
Semanti
 subtyping: dealing set-theoreti
allywith union, interse
tion, and negation typesAlain Fris
hINRIA Roquen
ourt Giuseppe CastagnaÉ
ole Normale Supérieure de ParisVéronique BenzakenLRI - Université Paris SudAbstra
tSubtyping relations are usually de�ned either synta
ti
ally by a for-mal system or semanti
ally by an interpretation of types into an untypeddenotational model. This work shows how to de�ne a subtyping rela-tion semanti
ally in the presen
e of Boolean 
onne
tives, fun
tional typesand dynami
 dispat
h on types, without the 
omplexity of denotationalmodels, and how to derive a 
omplete subtyping algorithm.1 Introdu
tionMany re
ent type systems rely on a subtyping relation. Its de�nition generallydepends on the type algebra, and on its intended use. We 
an distinguish twomain approa
hes for de�ning subtyping: the synta
ti
 approa
h and the seman-ti
 one. The synta
ti
 approa
h�by far the more used�
onsists in de�ningthe subtyping relation by axiomatising it in a formal dedu
tion system (a set ofindu
tive or 
o-indu
tive rules); in the semanti
 approa
h (for instan
e, [1, 12℄),instead, one starts with a model of the language and an interpretation of typesas subsets of the model, then de�nes the subtyping relation as the in
lusion ofdenoted sets, and, �nally, when the relation is de
idable, derives a subtypingalgorithm from the semanti
 de�nition.The semanti
 approa
h has several advantages but it is also more 
onstrain-ing. Finding an interpretation in whi
h types 
an be interpreted as subsets ofa model may be a hard task. A solution to this problem was given by HaruoHosoya and Benjamin Pier
e [20, 18, 21℄ with the work on XDu
e. The keyidea is that in order to de�ne the subtyping relation semanti
ally one does notneed to start from a model of the whole language: a model of the types su�
es.In parti
ular Hosoya and Pier
e take as model of types the set of values of thelanguage. Their notion of model 
annot 
apture fun
tional values. On the onehand, the resulting type system is poor sin
e it la
ks fun
tion types. On theother hand, it manages to integrate union, produ
t and re
ursive types and still1



keep the presentation of the subtyping relation and of the whole type systemquite simple.In a previous work [16, 14℄ we extended the work on XDu
e and re-framedit in a more general setting: we show a te
hnique to de�ne semanti
 subtypingin the presen
e of a ri
h type system in
luding fun
tion types, but also arbi-trary Boolean 
ombinations (union, interse
tion, and negation types) and in thepresen
e of lately bound overloaded fun
tions and type-based pattern mat
hing.The aim of [16, 14℄ was to provide a theoreti
al foundation on the top of whi
h tobuild the language CDu
e [4℄, an XML-oriented transformation language. Thekey theoreti
al 
ontribution of the work is a new approa
h to de�ne semanti
subtyping when straightforward set-theoreti
 interpretation does not work, inparti
ular for arrow types. Here we fo
us and expand on this aspe
t of the workand we get rid of many features (e.g. pattern mat
hing and pattern variabletype inferen
e) whi
h are not dire
tly related to the treatment of subtyping.The des
ription of a general te
hnique to extend semanti
 subtyping to gen-eral types systems with arrow and 
omplete Boolean 
ombinator types is justone way to read our work, and it is the one we de
ided to emphasise in thispresentation. However it is worth mentioning that there exist at least two otherreadings for the results and te
hniques presented here.A �rst alternative reading is to 
onsider this work as a resear
h on the de�-nition of a general purpose higher-order XML transformation language: indeed,this was the initial motivation of [16, 14℄ and the theoreti
al work done there
onstitutes the fundamental basis for the de�nition and the implementation ofthe XML transformation language CDu
e.A se
ond way of understanding this work is as a quest for the generalisa-tion of lately bound overloaded fun
tions to interse
tions types. The intuitionthat overloaded fun
tions should be typed by interse
tion types was always feltbut never fully formalised or understood. On the one hand we had the long-standing resear
h on interse
tion types with the seminal works by the Turinresear
h group on typed lambda 
al
ulus [3, 11℄. However fun
tions with inter-se
tion types had a uniform behaviour, in the sense that even if they workedon arguments of di�erent types they always exe
uted the same 
ode on all ofthese types1. So fun
tions with interse
tions types looked 
loser to parametri
polymorphism (in whi
h we enumerate the possible domains) rather than over-loaded fun
tions whi
h are able to dis
riminate on the type of the argument andexe
ute a di�erent 
ode for ea
h di�erent type. On the other hand there wasthe resear
h on overloaded fun
tions as used in programming languages whi
ha

ounted for fun
tions formed by di�erent pie
es of 
ode sele
ted a

ording tothe type of the argument the fun
tion is applied to. However, even if the typesof these fun
tions are apparently 
lose to interse
tion types, they never had theset theoreti
 intuition of interse
tions. So for example in the λ&-
al
ulus [8℄overloaded fun
tions have types that are 
hara
terised by the same subtypingrelation as interse
tion types, but they di�er from the latter by the need of spe-1A notable ex
eption to this is John Reynolds work on the 
oherent overloading and thelanguage Forsythe [22, 23℄. 2




ial formation rules that have no reasonable 
ounterpart in interse
tion types.The overloaded fun
tions de�ned here and, even more, those de�ned in [16℄ �-nally re
on
ile the two approa
hes: they are typed by interse
tion types (with a
lassi
al/set-theoreti
 interpretation) and their de�nitions may intermingle 
odeshared by all possible input types with pie
es of 
ode that are spe
i�
 to onlysome parti
ular input types. Therefore they ni
ely integrate the two styles ofprogramming.Finally it is important to stress that although here we deploy our 
onstru
-tion for a λ-
al
ulus with higher-order fun
tions, the te
hnique is quite generaland 
an be used mostly un
hanged for quite di�erent paradigms, as for instan
eit is done in [9℄ for the π-
al
ulus.Plan of the arti
le. The presentation is stru
tured in three parts:1. In the �rst part (Se
tion 2) we lengthy dis
uss the main ideas, the under-lying intuitions, and the logi
al entailment of the whole approa
h.2. In the se
ond part (Se
tions 3�5) we su

in
tly and pre
isely de�ne thesystem: the 
al
ulus and its typing relation (Se
tion 3), the subtypingrelation (Se
tion 4), and their properties (Se
tion 5).3. The last part (Se
tion 6) presents the te
hni
al details of the propertiesstated in the se
ond part.Se
tion 7 
on
ludes our presentation.2 Overview of the approa
hWhen dealing with synta
ti
 subtyping one usually pro
eeds as follows. First,one de�nes a language, then, somewhat independently, the set of (synta
ti
)types and a subtyping relation on this set. This relation is de�ned axiomati
ally,in an indu
tive (or 
o-indu
tive, in 
ase of re
ursive types) way. The typesystem, 
onsisting of the set of types and of the subtyping relation, is 
oupledto the language by a typing relation, usually de�ned via some typing rules byindu
tion on the terms of the language and possibly a subsumption rule thata

ounts for subtyping. The meaning of types is only given by the rules de�ningthe subtyping and the typing relations.The semanti
 subtyping approa
h des
ribed here diverges from the aboveonly for the de�nition of the subtyping relation. Instead of using a set of de-du
tion rules, this relation is de�ned semanti
ally: we do it by de�ning a set-theoreti
 model of the types and by stating that one type is subtype of anotherif the interpretation of the former is a subset of the interpretation of the latter.As for synta
ti
 subtyping, the de�nition is parametri
 in the set of base typesand their subtyping relation (in our 
ase, their interpretation).
3



2.1 A �ve steps re
ipeIn prin
iple, the pro
ess of de�ning semanti
 subtyping 
an be roughly sum-marised in the following �ve steps:1. Take a bun
h of type 
onstru
tors (e.g., →, ×, 
h , . . . ) and extend thetype algebra with the following Boolean 
ombinators : union∨∨∨, interse
tion
∧∧∧, and negation ¬¬¬, yielding a type algebra T .2. Give a set-theoreti
 model of the type algebra, namely de�ne a fun
tion
J KD : T → P(D), for some domain D (where P(D) denotes the power-set of D). In su
h a model, the 
ombinators must be interpreted in aset-theoreti
 way (that is, Js∧∧∧tKD = JsKD ∩ JtKD, Js∨∨∨tKD = JsKD ∪ JtKD,and J¬¬¬tKD = D \ JtKD), and the de�nition of the model must 
apture theessen
e of the type 
onstru
tors.There might be several models, and ea
h of them indu
es a spe
i�
 sub-typing relation on the type algebra. We only need to prove that thereexists at least one model and then pi
k one that we 
all the bootstrapmodel . If its asso
iated interpretation fun
tion is J K

B
, then it indu
es thefollowing subtyping relation:

s ≤B t
def
⇐⇒ JsK

B
⊆ JtK

B
(1)3. Now that we de�ned a subtyping relation for our types, �nd a subtypingalgorithm that de
ides (or semi-de
ides) the relation. This step is notmandatory but highly advisable if we want to use our types in pra
ti
e.4. Now that we have a (hopefully) suitable subtyping relation available, we
an fo
us on the language itself, 
onsider its typing rules, use the newsubtyping relation to type the terms of the language, and dedu
e Γ ⊢B e :

t. In parti
ular this means to use in the subsumption rule the bootstrapsubtyping relation ≤B we de�ned in step 2.5. The typing judgement for the language now allows us to de�ne a new nat-ural set-theoreti
 interpretation of types, the one based on values JtK
V

