiming at developing a programming framework covering several aspects of XML
programming: efficient implementation, query languages, web-services, web pro-
gramming, and so on.

The reader might be surprised to face such a complex theory in the setting of
an XML-oriented functional language. First, we should mention that XML plays
no role in the complexity of the theory. The circularity which our bootstrapping
technique addresses comes only from the combination of arrow types, recursive
types and Boolean connectives. Since XDuce already had recursive types and
Boolean connectives, it seemed natural to add arrow types and to fully integrate
them with these features. Simpler solutions could have been possible, e.g. by
stratifying the type algebra so as to avoid any interaction between arrow types
and existing XDuce types: this is what the first author did to integrate XDuce
types into an ML-based type system [15].

Second, we could have presented the theory without introducing the abstract
concept of models. Indeed, for the application to a specific programming lan-
guage, we could have worked directly with the universal model (Section 6.8).
That said, we believe that the current presentation better captures the essence
of our approach. Working directly with a specific model would be mysterious
and ad hoc.

Although we presented our notion of model and the bootstrapping technique
on a specific type algebra and for a specific calculus, our framework is quite ro-
bust. Frisch’s Ph.D. thesis [14] describes some variants of the system (removing
type error at application, removing overloading) and shows how minimal mod-
ifications to the theory are enough to deal with them.

More importantly, our approach and the techniques we developed turned
out to have much a broader application than we initally expected. What we
devised is the first approach for a higher order A-calculus in which union, in-
tersection, and negation types have a set-theoretic interpretation. The logical

52

relevance of the approach was independently confirmed by Dezani et al. [13]
who showed that the subtyping relation induced by the universal model of Sec-
tion 6.8 restricted to its positive part (that is arrows, unions, intersections but
no negations) coincides with the relevant entailment of the B, logic (defined
30 years before we started our work). This same approach can be applied to
paradigms other than A-calculi: Castagna, De Nicola and Varacca [9] use our
technique to define the Cr-calculus, a 7-calculus where Boolean combinators
are added to the type constructors ch(¢) and ch(¢) which classify all the chan-
nels on which it is possible to read or, respectively, to write a value of type .
The technique using the extensional interpretation is still needed for cardinality
reasons, however bootstrapping in Cr has a different flavour, since it generates
a model that is much closer to the model of values. Interestingly, this model
is defined by a fix-point construction. Cr features several points that are in
common with or dual to CDuce: Cr presents the same paradox one meets when
adding reference types to CDuce [7]. The paradox can be avoided by restricting
Cr to its “local” version [9] but in that case the type schemes of Section 6.12
must be reintroduced, in spite of the fact that they are not needed for the full
version of Cm. Another striking resemblance between CDuce and Cr that is
worth mentioning is that in order to decide the subtyping relation for the C,
one tackles the same difficulties as those met in deciding general subtyping for
the polymorphic extension of CDuce [19], namely, one must be able to decide
whether a type is a singleton or not. An informal introduction to these aspects
can be found in [5], while the formal correspondence between CDuce and Cr is
studied in [6].

References

[1] A. Aiken and E. L. Wimmers. Type inclusion constraints and type in-
ference. In Proceedings of the Seventh ACM Conference on Functional
Programming and Computer Architecture, pages 31-41, Copenhagen, Den-
mark, June 93.

[2] A. Asperti and G. Longo. Categories, Types and Structures: An Introduc-
tion to Category Theory for the Working Computer Scientist. MIT-Press,
1991.

[3] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda
model and the completeness of type assignment. Journal of Symbolic Logic,
48(4):931-940, 1983.

[4] V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XML-friendly general
purpose language. In ICFP ’03, 8th ACM International Conference on
Functional Programming, pages 51-63, Uppsala, Sweden, 2003. ACM Press.

[5] G. Castagna. Semantic subtyping: challenges, perspectives, and open prob-
lems. In ICTCS 2005, Italian Conference on Theoretical Computer Science,

53

[6]

7]

18]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

number 3701 in Lecture Notes in Computer Science, pages 1 20. Springer,
2005.

G. Castagna, M. Dezani, and D. Varacca. Encoding CDuce into the Cx-
calculus. In CONCUR ’06, Lecture Notes in Computer Science. Springer-
Verlag, 2006. To appear.

G. Castagna and A. Frisch. A gentle introduction to semantic subtyping. In
Proceedings of PPDP 05, the 7th ACM SIGPLAN International Sympo-
sium on Principles and Practice of Declarative Programming, ACM Press
(full version) and ICALP 05, 32nd International Colloquium on Automata,
Languages and Programming, Lecture Notes in Computer Science n. 3580,
Springer (summary), Lisboa, Portugal, 2005. Joint ICALP-PPDP keynote
talk.

G. Castagna, G. Ghelli, and G. Longo. A calculus for overloaded functions
with subtyping. Information and Computation, 117(1):115 135, 1995.

G. Castagna, R. D. Nicola, and D. Varacca. Semantic subtyping for the n-
calculus. In LICS 05, 20th Annual IEEE Symposium on Logic in Computer
Science. IEEE Computer Society Press, 2005.

The CDuce programming language. http://www.cduce.org.

M. Coppo and M. Dezani-Ciancaglini. An extension of the basic func-
tionality theory for the A-calculus. Notre-Dame Journal of Formal Logic,
21(4):685-693, October 1980.

F. Damm. Subtyping with union types, intersection types and recursive
types II. Research Report 816, IRISA, 1994.

M. Dezani-Ciancaglini, A. Frisch, E. Giovannetti, and Y. Motohama. The
relevance of semantic subtyping. In Intersection Types and Related Systems.
Electronic Notes in Theoretical Computer Science 70(1), 2002.

A. Frisch. Théorie, conception et réalisation d’un langage de programmation
fonctionnel adapté & XML. PhD thesis, Université Paris 7, Dec. 2004.

A. Frisch. OCaml + XDuce. In Programming Languages Technologies for
XML (PLAN-X), 2006.

A. Frisch, G. Castagna, and V. Benzaken. Semantic Subtyping. In LICS
02, 17th Annual IEEE Symposium on Logic in Computer Science, pages
137-146. IEEE Computer Society Press, 2002.

R. Hindley and G. Longo. Lambda-calculus models and extensionality.
Zeit. Math. Logik Grund. Math., 26(2):289 319, 1980.

H. Hosoya. Regular Ezpression Types for XML. PhD thesis, The University
of Tokyo, 2001.

54

[19]

[20]

[21]

[22]

23]

H. Hosoya, A. Frisch, and G. Castagna. Parametric polymorphism for
XML. In POPL 05, 32nd ACM Symposium on Principles of Programming
Languages. ACM Press, 2005.

H. Hosoya and B. Pierce. Regular expression pattern matching for XML.
In POPL 01, 25th ACM Symposium on Principles of Programming Lan-
guages, 2001.

H. Hosoya and B. Pierce. XDuce: A typed XML processing language. ACM
Transactions on Internet Technology, 3(2):117 148, 2003.

J. C. Reynolds. The coherence of languages with intersection types. In
T. Ito and A. R. Meyer, editors, Theoretical Aspects of Computer Software,
volume 526 of Lecture Notes in Computer Science, pages 675 700, Berlin,
1991. Springer-Verlag.

J. C. Reynolds. Design of the programming language Forsythe. Technical
Report CMU-CS96 -146, Carnegie Mellon University, Pittsburgh, Pennsyl-
vania, June 1996.

95