=
{v ∈ V | ⊢B v : t}, and then de�ne a �new� subtyping relation as wedid in (1), namely s ≤V t

def
⇔ JsK

V
⊆ JtK

V
. The new relation ≤V mightbe di�erent from ≤B we started from. However, if the de�nitions of themodel, of the language, and of the typing rules have been 
arefully 
hosen,then the two subtyping relations 
oin
ide

s ≤B t ⇐⇒ s ≤V tand this 
loses the 
ir
ularity. Then, the rest of the story is standard (re-du
tion relation, subje
t redu
tion, type-
he
king algorithm, et
 . . . ).While the �ve steps above outline a ni
e framework in whi
h to �t and under-stand what follows, in pra
ti
e, however, the starting point never is the model oftypes but the 
al
ulus: in parti
ular one always starts from the 
al
ulus and its4



values, and tries to slightly modify these so that the values outline some modelthat 
an then be formalised. This is what we also do here: while we followthe �ve-steps pro
esses above to give, in the rest of this se
tion, an overview ofthe approa
h, in Se
tion 3 we introdu
e a λ-
al
ulus with overloaded fun
tionsand dynami
 dispat
h, in Se
tion 4 we introdu
e a model to semanti
ally de-�ne a subtyping relation inspired from the previous 
al
ulus, and in Se
tion 5dis
uss the main results, namely, the soundness of the typing relation, the 
or-responden
e between the values of Se
tion 3 and the model of Se
tion 4, andthe de
idability of the various relations.2.2 Advantages of semanti
 subtypingThe semanti
 approa
h is more te
hni
al and 
onstraining, and this may explainwhy it has obtained less attention than synta
ti
 subtyping. However it presentsseveral advantages:1. When type 
onstru
tors have a natural interpretation in the model, thesubtyping relation is by de�nition 
omplete with respe
t to its intuitiveinterpretation as set in
lusion: when t ≤ s does not hold, it is possibleto exhibit an element of the model whi
h is in the interpretation of t andnot of s, even in presen
e of arrow types (this property is used in CDu
eto return informative error messages to the programmer); in the synta
ti
approa
h one 
an just say that the formal system does not prove t ≤ s, andthere may be no 
lear 
riterion to assert that some meaningful additionalrules would not allow the system to prove it. This argument is parti
ularlyimportant with a ri
h type algebra, where type 
onstru
tors intera
t innon trivial ways; for instan
e, when 
onsidering arrow, interse
tion andunion types, one must take into a

ount �i.e., introdu
e rules for� manydistributivity relations su
h as, for instan
e2, (t1 ∨ t2) → s ≃ (t1 →
s) ∧ (t2 → s). Forgetting any of these rules yields a type system that,although sound, does not mat
h (that is, it is not 
omplete with respe
tto) the intuitive semanti
s of types.2. In the synta
ti
 approa
h deriving a subtyping algorithm requires a strongintuition of the relation de�ned by the formal system, while in the semanti
approa
h it is a simple matter of �arithmeti
�: it simply su�
es to use theinterpretation of types and well-know Boolean algebra laws to de
omposesubtyping on simpler types (as we show in Se
tion 6.2). Furthermore, asmost of the formal e�ort is done with the semanti
 de�nition of subtyping,studying variations of the algorithm (e.g., optimisations or di�erent rules)turns out to be mu
h simpler (this is 
ommon pra
tise in database theorywhere, for example, optimisations are derived dire
tly from the algebrai
model of data).3. While the synta
ti
 approa
h requires tedious and error-prone proofs offormal properties, in the semanti
 approa
h many of them 
ome for free:2We write s ≃ t as a shorthand for s ≤ t and s ≥ t.5



for instan
e, the transitivity of the subtyping relation is trivial (as set-
ontainment is transitive), and this makes proofs su
h as 
ut eliminationor transitivity admissibility pointless. Other examples of properties that
ome easily from a semanti
 de�nition are the varian
e of type 
onstru
-tors, and distributivity laws (e.g. t1×××(t2∨∨∨t3) ≃ (t1×××t2)∨∨∨(t1×××t3)).Although these properties look quite appealing, the te
hni
al details of the ap-proa
h hinder its development: in the semanti
 approa
h, one must be very 
are-ful not to introdu
e any 
ir
ularity in the de�nitions. For instan
e, if the typesystem depends on the subtyping relation�as this is generally the 
ase�one
annot use it to de�ne the semanti
 interpretation whi
h must thus be untyped;also, usually the model 
orresponds to an untyped denotational semanti
s, andtypes are interpreted as ideals and this pre
ludes the set-theoreti
 interpretationof negative types (as the 
omplement of ideals is not an ideal). For these reasonsall the semanti
 approa
hes to subtyping previous to our work presented somelimitations: no higher-order fun
tions, no 
omplement types, and so on. Themain 
ontribution of our work is the development of a formal framework thatover
omes these limitations.Ex
ursus. The reader should not 
onfuse our resear
h with thelong-standing resear
h on set-theoreti
 models of subtyping. In that
ase one starts from a synta
ti
ally (i.e. axiomati
ally) de�ned sub-typing relation and seeks a set-theoreti
 model where this relationis interpreted as in
lusion. Our approa
h is the opposite: instead ofstarting from a subtyping relation to arrive to a model, we start byde�ning a model in order to arrive to a subtyping relation. Thus inour approa
h types have a strong substan
e even before introdu
ingthe typing relation.2.3 A model of typesTo de�ne semanti
 subtyping we need a set-theoreti
 model of types. Thesour
e of most of (if not all) the problems 
omes from the fa
t that this modelis usually de�ned by starting from a model of the terms of the language. That is,we 
onsider a denotational interpretation fun
tion that maps ea
h term of thelanguage into an element of a semanti
 domain and we use this interpretationto de�ne the interpretation of the types (typi
ally�but not ne
essary, e.g. PERmodels [2℄�as the image of the interpretation of all terms of a given type). If we
onsider fun
tional types then in order to interpret fun
tional term appli
ationwe have to interpret the duality of fun
tions as terms and as fun
tions on terms.This yields the need to solve 
ompli
ated re
ursive domain equations that hardly
ombines with a set-theoreti
 interpretation of types, when
e the introdu
tionof restri
tions in the de�nition of semanti
 subtyping (e.g. no fun
tion types, nonegation types, et
 . . . ).Note however that in order to de�ne semanti
 subtyping all we need is aset-theoreti
 model of types . The 
onstru
tion works even if we do not have a6



model of terms. To push it to the extreme, in order to de�ne subtyping we donot need terms at all, sin
e we 
ould imagine to de�ne type in
lusion for typesindependently from the language we want to use these types for. More plainly,the de�nition of a semanti
 subtyping relation needs neither an interpretation forappli
ations (that is an appli
ative model) nor, thus, the solution of 
ompli
ateddomain equations.The key idea to generalise semanti
 subtyping is then to disso
iate the modelof types from the model of terms and de�ne the former independently from thelatter. In other words, the interpretation of types must not for
edly be basedon, or related to an interpretation of terms (and a
tually in the some 
on
reteexamples we will give we interpret types in stru
tures that 
annot be used for aninterpretation of terms), and as a matter of fa
t we do not need an interpretationof terms even to exist for the semanti
 subtyping 
onstru
tion to go through3.2.4 Types as sets of valuesNevertheless, to ensure type safety (i.e. well-typed programs 
annot go wrong)the meaning of types has to be somewhat 
orrelated with the language. A
lassi
al solution, that belongs to the types folklore4 is to interpret types assets of values , that is, as the results of well-typed 
omputations in the language.More formally, the values of a typed language are all the terms that are well-typed, 
losed, and in normal form. So the idea is that in order to provide aninterpretation of types we do not need an interpretation of all terms of thelanguage (or of just the well-typed ones): the interpretation of the values of thelanguage su�
es to de�ne an interpretation of types. This is mu
h an easiertask: sin
e a 
losed appli
ation usually denotes a redex, then by restri
ting tothe sole values we avoid the need to interpret appli
ation and, therefore, alsothe need to solve 
ompli
ated domain equations. This is the solution adoptedby XDu
e, where values are XML do
uments and types are sets of do
uments(more pre
isely, regular languages of do
uments).But if we 
onsider a language with arrow types, that is a language withhigher order fun
tions, then the appli
ations 
ome ba
k again: arrow typesmust be interpreted as sets of fun
tion values, that is, as sets of well-typed
losed lambda abstra
tions, and appli
ations may o

ur in the body of theseabstra
tions. Here is where XDu
e stops and it is the reason why it does notin
lude arrow types.3As Pierre-Louis Curien suggested, the 
onstru
tion we propose is a pied de nez to (it 
o
ksa snook at) denotational semanti
s, as it uses a semanti
 
onstru
tion to de�ne a languagefor whi
h, possibly, no denotational semanti
s is known.4A survey on the �Types� mailing list tra
es this solution ba
k to Bertrand Russell andAlfred Whitehead's Prin
ipia Mathemati
a. Closer to our interests it seems that the ideaindependently appeared in the late sixties early seventies and later ba
k again in seminal worksby Roger Hindley, Per Martin-Löf, Ed Lowry, John Reynolds, Niklaus Wirth and probablyothers (many thanks to the many �typers� who answered to our survey).
7



2.5 A 
ir
ularity to breakIntrodu
ing arrow types is then problemati
 be
ause it slips appli
ations ba
kagain in the interpretation of types. However this does not mean that we needa semanti
 interpretation for appli
ation, it just implies that we must de�nehow appli
ation is typed . Indeed, fun
tional values are well-typed lambda ab-stra
tions, so to interpret fun
tional types we must be able to type lambdaabstra
tions and in parti
ular to type the appli
ations that o

ur in their body.Now this is not an easy task in our 
ontext: in the absen
e of higher orderfun
tions the set of values of type 
onstru
tors su
h as produ
ts or re
ords 
anbe indu
tively de�ned from basi
 types without resorting to any typing rela-tion (this is why the XDu
e approa
h works smoothly). With the arrow type
onstru
tor, instead, this 
an be done only by using a typing relation, and thisyields to the 
ir
ularity we hinted at in the introdu
tion and that is shown inFigure 1: in order to de�ne the subtyping relation we need an interpretation ofthe types of the language; for this we have to de�ne whi
h are the values of anarrow type; this needs that we de�ne the typing relation for appli
ations, whi
hin turns needs the de�nition of the subtyping relation.
Typing
relationvalues

Well−typed

Subtyping
relation

Figure 1: Cir
ularity
Thus, if we want to de�ne the semanti
 subtyping ofarrow types we must �nd a way the avoid this 
ir
u-larity. The simplest way to avoid it is to break it, andthe development we did so far 
learly suggests whereto break it. We always said that to de�ne (semanti
)subtyping we must have a model of types; it is also
lear that the typing relation must use subtyping;on the 
ontrary it is not stri
tly ne
essary for ourmodel to be based on the interpretation of values,this is just 
onvenient as it ties the types with thelanguage the types are intended for. This is there-fore the weakest link and we 
an break it. So theidea is to start from a model (of the types) de�nedindependently (but not too mu
h) from the languagethe types are intended for (and therefore independently from its values), andthen from that de�ne the rest: subtyping, typing, set of values. We will thenshow how to relate the initial model to the obtained language and re
over theinitial �types as set of values� interpretation: namely, we will �
lose the 
ir
le�.2.6 Set-theoreti
 modelsLet us then show more in details how we shall pro
eed. We do not need to de�nea parti
ular language, the de�nition of types will su�
e. Here, we assume thattypes are de�ned by the following syntax:

t ::= 0 | 1 | t→→→t | t×××t | ¬¬¬t | t∨∨∨t | t∧∧∧twhere 0 and 1 respe
tively 
orrespond to the empty and universal types (theseare sometimes denoted by the pair ⊥, ⊤ or Bottom, Top). The formal de�ni-8



tion of the type algebra, whi
h in
ludes re
ursive types and basi
 types, will begiven in Se
tion 3.1.The se
ond step is to de�ne pre
isely what a set-theoreti
 model for thesetypes is. As Hindley and Longo [17℄ give some general 
onditions that 
har-a
terise models of λ-
al
ulus, so here we want to give the 
onditions that aninterpretation fun
tion must satisfy in order to 
hara
terise a set-theoreti
 modelof our types. So let T be the set of types, D some set, and J_K an interpretationfun
tion from T to P(D). The 
onditions that J_K must satisfy to de�ne aset-theoreti
 model are mostly straightforward, namely:1. Jt1∨∨∨t2K = Jt1K ∪ Jt2K2. Jt1∧∧∧t2K = Jt1K ∩ Jt2K3. J¬¬¬tK = D\JtK4. J1K = D5. J0K = ∅6. Jt×××sK = JtK × JsK7∗. Jt→→→sK = ???The �rst six 
onditions 
onvey the intuition that our model is set theoreti
:so the interse
tion of types must be interpreted as set interse
tion, the unionof types as set-theoreti
 union and so on (the sixth 
ondition requires some
losure properties on D but we prefer not to enter in su
h a level of detail atthis point of our presentation). But the de�nition is not 
omplete yet as westill have to establish the seventh 
ondition (highlighted by a ∗) that 
onstrainsthe interpretation of arrow types. This 
ondition is more 
ompli
ated. Again itmust 
onvey the intuition that the interpretation is set theoreti
, but while the�rst six 
onditions are language independent, this 
onditions strongly dependson the language and in parti
ular on the kind of fun
tions we want to implementin our language. We give detailed examples about this in [14℄. The set theoreti
intuition we have of fun
tion spa
es is that a fun
tion is of type t→→→s if wheneverapplied to a value of type t it returns a result of type s. Intuitively, if weinterpret fun
tions as binary relations on D, then Jt→→→sK is the set of binaryrelations in whi
h if the �rst proje
tion is in (the interpretation of) t then these
ond proje
tion is in s, namely {f ⊆ D2 | ∀(d1, d2) ∈ f. d1 ∈ JtK ⇒ d2 ∈ JsK }.Note that this set 
an also be written P(JtK × JsK), where the overline denotesset 
omplement. If the language is expressive enough, we 
an do as if everybinary relation in this set was an element of Jt→→→sK; thus, we would like to saythat the seventh 
ondition is:
Jt→→→sK = P(JtK × JsK) (2)But this is 
ompletely meaningless. First, te
hni
ally, this would imply that

P(D2) ⊆ D, whi
h is impossible for 
ardinality reasons. Also, remember that9



we want eventually to re-interpret types as sets of values of the language, andfun
tions in the language are not binary relations (they are synta
ti
 obje
ts).However what really matters is not the exa
t mathemati
al nature of the ele-ments of D, but only the relations they 
reate between types. The idea then isto do as if the above 
ondition held.Sin
e this point is 
entral to our model, let us explain it di�erently. Re
allthat the only reason why we want to a

urately state what set-theoreti
 modelof types is, is to pre
isely de�ne the subtyping relation for synta
ti
 types. Inother words, we do not de�ne an interpretation of types in order to formallyand mathemati
ally state what the synta
ti
 types mean but, more simply, wede�ne it in order to state how they are related. So, even if we would like to saythat a type t→→→s must be interpreted in the model as P(JtK × JsK) as stated by(2), for what it 
on
erns the goal we are aiming at, it is enough to require thata model must interpret fun
tional types so as the indu
ed subtyping relation isthe same as the one the 
ondition (2) would indu
e, that is:
Jt1→→→s1K ⊆ Jt2→→→s2K ⇐⇒ P(Jt1K × Js1K) ⊆ P(Jt2K × Js2K)and similarly for any Boolean 
ombination of arrow types.Formally, we asso
iate (see De�nition 4 in Se
tion 4.2) to J_K an extensionalinterpretation E(_) that behaves as J_K ex
ept for arrow types, for whi
h weuse the 
ondition above as de�nition:E(t→→→s) = P(JtK × JsK)Note that we use J_K in the right-hand side of this equation, that is, we onlyre-interpret top-level arrow types. Now we 
an express the fa
t that J_K behaves(from the point of view of subtyping) as if fun
tions were binary relations. Thisis obtained by writing the missing seventh 
ondition, not in the form of 7∗, butas follows:7. JtK = ∅ ⇐⇒ E(t) = ∅or, equivalently, Jt1K ⊆ Jt2K ⇐⇒ E(t1) ⊆ E(t2).5To put it otherwise, if we wanted an interpretation J_K of the types thatwere faithful with respe
t to the semanti
s of the language, then we shouldrequire for all t that JtK = E(t). But for 
ardinality reasons this is impossible ina set-theoreti
 framework. However we do not need su
h a strong 
onstraint onthe de�nition of J_K sin
e all we ask to J_K is to 
hara
terise the 
ontainmentof types, and to that end it su�
es to 
hara
terise the zeros of J_K, sin
e
s ≤ t ⇐⇒ JsK ⊆ JtK ⇐⇒ JsK ∩ JtK = ∅ ⇐⇒ Js∧∧∧¬¬¬tK = ∅Therefore, instead of asking that J_K and E(_) 
oin
ide on all points, we requirea weaker 
onstraint, namely that they have the same zeros:

JtK = ∅ ⇐⇒ E(t) = ∅5Indeed, Jt1K ⊆ Jt2K ⇐⇒ Jt1K \ Jt2K = ∅ ⇐⇒ Jt1∧∧∧¬¬¬t2K = ∅ ⇐⇒ E(t1∧∧∧¬¬¬t2) = ∅ ⇐⇒E(t1) \ E(t2) = ∅ ⇐⇒ E(t1) ⊆ E(t2). 10



This is the essen
e of our de�nition of models of the type algebra (De�nition 5in Se
tion 4.2).We said that the above seventh 
ondition (a
tually, the de�nition of theextensional interpretation) depends on the language the type system is intendedfor. Previous work [14℄ shows di�erent variations of this 
onditions to mat
hdi�erent sets of de�nable transformations. However, we 
an already see thatthe 
ondition above a

ounts for languages in whi
h fun
tions possibly are1. Non-deterministi
: sin
e the 
ondition does not prevent the interpretationof a fun
tion spa
e to 
ontain a relation with two pairs (d, d1) and (d, d2)with d1 6= d2.2. Non-terminating : sin
e the 
ondition does not for
e a relation in Jt→→→sKto have as �rst proje
tion the whole JtK. A di�erent reason for this is thatevery arrow type is inhabited (note indeed that the empty set belongs tothe interpretation of every arrow type), so in parti
ular are all the typesof the form t→→→0; now, all the fun
tions in su
h types must be always non-terminating on their domain (if they returned a value this would inhabit0).3. Overloaded : this is subtler than the two previous 
ases as it is a 
onse-quen
e of the fa
t that 
ondition does not for
e J(t1∨∨∨t2)→→→(s1∧∧∧s2)K to beequal to J(t1→→→s1)∧∧∧(t2→→→s2)K, but just the former to be in
luded in thelatter. Imagine indeed that the language at issue does not allow the pro-grammer to de�ne overloaded fun
tions. So it may be not possible tode�ne fun
tions that distinguish the types of their argument, and in par-ti
ular to have a fun
tion that when applied to an argument of type t1returns a result in s1 while returns a (possibly di�erent) s2 result for t2arguments. Therefore the only fun
tions in (t1→→→s1)∧∧∧(t2→→→s2) are those in
(t1∨∨∨t2)→→→(s1∧∧∧s2) (this point is dis
ussed thoroughly in Se
tion 4.5 of ourrelated survey [5℄).2.7 Bootstrapping the de�nitionNow that we have de�ned what a set-theoreti
 model for our types is, we 
an
hoose a parti
ular one that we use to de�ne the rest of the system. Supposethat there exists at least one pair (D, JK) that satis�es the 
onditions of set-theoreti
 model, and 
hoose any of them, no matter the one. Let us 
all thismodel the bootstrap model . This bootstrap model de�nes a parti
ular subtypingrelation on our set of types T :

s ≤ t ⇐⇒ JsK ⊆ JtKWe 
an then pi
k any language that uses the types in T (and whose semanti
s
onforms with the intuition underlying the model 
ondition on fun
tion types),de�ne its typing rules and use in the subsumption rule the subtyping relation
≤ we have just de�ned. We write Γ ⊢ e : t for the typing judgement of the11



language. In this paper, we will 
onsider a λ-
al
ulus with overloaded fun
tionsand dynami
 type-dispat
h. See Se
tion 3.1 for the syntax of the 
al
ulus,Se
tion 3.3 for its type system and Se
tion 3.2 for its semanti
s (whi
h dependson the type system be
ause of the dynami
 type-dispat
h 
onstru
tion).2.8 Closing the 
ir
leIn order to obtain type-safety for our 
al
ulus, we want the type system to enjoyproperties su
h as subje
t redu
tion (Theorem 8) and progress (Theorem 9)stated in Se
tion 5.1. Be
ause of the subsumption rule in the type system, this
an only be obtained if our de�nition of set-theoreti
 models is meaningful withrespe
t to the semanti
s of our 
al
ulus. This is a �rst sanity-
he
k for ournotion of model.But there is another important question: what are the relations betweenthe bootstrap model and the 
al
ulus? And in parti
ular, what is the relationbetween the bootstrap model and the values of the 
al
ulus? Have we lost allthe intuition underlying the �types as sets of values� interpretation?To answer these questions, we 
onsider a new interpretation of types as setsof values in the 
al
ulus:
JtK

V
= {v | ⊢ v : t}A se
ond sanity-
he
k for our notion of model is then to require that thisinterpretation J_K

V
is a model. If this is the 
ase, we 
an use it to de�ne a newsubtyping relation on T :

s ≤V t ⇐⇒ JsK
V

⊆ JtK
VWe 
ould imagine to start again the pro
ess, that is to use this subtyping relationin the subsumption rule of our language, and use the resulting sets of values tode�ne yet another subtyping relation and so on. But this is not ne
essary asthe pro
ess has already 
onverged. This is stated by one of the 
entral resultsof our work (Theorem 12 in Se
tion 5.2):

s ≤ t ⇐⇒ s ≤V tthat is, the subtyping relation indu
ed by the bootstrap model already de�nesthe subtyping relation of the �types as sets of values� model of the resulting
al
ulus. We have 
losed the 
ir
le we broke.3 The 
al
ulusIn this se
tion, we de�ne formally the syntax of types and expression in our
al
ulus (Se
tion 3.1), the semanti
s (Se
tion 3.2) and the type system (Se
-tion 3.3). The semanti
s a
tually depends on the type-system, whi
h in turndepends on a subtyping relation to be de�ned (next se
tion). As a 
onsequen
e,we 
onsider here the subtyping relation as a parameter of the de�nitions of thetype system and of the semanti
s. 12



3.1 SyntaxExpressions To de�ne the 
al
ulus, we 
hoose a set of 
onstants C rangedby the meta-variable c (they will be elements of basi
 types).The terms of the 
al
ulus are 
alled expressions and are de�ned by the fol-lowing grammar.
e ::= c 
onstant

| (e, e) pair
| µf(t→→→t; . . . ; t→→→t).λx.e abstra
tion
| x variable
| e e appli
ation
| (x = e ∈ t ? e|e) dynami
 type dispat
h
| πi(e) proje
tion (i ∈ {1, 2})
| rnd(t) non-deterministi
 
hoi
ewhere t ranges over types, de�ned in the next paragraph.We write E for the set of expressions. The syntax for the 
al
ulus deservesa few 
omments. We introdu
e an expli
it 
onstru
tion for re
ursive fun
tions,whi
h 
ombines λ-abstra
tion and a �x-point operator. The reason is that wewant to express non-terminating expressions, but still restri
ting re
ursion onlyto fun
tions. The identi�ers f and x a
t as binders in the body of the fun
tion.The λ-abstra
tion 
omes with an non-empty sequen
e of fun
tion types (we
all it the interfa
e of the fun
tion): if more than one type is given, we are inpresen
e of an overloaded fun
tion.The non-deterministi
 
hoi
e 
onstru
tion rnd(t) pi
ks an arbitrary expres-sion of type t. We introdu
ed this operator in the 
al
ulus in order to demon-strate subtle typing issues 
oming from non-determinism.Types Types are essentially those introdu
ed in Se
tion 2.6 (modulo booleanequivalen
e) to whi
h we add basi
 types (the types of 
onstant expressions).In order to simplify the presentation of re
ursive types, we are going to 
onsiderpotentially in�nite regular terms produ
ed by the following signature:

t ::= b basi
 type
| t×××t produ
t type
| t→→→t fun
tion type
| t∨∨∨t union type
| ¬¬¬t 
omplement type
| 0 empty typeBy regular, we mean that terms have only but a �nite number of di�erentsub-terms. The meta-variable b ranges over a �xed set of basi
 types. We write

t1\\\t2 as an abbreviation for t1∧∧∧¬¬¬t2, t1∧∧∧t2 as an abbrevation for ¬¬¬(¬¬¬t1 ∨ ¬¬¬t2),and 1 as an abbreviation for ¬¬¬0. We will 
all atom the immediate appli
ationsof type 
onstru
tors: basi
 types, produ
t types, fun
tion types (these are the�atoms� for boolean 
ombinators). Sin
e we want types to denote sets, we need13



to impose some 
onstraints to avoid ill-formed types su
h as a solution to t = t∨∨∨t(whi
h does not 
arry any information about the set denoted by the type) or to
t = ¬¬¬t (whi
h 
annot represent any set). Namely, we say that a term is a typeif it doesn't 
ontain any in�nite bran
h without an atom. Let's 
all T the setof types.The 
onditions above says that the binary relation ⊲ ⊆ T 2 de�ned by t1∨∨∨t2⊲
ti, ¬¬¬t ⊲ t in noetherian. This gives an indu
tion prin
iple on T that we will usewithout any further expli
it referen
e to the relation ⊲.3.2 Semanti
sBe
ause of the dynami
 type dispat
h, the semanti
s of the 
al
ulus depends onits type system. For now, we simply assume that a relation between expressionsand types, written ⊢ e : t is given. It will be de�ned in the next se
tion.De�nition 1 An expression e is a value if it is 
losed (no free variable), well-typed (⊢ e : t for some type t), and produ
ed by the following grammar:

v ::= c | (v, v) | µf(. . .).λx.eWe write V for the set of all values.We de�ne a small-step operational 
all-by-value semanti
s; for the 
al
ulus.There are four basi
 redu
tion rules (we write e[x1 := e1; x2 := e2; . . .] for theexpression obtained from e by a 
apture-avoiding substitution of xi by ei):
ev ; e[f := e′; x := v] if e = µf(. . .).λx.e′

(x = v ∈ t ? e1|e2) ;

{

e1[x := v] if ⊢ v : t
e2[x := v] if ⊢ v : ¬¬¬t

πi(v1, v2) ; virnd(t) ; e if ⊢ e : tThe relation ; is further extended by an indu
tive 
ontext rule:
C[e] ; C[e′] if e ; e′where the notion of (immediate) 
ontext is de�ned by:

C[] ::= ([], e) | (e, [])
| []e | e[]
| (x = [] ∈ t ? e|e) | (x = e ∈ t ? []|e) | (x = e ∈ t ? e|[])
| πi([])
| µf(. . .).λx.[]As usual, a type safety result will be obtained by a 
ombination of twolemmas: subje
t redu
tion (or type preservation) and progress (
losed and well-typed expressions whi
h are not values 
an be redu
ed).The redu
tion rule for appli
ation requires the argument to be a value(
all-by-value). In order to understand why, let us 
onsider the appli
ation14



(µf(t → t×××t; s → s×××s).λx.(x, x))(rnd(t∨∨∨s)). The type system will assign tothe abstra
tion the type (t→→→t×××t)∧∧∧(s→→→s×××s). A set-theoreti
 reasoning showsthat this type is a subtype of (t∨∨∨s) → ((t×××t)∨∨∨(s×××s)). The type system alsoassigns to the argument rnd(t∨∨∨s) the type t∨∨∨s. It will thus also assign thetype (t×××t)∨∨∨(s×××s) to the appli
ation. If the semanti
s permits to redu
e thisappli
ation, we would get as a result the expression (rnd(t∨∨∨s), rnd(t∨∨∨s)) whosemost pre
ise stati
 type is (t∨∨∨s)×××(t∨∨∨s). Clearly, this type is (in general) a stri
tsupertype of (t×××t)∨∨∨(s×××s). So, if the semanti
s does not for
e the argument tobe a value in order to redu
e an appli
ation, we 
ould not obtain the subje
tredu
tion lemma.Similarly, the redu
tion rule for proje
tion requires its argument to be avalue. To understand why, 
onsider the expression e = π1(e1, e2) where e1 isan expression of type e1 and e2 is a looping expression of type 0 (e.g. (µf(1 →0).λx.fx)c). The type system will assign the type t1×××0 to e, but in our system
t1×××0 is an empty type be
ause, intuitively, a set-theoreti
 Cartesian produ
twith an empty 
omponent is itself empty. If e 
ould be redu
ed to e1, it wouldbe a violation of type preservation.The same argument applies to the dynami
 type dispat
h. If we allowed toredu
e (x = e ∈ t ? e1|e2) to e1[x := e] when ⊢ e : t, even if e is not a value,we 
ould break type preservation. Consider for instan
e the 
ase where ⊢ e : 0.In this 
ase, the type system does not 
he
k anything about the bran
hes e1and e2 (the reason for this is explained in details later on) and so e1 
ould beill-typed. Note that when e is a value, then the dynami
 type dispat
h 
analways be redu
ed. Indeed, be
ause our type 
onne
tives will be interpreted ina set-theoreti
 way, we always have ⊢ v : t or ⊢ v : ¬¬¬t (for any value v and anytype t).3.3 Type systemThe semanti
s we just introdu
ed depends on the typing judgment Γ ⊢ e : twhere Γ is a �nite mapping from variables to types (we write ⊢ e : t when Γis empty). This judgment, in turn, depends on a subtyping relation ≤ betweentypes that we are going to introdu
e later on. For now, we assume it is aparameter of the type system.For ea
h 
onstant c, we assume given a basi
 type bc. The rules are:

Γ ⊢ e : t1 t1 ≤ t2
Γ ⊢ e : t2

(subsum)
Γ ⊢ c : bc

(const)
Γ ⊢ x : Γ(x)

(var)

Γ ⊢ e : t1×××t2
Γ ⊢ πi(e) : ti

(proj)
Γ ⊢ e1 : t1 → t2 Γ ⊢ e2 : t1

Γ ⊢ e1e2 : t2
(appl)

t =
∧∧∧

i=1..n

(ti→→→si)∧∧∧
∧∧∧

j=1..m

¬¬¬(t′j→→→s′j) 6≃ 0
∀i = 1..n.Γ, (f : t), (x : ti) ⊢ e : si

Γ ⊢ µf(t1→→→s1; . . . ; tn→→→sn).λx.e : t
(abstr)15



Γ ⊢ e : t0

{

t0 6≤ ¬¬¬t ⇒ Γ, (x : t0∧∧∧t) ⊢ e1 : s
t0 6≤ t ⇒ Γ, (x : t0\\\t) ⊢ e2 : s

Γ ⊢ (x = e ∈ t ? e1|e2) : s
(case)The rule (subsum) 
auses the type system to depend on the subtyping re-lation to be de�ned. The rules (const), (pair), (var), (proj), (rnd), and (appl)are standard or straightforward.The rule (abstr) is a little bit tri
ky. Ea
h arrow type ti→→→si in the fun
tioninterfa
e is interpreted as a 
onstraint to be 
he
ked. The body of the abstra
-tion is thus type-
he
ked on
e for ea
h su
h fun
tion. When 
onsidering thetype ti→→→si, the variable x is assumed to have type ti and the body is 
he
kedto have type si. Also, the variable f is assumed to have type t, whi
h is alsothe type given to the whole fun
tion. Quite intuitively, this type is obtainedby taking the interse
tion of all the types ti→→→si. But we also add to this in-terse
tion any �nite number of 
omplement of arrow types, provided the type tdoes not be
ome empty. This might sound surprising, but the reason is a
tuallysimple: we want types to be interpreted as sets of values in su
h a way thatboolean 
onne
tives behave as their set-theoreti
 
ounterpart. In parti
ular, theunion of t and ¬¬¬t must always be equivalent to 1, that is, we need to have thefollowing property: ∀v.∀t.(⊢ v : t) or (⊢ v : ¬¬¬t). In parti
ular, sin
e a (
losedand well-typed) abstra
tion is value, it must have type (t→→→s) or type ¬¬¬(t→→→s)for any 
hoi
e of t and s. If (t→→→s) is a supertype of the interse
tion ∧ ti→→→si,the abstra
tion is known, thanks to the subsumption rule, to have type (t→→→s).Otherwise, we need to provide a way to prove it has type ¬¬¬(t→→→s). This is whywe introdu
e su
h 
omplements of arrow types in the rule (abstr).The rule (case) is easier to read. First, we need to �nd a type t0 for theexpression whose result will be dynami
ally type-
he
ked. If this type has anon-empty interse
tion with t (t0 6≤ ¬¬¬t), then the �rst bran
h might be used.In this 
ase, in order for the whole expression to have type s, we need to 
he
kthat e1 has also type s, assuming that x has type t∧∧∧t0. Indeed, at runtime, thevariable x will be bound to a value resulting from the evaluation of e0. Be
auseof subje
t redu
tion, this value is ne
essarily of type t0. But in order to type-
he
k e1, we 
an also assume that the value has type t. If t0 ≤ ¬¬¬t, then the�rst bran
h 
annot be used, and we don't need to type-
he
k e1. Similarly for

e2, repla
ing t with ¬¬¬t. The ability to ignore e1 and/or e2 when 
omputing thetype for (e ∈ t ? e1 | e2) is important to type-
he
k overloaded fun
tion. As anexample, 
onsider the abstra
tion µf(b1→→→b1; b2→→→b2).λx.(x ∈ b1 ? c1 | c2) where
b1 and b2 are two non-interse
ting basi
 types and c1 (resp. c2) is a 
onstant oftype b1 (resp. b2). The rule (abstr), when it 
onsiders the arrow type b1→→→b1,
he
ks that the body has type b1 assuming that x has type b1. Clearly, thetyping rule for the dynami
 type dispat
h must dis
ard in this 
ase the type ofthe se
ond bran
h.As an aside note that the use of the ex falso quodlibet rule yields a simpler16



formulation of the 
ase rule:
Γ, x : 0 ⊢ e : t

(efq)
Γ ⊢ e : t0 Γ, (x : t0∧∧∧t) ⊢ e1 : s Γ, (x : t0\\\t) ⊢ e2 : s

Γ ⊢ (x = e ∈ t ? e1|e2) : s
(case)The reason why we preferred the previous formulation is that it permits astronger and simpler substitution lemma. A se
ond reason to prefer the previ-ous formulation is that simpler (
ase) rule above does not easily extend to thefull version of CDu
e with general pattern mat
hing, sin
e it would need spe
ialtreatment for patterns without any free variable (sin
e these would not produ
eany x : 0 hypothesis in the environment).4 SubtypingAt this point, we have given the 
al
ulus a semanti
s whi
h depends on its typesystem, whi
h, in turn, depends on a subtyping relation still to be de�ned.The last missing step to 
omplete the de�nition of our system is the sub-typing relation. This will be de�ned by formalizing the ideas we outlined inSe
tions 2.6-2.8.4.1 Set-theoreti
 interpretations of typesDe�nition 2 A set-theoreti
 interpretation of T is given by a set D and a fun
-tion J_K : T → P(D) su
h that, for any types t1, t2, t:

• Jt1∨∨∨t2K = Jt1K ∪ Jt2K

• J¬¬¬tK = D\JtK

• J0K = ∅(A 
onsequen
e of the 
onditions is that Jt1∧∧∧t2K = Jt1K ∩ Jt2K, Jt1\\\t2K =
Jt1K\Jt2K, and J1K = D.)This de�nition does not say anything about the interpretation of atoms.A
tually, using an indu
tion on types, we see that set-theoreti
 interpretationswith domain D 
orrespond univo
ally to fun
tions from atoms to P(D).A set-theoreti
 interpretation J_K : T → P(D) indu
es a binary relation
≤JK⊆ T 2 de�ned by:

t ≤JK s ⇐⇒ JtK ⊆ JsKThis relation a
tually only depends on the set of empty types. Indeed, wehave: Jt1K ⊆ Jt2K ⇐⇒ Jt1K ∩ (D\Jt2K) = ∅ ⇐⇒ Jt1∧∧∧¬¬¬t2K = ∅. We alsoget properties of the relation ≤JK � for free �, su
h as its transitivity, or themonotoni
ity of the ∨∨∨ and ∧∧∧ 
onstru
tors, and so on.
17



4.2 Models of typesWe are going to de�ne a notion of model of the type algebra. Intuitively, a modelis a set-theoreti
 interpretation su
h that type 
onstru
tors are interpreted insu
h as way that the indu
ed relation ≤JK 
apture their essen
e (in the typesystem of the 
al
ulus), at least as long as subtyping is 
on
erned.As we explained in Se
tion 2.6, the way to formalize it 
onsists in asso
iatingto the interpretation J_K another interpretation E(_), 
alled extensional, andthen to require, for J_K to be a model, that J_K and E(_) behave the same forwhat 
on
erns subtyping (that is: JtK ⊆ JsK ⇐⇒ E(t) ⊆ E(s) or, equivalently,
JtK = ∅ ⇐⇒ E(t) = ∅).For any basi
 type b, we assume given a set of 
onstants BJbK ⊆ C whoseelements are 
alled 
onstants of type b. Note that for two basi
 types b1, b2, thesets BJbiK 
an have a non-empty interse
tion. For any 
onstant c, we assumethat the type bc is a singleton: BJbcK = {c}.A produ
t type t1×××t2 will of 
ourse be interpreted extensionally as the Carte-sian produ
t Jt1K×××Jt2K.Things are more 
ompli
ated for a fun
tion type t1→→→t2. Its extensionalinterpretation should be the set of set-theoreti
 fun
tions (that is, fun
tionalgraphs) f su
h that ∀d. d ∈ Jt1K ⇒ f(d) ∈ Jt2K. However, the 
al
ulus we havein mind 
an express non-terminating and/or non-deterministi
 fun
tions as well.This suggests to 
onsider arbitrary binary relations instead of just fun
tionalgraphs. Also, the 
al
ulus has a notion of type error: it is not possible toapply an arbitrary fun
tion to an arbitrary value. We are going to take Ωas a spe
ial element to denote this type error. Following this dis
ussion, weinterpret the fun
tion type t1→→→t2 as the set of binary relations f ⊆ D × DΩ(where DΩ = D + {Ω}) su
h that ∀(d, d′) ∈ f. d ∈ Jt1K ⇒ d′ ∈ Jt2K.De�nition 3 If D is a set and X, Y are subsets of D, we write DΩ for D+{Ω}and de�ne X → Y as:

X → Y = {f ⊆ D × DΩ | ∀(d, d′) ∈ f. d ∈ X ⇒ d′ ∈ Y }Note that if we repla
e DΩ with D in this de�nition, then X → Y is always asubset of D → D. As we will see shortly, this would imply that any arrow typeis a subtype of 1→→→1. Thanks to the subsumption rule, the appli
ation of anywell-typed fun
tion to any well-typed argument would then be itself well-typed.Clearly, this would break type-safety of the 
al
ulus. With De�nition 3, instead,we have X → Y ⊆ D → D if and only if D = X .We 
an now give the formal de�nition of the extensional interpretation as-so
iated to a set-theoreti
 interpretation.De�nition 4 Let J_K : T → P(D) be a set-theoreti
 interpretation. We de�neits asso
iated extensional interpretation as the unique set-theoreti
 interpretationE(_) : T → P(ED) (where ED = C + D2 + P(D × DΩ)) su
h that:E(b) = BJbK ⊆ CE(t1×××t2) = Jt1K × Jt2K ⊆ D2E(t1→→→t2) = Jt1K → Jt2K ⊆ P(D × DΩ)18



Finally, we 
an formalize the fa
t that a set-theoreti
 interpretation indu
esthe same subtyping relation as if the type 
onstru
tors were interpreted in anextensional way.De�nition 5 A set-theoreti
 interpretation J_K : T → P(D) is a model if itindu
es the same subtyping relation as its asso
iated extensional interpretation:
∀t1, t2 ∈ T . Jt1K ⊆ Jt2K ⇐⇒ E(t1) ⊆ E(t2)Thanks to a remark in Se
tion 4.1, the 
ondition for a set-theoreti
 interpreta-tion to be a model 
an be redu
ed to:

∀t ∈ T . JtK = ∅ ⇐⇒ E(t) = ∅At this point, we 
an derive many properties about ≤ whi
h dire
tly followfrom the fa
t that it is indu
ed by a model. For instan
e, the 
o-/
ontra-varian
eof the arrow type 
onstru
tor, and equivalen
es su
h as (t1→→→s)∧∧∧(t2→→→s) ≃
(t1∨∨∨t2)→→→s, 
an be immediately derived from the de�nition of the extensionalinterpretation. The meta-theoreti
 study of the system relies in a 
ru
ial wayon many of su
h properties. With a more axiomati
 approa
h for de�ning thesubtyping relation, e.g. by a system of indu
tive or 
oindu
tive rules, we wouldprobably need mu
h more work to establish these properties, and we would nothave the same level of trust that we did not forget any rule.4.3 Well-foundednessThe notion of model 
aptures the intended lo
al behavior of type 
onstru
torswith respe
t to subtyping. However, it fails to 
apture a global property of the
al
ulus, namely that values are �nite binary trees (where leaves are either
onstants or abstra
tions). For instan
e, let us 
onsider the re
ursive type
t = t×××t. Intuitively, a value v has this type if and only if it is a pair (v1, v2) where
v1 and v2 also have type t. To build su
h a value, we would need to 
onsider anin�nite tree, whi
h is ruled out. As a 
onsequen
e, the type t 
ontains no value.We will introdu
e a new 
riterion to 
apture this property of �nite de
om-position of pairs.De�nition 6 A set-theoreti
 interpretation J_K : T → P(D) is stru
tural if:

• D2 ⊆ D

• for any types t1,t2: Jt1×××t2K = Jt1K × Jt2K

• The binary relation on D indu
ed by (d1, d2) ⊲ di is noetherian.De�nition 7 A model J_K : T → P(D) is well-founded if it indu
es the samesubtyping relation as a stru
tural set-theoreti
 interpretation.19



5 Main resultsLet us �x an arbitrarymodel J_K : T → P(D), whi
h we 
all the bootstrap model.It indu
es a subtyping relation, whi
h we simply write ≤. In turn, this subtyp-ing relation de�nes a typing judgment Γ ⊢ e : t for the 
al
ulus and thus also anotion of value and a redu
tion relation e ; e′. We 
an now state four groups oftheoreti
al results about our system. This �rst group (Se
tion 5.1) expresses thefa
t that our notion of models implies that the type system and the semanti
sare mutually 
oherent. The se
ond group (Se
tion 5.2) justi�es our approa
hfor de�ning the subtyping relation with a detour through the notion of models:indeed, we 
an in �ne re-interpret types as sets of values, and this 
reates a newmodel equivalent to the bootstrap model (if it is well-founded). The third groupof results (Se
tion 5.3) shows that the notion of model is not void, by express-ing the existen
e of (several di�erent) models satisfying the various 
onditions.Finally, we fo
us (Se
tion 5.4) on the e�e
tiveness of the subtyping and typingrelations and devise simple subtyping algorithms.5.1 Type soundnessAs announ
ed earlier, we have the two 
lassi
al lemmas whi
h entail type sound-ness.Theorem 8 (Subje
t redu
tion) Let e be an expression and t a type. If
(Γ ⊢ e : t) and (e ; e′), then (Γ ⊢ e′ : t).Theorem 9 (Progress) Let e be a well-typed 
losed expression. If e is not avalue, then there exists an expression e′ su
h that e ; e′.It is worth noti
ing that the proof of Theorem 9 (given in Se
tion 6.6) doesnot use redu
tions under abstra
tions or inside the bran
hes of dynami
 typedispat
h, thus the result holds true also in that 
ase. Of 
ourse, subje
t re-du
tion holds also if these redu
tions are disallowed. This means that a weakredu
tion strategy (as implemented typi
ally in programming languages) enjoystype soundness, too. In the setting of programming languages, proving the sub-je
t redu
tion property also for a semanti
s that in
ludes strong redu
tion rulesis useful be
ause these rules 
orrespond to possible 
ompile-time optimizations.Theorem 10 For every types t and t1 su
h that t ≤ t1→→→1, there exists a type
t2 su
h that, for every value v:

⊢ v : t2 ⇐⇒ ∃vf , vx. (vfvx
⋆
; v) ∧ (⊢ vf : t) ∧ (⊢ vx : t1)This type is the smallest solution to the equation t ≤ t1→→→s.The type s in the statement of the theorem above represents exa
tly all thepossible results (i.e. is the set of all values that) we may get when applyinga 
losed expression e1 of type t1 to a 
losed expression e2 of type t2. Sin
e

t1 ≤ t2→→→s, the type system allows us to derive type s for the appli
ation e1e2.In other words, the typing rule (appl) is lo
ally exa
t: it does not introdu
e anynew approximation to those already made when typing its arguments.20



5.2 Closing the loopThe type system naturally de�nes a new interpretation of types as sets of values:
J_K

V
: T → P(V ), t 7→ {v | ⊢ v : t}It turns out that this interpretation satis�es the 
onditions of De�nitions 2and 6:Theorem 11 The fun
tion J_K

V
is a stru
tural set-theoreti
 interpretation.A natural question is whether this set-theoreti
 interpretation is a model. Ifthis is the 
ase, we would like to 
ompare the subtyping relation it indu
es withthe one used to de�ne the type system (whi
h was indu
ed by the bootstrapmodel). The following theorem answers both questions.Theorem 12 The following properties are equivalent:1. The interpretation J_K

V
is a model.2. The interpretation J_K

V
and J_K indu
e the same subtyping relation.3. The bootstrap model J_K is well-founded.When the interpretation J_K
V
is a model, we 
ould use it as a new bootstrapmodel, de�ne a new type system, and so one. The theorem says that it isuseless, be
ause the old and the new bootstrap model indu
e the same subtypingrelation.Note that the type soundness results does not depend on the fa
t that theinterpretation J_K

V
is a model. It holds even if the bootstrap model is notwell-founded.5.3 Constru
tion of modelsAll the results above would be void if we 
ould not build a model. In this se
tion,we a
tually build models with spe
i�
 properties. Models 
an be 
ompared bythe amount of subtyping they allow. If J_K1 and J_K2 are two models, we write

J_K1 � J_K2 if:
∀t, s ∈ T .JtK1 ≤ JsK1 ⇒ JtK2 ≤ JsK2A model J_K2 is universal if J_K1 � J_K2 for any other model J_K1. Clearly, twouniversal models indu
e the same subtyping relation.Theorem 13 There exists a well-founded and universal model.The next theorem shows that the notions of universality and well-foundednessare not automati
.Theorem 14 There exists a model whi
h is not well-founded. There exists awell-founded model whi
h is not universal.21



5.4 De
idability resultsFinally, our system would be of little pra
ti
al use if we were not able to de
idethe subtyping and typing relations. Fortunately, the de
idability of the in
lusionof basi
 types implies the following theorem.Theorem 15 The subtyping relation indu
ed by universal models is de
idable.The proof of de
idability (Se
tion 6.9) essentially relies on three 
omponents: (i)the regularity of types, (ii) some algebrai
 properties of universal models, and
(iii) the equivalen
e between subtyping and type emptiness problems (rememberthat s ≤ t ⇐⇒ s\t ≃ 0.). The algebrai
 properties of the model 
an be used tode
ompose a type t into a set of types ti's su
h that: (i) t ≃ 0 if and only if all
ti ≃ 0 and (ii) the ti's are boolean 
ombinations of sub-terms of t (Se
tion 6.2).We also introdu
e the 
on
ept of simulation (Se
tion 25) whi
h 
hara
terizessets of types that are 
losed with respe
t to the previous de
omposition. By
onstru
tion a type is equivalent to 0 if and only if there exists a simulation
ontaining it (the simulation representing a 
o-indu
tive proof of its emptiness).A regular type has only a �nite number of sub-terms, therefore it su�
es toenumerate all the possible sets of boolean 
ombinations of its sub-terms andtest whether any of them is a simulation (whi
h is de
idable for �nite sets).De
idability of subtyping does not immediately yield de
idability of the typ-ing relation, the problem being that the use of the negated arrows in the typingrule (abstr) makes the minimum typing property fail. Therefore we need tointrodu
e a new synta
ti
 
ategory, type s
hemes: a type-s
heme represents theset of all the types of a well typed expression (Se
tion 6.12). This te
hni
al
onstru
tion allows us to state the de
idability of the type-
he
king problem.Theorem 16 When the subtyping relation is de
idable, the type 
he
king prob-lem (de
iding whether Γ ⊢ e : t for given Γ, e, t) is de
idable.6 Formal developmentIn this se
tion, we establish the theorems stated in the previous se
tion andother intermediate lemmas.6.1 Disjun
tive normal forms for typesWe write A for atoms and we use the meta-variable a to range over atoms.There are three kinds of atoms (and values), whi
h we denote by the meta-variable u ranging over the set U = {prod, fun,basi
}.We write Afun for atoms of the form t1→→→t2, Aprod for atoms of the form
t1×××t2, and Abasi
 for basi
 types. We have A = Afun + Aprod + Abasi
. Forwhat 
on
erns values, their kinding too is straightforward: values of the form
c, (v1, v2), and µf(. . .).λx.e have respe
tively kind basi
,prod, and fun.Every type 
an be seen as a �nite boolean 
ombination of atoms. It is
onvenient to work with disjun
tive normal forms.22



De�nition 17 A (disjun
tive) normal formal τ is a �nite set of pairs of �nitesets of atoms, that is, an element of Pf (Pf (A ) × Pf (A )) (where Pf denotesthe �nite powerset).If J_K : T → P(D) is an arbitrary set-theoreti
 interpretation and τ anormal form, we de�ne JτK as:
JτK =

⋃

(P,N)∈τ

⋂

a∈P

JaK ∩
⋂

a∈N

(D\JaK)(Note that, with the 
onvention that an interse
tion over an empty set is takento be D, JτK ⊆ D.)Lemma 18 For every type t ∈ T , it is possible to 
ompute a normal form
N (t) su
h that for every set-theoreti
 interpretation J_K, JtK = JN (t)K.Proof: We will a
tually de�ne two fun
tions N and N ′, both from types to

Pf (Pf (A ) × Pf (A )), by mutual indu
tion over types.
N (0) = ∅

N (a) = {({a}, ∅)}
N (t1∨∨∨t2) = N (t1) ∪ N (t2)
N (¬¬¬t) = N ′(t)
N ′(0) = {(∅, ∅)}
N ′(a) = {(∅, {a})}
N ′(t1∨∨∨t2) = {(P1 ∪ P2, N1 ∪ N2) | (P1, N1) ∈ N ′(t1), (P2, N2) ∈ N ′(t2)}
N ′(¬¬¬t) = N (t)We 
he
k by indu
tion over the type t the following property:

JtK = JN (t)K = D\JN ′(t)K

2As an example, 
onsider the type t = a1∧∧∧(a2∨∨∨¬¬¬a3) where a1, a2, a3 are threeatoms. Then N (t) = {({a1, a2}, ∅), ({a1}, {a3})}. This 
orresponds to the fa
tthat t and (a1∧∧∧a2)∨∨∨(a1∧∧∧¬¬¬a3) have the same interpretation for any set-theoreti
interpretation of the type algebra.Note that the 
onverse result is true as well: for any normal form τ , we 
an�nd a type t su
h that JtK = JτK for any set-theoreti
 interpretation. Normalforms are thus simply a di�erent, but handy, syntax for types. In parti
ular,we 
an rephrase in De�nition 5 the 
ondition for a set-theoreti
 interpretationto be a model as: for any normal form τ , JτK = ∅ ⇐⇒ E(τ) = ∅.For these reason hen
eforth will will often 
onfound the notions of typesand normal form, and we will often speak of the type τ , taking the latter as a
anoni
al representative of all the types in N −1(τ).23



6.2 Study of the subtyping relationDe�nition 5 is rather intensional. In this se
tion, we establish a more extensional
riterion for a set-theoreti
 interpretation to be a model.Let J_K be a set-theoreti
 interpretation. We are interested in 
omparingthe assertions E(τ) = ∅ and JτK = ∅, for a normal form τ . Clearly, E(τ) = ∅is equivalent to:
∀(P, N) ∈ τ.

⋂

a∈P

E(a) ⊆
⋃

a∈N

E(a) (3)Let us write Ebasi
D = C , EprodD = D2, Efun = P(D × DΩ). We haveED =
⋃

u∈U EuD where U = {prod, fun,basi
}. We 
an thus rewrite (3) as:
∀u ∈ U.∀(P, N) ∈ τ.

⋂

a∈P

(E(a) ∩ EuD) ⊆
⋃

a∈N

(E(a) ∩ EuD) (4)Sin
e JaK∩EuD = ∅ if a 6∈ Au and JaK∩EuD = JaK if a ∈ Au, we 
an rewrite (4)as:
∀u ∈ U.∀(P, N) ∈ τ.(P ⊆ Au) ⇒

(

⋂

a∈P

E(a) ⊆
⋃

a∈N∩Au

E(a)

) (5)(where the interse
tion is taken to be EuD when P = ∅.)To further de
ompose these predi
ates, we will rely on two set-theoreti
 fa
ts,one for produ
t types, one for arrow types. Let us introdu
e some new notationand then start with produ
t types.Notation 19 Let S1, S2 denote two sets su
h that S1 ⊆ S2. We use S1
S2 todenote the 
omplement of S1 with respe
t to S2, that is S2\S1.Lemma 20 Let (Xi)i∈P , (Xi)i∈N (resp. (Yi)i∈P , (Yi)i∈N ) be two families ofsubsets of D1 (resp. D2). Then:

(

⋂

i∈P

Xi × Yi

)

\

(

⋃

i∈N

Xi × Yi

)

=
⋃

N ′⊆N

(

⋂

i∈P

Xi\
⋃

i∈N ′

Xi

)

×





⋂

i∈P

Yi\
⋃

i∈N\N ′

Yi



(with the 
onventions: ⋂i∈∅
Xi × Yi = D1 ×D2; ⋂i∈∅

Xi = D1 and ⋂i∈∅
Yi =

D2)Proof: First, we noti
e that:
Xi × Yi

D1×D2

=
(

Xi
D1

× D2

)

∪
(

D1 × Yi
D2

)From that we get:
⋂

i∈N

Xi × Yi
D1×D2

=

⋃

N ′⊆N





⋂

i∈N ′

(

Xi
D1

× D2

)

∩
⋂

i∈N\N ′

(

D1 × Yi
D2

)



 =

⋃

N ′⊆N





⋂

i∈N ′

Xi
D1

×
⋂

i∈N\N ′

Yi
D2



24



And �nally:
(

⋂

i∈P

Xi × Yi

)

∩

(

⋂

i∈N

Xi × Yi
D1×D2

)

=

⋃

N ′⊆N





(

⋂

i∈P

Xi ∩
⋂

i∈N ′

Xi
D1

)

×





⋂

i∈P

Yi ∩
⋂

i∈N\N ′

Yi
D2







We get the expe
ted result by applying De Morgan laws. 2We get an immediate 
orollary.Lemma 21 Let P, N be two �nite subsets of Aprod. We have:
⋂

a∈P

E(a) ⊆
⋃

a∈N

E(a) ⇐⇒

∀N ′ ⊆ N.

t
∧∧∧

t1×××t2∈P

t1∧∧∧
∧∧∧

t1×××t2∈N ′

¬¬¬t1

|
= ∅ ∨

u
v ∧∧∧

t1×××t2∈P

t2∧∧∧
∧∧∧

t1×××t2∈N\N ′

¬¬¬t2

}
~ = ∅(with the 
onvention ⋂a∈∅

E(a) = EprodD).We will now establish a similar result for arrow types. We �rst de
ompose theset-theoreti
→ operator (De�nition 3) into more primitive operators: powerset,
omplement, Cartesian produ
t.Lemma 22 Let X, Y ⊆ D. Then:
X → Y = P

(

X × Y
DΩ

D×DΩ
)Proof: The result 
omes from a simple 
omputation:

X → Y = {f ⊆ D × DΩ | ∀(x, y) ∈ f. ¬(x ∈ X ∧ y 6∈ Y )}

= {f ⊆ D × DΩ | f ∩ X × Y
DΩ

= ∅}

= {f ⊆ D × DΩ | f ⊆ X × Y
DΩ

D×DΩ

}

2Lemma 23 Let (Xi)i∈P and (Xi)i∈N be two families of subsets of D. Then:
⋂

i∈P

P(Xi) ⊆
⋃

i∈N

P(Xi) ⇐⇒ ∃io ∈ N.
⋂

i∈P

Xi ⊆ Xi025



Proof: The ⇐ impli
ation is trivial. Let us prove the opposite dire
tion. Weassume that ⋂i∈P P(Xi) ⊆
⋃

i∈N P(Xi). The set ⋂i∈P Xi belongs to allthe P(Xi) for i ∈ P . It is thus in the union of all the P(Xi) for i ∈ N . We
an thus �nd some i0 ∈ N su
h that ⋂i∈P Xi ∈ P(Xi0), whi
h 
on
ludes theproof. 2Lemma 24 Let P and N be two �nite subsets of Afun. Then:
⋂

a∈P

E(a) ⊆
⋃

a∈N

E(a)

⇐⇒

∃(t0→→→s0) ∈ N. ∀P ′ ⊆ P.

t
t0\\\

(

∨∨∨

t→→→s∈P ′

t

)|
= ∅ ∨















P 6= P ′
u
v




∧∧∧

t→→→s∈P\P ′

s



\\\s0

}
~ = ∅(with the 
onvention ⋂a∈∅

E(a) = EfunD).Proof: The result follows from Lemmas 22, 23, and 20, by noti
ing that in the
ondition ⋂t→→→s∈P\P ′ JsK ⊆ Js0K whi
h appears, the 
onvention is to interpretthe interse
tion as being DΩ if P = P ′, whi
h makes the in
lusion impossible.
2Lemmas 21 and 24, together with the property (5) suggest the followingde�nition and give immediatly the result of Theorem 26 below.De�nition 25 (Simulation) Let S be an arbitrary set of normal forms. Wede�ne another set of normal forms ES by:ES = {τ | ∀u ∈ U.∀(P, N) ∈ τ. (P ⊆ Au ⇒ CP,N∩Au

u )}

26



where:
CP,Nbasi
 ::= C ∩

⋂

b∈P

BJbK ⊆
⋃

b∈N

BJbK

CP,Nprod ::= ∀N ′ ⊆ N.



































N

(

∧∧∧

t1×××t2∈P

t1∧∧∧
∧∧∧

t1×××t2∈N ′

¬¬¬t1

)

∈ S

∨

N





∧∧∧

t1×××t2∈P

t2∧∧∧
∧∧∧

t1×××t2∈N\N ′

¬¬¬t2



 ∈ S

CP,Nfun ::= ∃t0→→→s0 ∈ N. ∀P ′ ⊆ P.











































N

(

t0∧∧∧
∧∧∧

t→→→s∈P ′

¬¬¬t

)

∈ S

∨














P 6= P ′

N



(¬¬¬s0)∧∧∧
∧∧∧

t→→→s∈P\P ′

s



 ∈ SWe say that S is a simulation if:
S ⊆ ESThe intuition is that if we 
onsider the statements of Lemmas 21 and 24 as ifthey were rewriting rules (from right to left), then ES 
ontains all the typesthat we 
an dedu
e in one step redu
tion to be empty when we suppose that thetypes in S are empty. A simulation is thus a set that is already saturated w.r.t.su
h a rewriting. In parti
ular, if we 
onsider the statements of Lemmas 21and 24 as inferen
e rules for determining when a type is equal to 0, then ESis the set of immediate 
onsequen
es of S , and a simulation is a self-justifyingset, that is a 
o-indu
tive proof of the fa
t that all its elements are equal to 0.Of 
ourse this latter property will play a 
ru
ial role to de
ide the subtypingrelation (see Se
tion 6.9).Theorem 26 Let J_K : T → P(D) be a set-theoreti
 interpretation. We de�nea set of normal forms S by:

S = {τ | JτK = ∅}Then: ES = {τ | E(τ) = ∅}Corollary 27 Let J_K be a set-theoreti
 intepretation of types and S = {τ | JτK =
∅}. Then J_K is a model if and only if S = ES .This Corollary implies that the 
ondition for a set-theoreti
 interpretation tobe a model depends only on the subtyping relation it indu
es.27



Corollary 28 Let J_K1 : T → P(D1) be a model and J_K2 : T → P(D2) bea set-theoreti
 interpretation. Then the following assertions are equivalent:
• J_K2 is a model and it indu
es the same subtyping relation as J_K1.
• for any type t, JtK1 = ∅ ⇐⇒ JtK2 = ∅.The following lemma, whi
h is an immediate 
orollary of Lemma 24 givesseveral properties about subtyping between arrow types in a model, whi
h willbe needed for to study the meta-theory of the type system.Lemma 29 (Strong disjun
tion for arrows) Let ≤ be the subtyping rela-tion indu
ed by a model, and P ,N two �nite sets of arrow types. Then:

∧∧∧

a∈P

a ≤
∨∨∨

a∈N

a ⇐⇒ ∃a0 ∈ N.
∧∧∧

a∈P

a ≤ a0If P ,N are �nite sets of arrow types and if a0 is an arrow type, then:














∧∧∧

a∈P

a 6≤
∨∨∨

a∈N

a

∧∧∧

a∈P

a ≤
∨∨∨

a∈N∪{a0}

a
=⇒

∧∧∧

a∈P

a ≤ a0If P ,N1,N2 are �nite sets of arrow types, then:














∧∧∧

a∈P

a 6≤
∨∨∨

a∈N1

a

∧∧∧

a∈P

a 6≤
∨∨∨

a∈N2

a
⇐⇒

∧∧∧

a∈P

a 6≤
∨∨∨

a∈N1∪N2

a6.3 Synta
ti
al meta-theory of the type systemIn this se
tion and in the following one, we �x a bootstrap model J_K : T →
P(D), we write ≤ for the indu
ed subtyping relation and ≃ for the asso
iatedequivalen
e relation, and we study the resulting typing judgment Γ ⊢ e : t.Lemma 30 (Strengthening) Let Γ1 and Γ2 be two typing environments su
hthat for any x in the domain of Γ1, we have Γ2(x) ≤ Γ1(x). If Γ1 ⊢ e : t, then
Γ2 ⊢ e : t.Proof: Indu
tion on the derivation of Γ1 ⊢ e : t. We simply introdu
e aninstan
e of the subsumption rule below ea
h instan
e of the (var) rule. 2Lemma 31 (Admissiblity of the interse
tion rule) If Γ ⊢ e : t1 and Γ ⊢
e : t2, then Γ ⊢ e : t1∧∧∧t2. 28



Proof: By indu
tion on the stru
ture of the two typing derivations.Let us �rst 
onsider the 
ase when the last rule applied to one of the twoderivations is (subsum), say:
. . .

Γ ⊢ e : s1 s1 ≤ t1
Γ ⊢ e : t1

. . .
Γ ⊢ e : t2The indu
tion hypothesis gives Γ ⊢ e : s1∧∧∧t2. But s1∧∧∧t2 ≤ t1∧∧∧t2 be
ause

s1 ≤ t1, and a new appli
ation of (subsum) gives Γ ⊢ e : t1∧∧∧t2 as expe
ted.In all the remaining 
ases, the two derivations ends with an instan
e of thesame rule (whi
h depends on the toplevel 
onstru
tor of e).Rules (const), (var), (rnd): Those rules give only one possible type t for e,and t∧∧∧t ≃ t.Rule (appl): The situation is as follows:
. . .

Γ ⊢ e1 : t1→→→t2

. . .
Γ ⊢ e2 : t1

Γ ⊢ e1e2 : t2

. . .
Γ ⊢ e1 : t′1→→→t′2

. . .
Γ ⊢ e2 : t′1

Γ ⊢ e1e2 : t′2The indu
tion hypothesis gives Γ ⊢ e1 : (t1→→→t2)∧∧∧(t′1→→→t′2) and Γ ⊢ e2 : t1→→→t′1.To 
on
lude, it is enough to 
he
k that (t1→→→t2)∧∧∧(t′1→→→t′2) ≤ (t1∧∧∧t′1)→→→(t2∧∧∧t′2),whi
h 
an be proved as follows:E((t1→→→t2)∧∧∧(t′1→→→t′2))
= (Jt1K → Jt2K) ∩ (Jt′1K → Jt′2K)
= {f ∈ EfunD | ∀(x, y) ∈ f.(x ∈ Jt1K ⇒ y ∈ Jt2K) ∧ (x ∈ Jt′1K ⇒ y ∈ Jt′2K)}
⊆ {f ∈ EfunD | ∀(x, y) ∈ f.(x ∈ Jt1K ∩ Jt′1K ⇒ y ∈ (Jt2K ∩ Jt′2K)}
= E((t1∧∧∧t′1)→→→(t2∧∧∧t′2))Rule (pair): The situation is as follows:

. . .
Γ ⊢ e1 : t1

. . .
Γ ⊢ e2 : t2

Γ ⊢ (e1, e2) : t1×××t2

. . .
Γ ⊢ e1 : t′1

. . .
Γ ⊢ e2 : t′2

Γ ⊢ (e1, e2) : t′1×××t′2Let t′′1 = t1∧∧∧t′1 and t′′2 = t2∧∧∧t′2. By applying the indu
tion hypothesis twi
e,we get Γ ⊢ e1 : t′′1 et Γ ⊢ e2 : t′′2 . The rule (pair) gives Γ ⊢ (e1, e2) : t′′1×××t′′2 . To
on
lude, it is enough to see that t′′1×××t′′2 ≃ (t1×××t2)∧∧∧(t′1×××t′2). Indeed:E(t′′1×××t′′2 ) = (Jt1K∩Jt′1K)×(Jt2K∩Jt′2K) = Jt1∧∧∧t2K∩Jt′1∧∧∧t′2K = E((t1×××t2)∧∧∧(t′1×××t′2))Rule (case): Let us 
onsider this situation:
. . .

Γ ⊢ e : t0

. . .
(x : ti), Γ ⊢ ei : s

Γ ⊢ (x = e ∈ t ? e1|e2) : s

. . .
Γ ⊢ e : t′0

. . .
(x : t′i), Γ ⊢ ei : s′

Γ ⊢ (x = e ∈ t ? e1|e2) : s′with t1 = t0∧∧∧t, t2 = t0\\\t, t′1 = t′0∧∧∧t, t′2 = t′0\\\t. The indu
tion hypothesisgives: Γ ⊢ e : t′′0 with t′′0 = t0∧∧∧t′0. Let us de�ne t′′1 = t′′0∧∧∧t and t′′2 = t′′0\\\t. Let29



i ∈ {1, 2}. We have t′′i ≤ ti and thus, a

ording to Lemma 30, (x : t′′i ), Γ ⊢
ei : s. Similarly, we get (x : t′′i ), Γ ⊢ ei : s′, and thus, applying again theindu
tion hypothesis (x : t′′i ), Γ ⊢ ei : s′′ where s′′ = s∧∧∧s′. Then, with the
(case) rule, we establish Γ ⊢ (x = e ∈ t ? e1|e2) : s′′ as expe
ted.The spe
ial 
ases (where ti ≃ 0 or t′i ≃ 0) are similar.Rule (abstr): Let us 
onsider two appli
ations of the rule (abstr) to the sameabstra
tion µf(t1→→→s1; . . . ; tn→→→sn).λx.e with the following types:

t =
∧∧∧

i=1..n

(ti→→→si)∧∧∧
∧∧∧

j=1..m

¬¬¬(t′j→→→s′j)

t′ =
∧∧∧

i=1..n

(ti→→→si)∧∧∧
∧∧∧

j=m+1..m′

¬¬¬(t′j→→→s′j)where t 6≃ 0 and t′ 6≃ 0. We de�ne:
t′′ =

∧∧∧

i=1..n

(ti→→→si)∧∧∧
∧∧∧

j=1..m′

¬¬¬(t′j→→→s′j)We have t′′ ≃ t∧∧∧t′. We only need to verify that some instan
e of the rule
(abstr) allows us to dedu
e the type t′′ for the abstra
tion. For i = 1..n,we have, by hypothesis (f : t), (x : ti), Γ ⊢ e : si, and thus, a

ording toLemma 30, (f : t′′), (x : ti), Γ ⊢ e : si. Then, we 
he
k that t′′ 6≃ 0, whi
h re-sults immediatly from Lemma 29. In this 
ase, we have not used the indu
tionhypothesis. 2Corollary 32 Let Γ be a typing environment and e an expression whi
h is well-typed under Γ. Then the set {t ∈ T | (Γ ⊢ e : t) ∨ (Γ ⊢ e : ¬¬¬t)} 
ontains 0 andis stable under ∨∨∨ and ¬¬¬ (and thus ∧∧∧).Proof: Let E be the set introdu
ed in the statement. It is 
learly stable under
¬¬¬ and invariant under the equivalen
e ≃. We have Γ ⊢ e : 1 = ¬¬¬0 be
ause ofthe subsumption rule, and thus 0 ∈ E. What remains is to prove that E isstable under ∨∨∨. So let us take two elements t1 and t2 in E. If Γ 6⊢ e : t1∨∨∨t2,then be
ause of (subsum), we get Γ 6⊢ e : t1 and Γ 6⊢ e : t2. Be
ause t1 and
t2 are in E, we thus have Γ ⊢ e : ¬¬¬t1 and Γ ⊢ e : ¬¬¬t2. Lemma 31 thengives Γ ⊢ e : ¬¬¬t1∧∧∧¬¬¬t2. And ¬¬¬t1∧∧∧¬¬¬t2 ≃ ¬¬¬(t1∨∨∨t2). We have thus proved that
Γ ⊢ e : t1∨∨∨t2 or Γ ⊢ e : ¬¬¬(t1∨∨∨t2). 2Lemma 33 (Substitution) Let e, e1, . . . , en be expressions, x1, . . . , xn dis-tin
t variables, t, t1, . . . , tn types, and Γ a typing environment. Then:
{

(x1 : t1), . . . , (xn : tn), Γ ⊢ e : t
∀i = 1..n. Γ ⊢ ei : ti

⇒ Γ ⊢ e[x1 := e1; . . . ; xn := en] : t30



Proof: By indu
tion on the typing derivation for (x1 : t1), . . . , (xn : tn), Γ ⊢
e : t. We simply �plug� a 
opy of the derivation for Γ ⊢ ei : ti wherever therule (var) is used for variable xi. 26.4 Interpreting types as sets of valuesThe synta
ti
al properties obtained in the previous se
tion are used here toprove some properties about the interpretation of types as sets of values, asde�ned in Se
tion 5.2: JtK

V
= {v | ⊢ v : t}Lemma 34 If t ≤ s, then JtK

V
⊆ JsK

V
. In parti
ular, if t ≃ s, then JtK

V
=

JsK
V
.Proof: Consequen
e of the subsumption rule. 2Lemma 35 J0K

V
= ∅.Proof: We prove that (⊢ v : t) ⇒ t 6= 0 by indu
tion on the typing deriva-tion. There are four 
ases to 
onsider (one per value 
onstru
tor, one for thesubsumption rule). All of them are trivial. 2Lemma 36 Jt1∧∧∧t2KV

= Jt1KV
∩ Jt2KV

.Proof: Lemma 34 gives Jt1∧∧∧t2KV
⊆ JtiKV

for i ∈ {1, 2}, and thus Jt1∧∧∧t2KV
⊆

Jt1KV
∩ Jt2KV

. Lemma 31 gives the opposite in
lusion. 2Lemma 37 (Inversion)
Jt1×××t2KV

= {(v1, v2) | ⊢ v1 : t1,⊢ v2 : t2}
JbK

V
= {c | bc ≤ b}

Jt→→→sK
V

= {(µf(t1→→→s1; . . . ; tn→→→sn).λx.e) ∈ V . |
∧∧∧

i=1..n

ti→→→si ≤ t→→→s}Moreover, if v is a value and a is an atom of a di�erent kind, then ⊢ v : ¬¬¬a.Proof: For the three equalities, the ⊇ in
lusion is straightforward.To prove the three opposite in
lusion, let us start with a general remark.A derivation for ⊢ v : t 
an always be des
ribed as an instan
e of the rule
orresponding to the kind of v (rule (const) for 
onstants, (pair) for pairs,and (abstr) for abstra
tions), followed by zero or more instan
e of (subsum).31



That is, we 
an always �nd another type t′ ≤ t su
h that ⊢ v : t is obtainedby a dire
t appli
ation of the typing rule 
orresponding to v. If t is an atom
a, then v is ne
essarily of the same kind as a. Indeed, if v is a pair, then t′is a produ
t type; if v is a 
onstant, t′ is a basi
 type; if v is an abstra
tion,
t′ is an interse
tion of one or more arrow types (and maybe of zero or morenegation of arrow types). In all 
ases, t′ ∩ a ≃ 0 if a and v does not have thesame kind, but sin
e t′ ≤ a, this means that t′ ≃ 0, whi
h is impossible. Wealso have proved the �nal remark in the statement of the Lemma (be
ause if
a and v does not have the same kind, then t′ ≤ ¬¬¬a, and thus ⊢ v : ¬¬¬a).Case ⊢ v : t1×××t2:. The value is ne
essarily a pair (v1, v2) su
h that ⊢ v1 : t′1,
⊢ v2 : t′2, and t′1×××t′2 ≤ t1×××t2. But t′1 6≃ 0 and t′2 6≃ 0 be
ause of Lemma 35,and thus t′1 ≤ t1 and t′2 ≤ t2. By subsumption, we get ⊢ v1 : t1 and ⊢ v2 : t2.Case ⊢ v : b: The value is ne
essarily a 
onstant c su
h that bc ≤ b.Case ⊢ v : t→→→s: The value is ne
essarily an abstra
tion
µf(t1→→→s1; . . . ; tn→→→sn).λx.e. Here, the type t′ has the form:

∧∧∧

i=1..n

(ti→→→si)∧∧∧
∧∧∧

j=1..m

¬¬¬(t′j→→→s′j)with t′ 6≃ 0 and t′ ≤ t→→→s. Lemma 29 thus gives:
∧∧∧

i=1..n

(ti→→→si) ≤ t→→→s

2Lemma 38 J¬¬¬tK
V

= V \JtK
V
.Proof:We have (t∧∧∧¬¬¬t) ≃ 0 and, thus, JtK

V
∩ J¬¬¬tK

V
= Jt∧∧∧¬¬¬tK

V
= J0K

V
= ∅. So itremains to prove that JtK

V
∪ J¬¬¬tK

V
= V , that is:

∀v.∀t. (⊢ v : t) ∨ (⊢ v : ¬¬¬t)We pro
eed by indu
tion over the pair (v, t). Thanks to Lemma 32, we 
anassume that t is an atom a. Lemma 37 gives ⊢ v : ¬¬¬a if a and v do not havethe same kind. Now, we assume they have the same kind.Case v = c: We have ⊢ c : bc. The set E(bc) is a singleton (namely {c}),and thus E(bc) ⊆ E(a) or E(bc) ⊆ E(¬¬¬a), that is: bc ≤ a or bc ≤ ¬¬¬a. Bysubsumption, we get ⊢ bc : a or ⊢ bc : ¬¬¬a.Case v = (v1, v2), a = t1×××t2: If ⊢ v1 : t1 and ⊢ v2 : t2, we get ⊢ v : a.Otherwise, say 6⊢ v1 : t1, we get ⊢ v1 : ¬¬¬t1 by the indu
tion hypothesis, and
⊢ v2 : 1 always holds, and thus we get ⊢ v : (¬¬¬t1)×××1. We 
on
lude this 
aseby the observation that (¬¬¬t1)×××1 ≤ ¬¬¬(t1×××t2).Case v = µf(t1→→→s1; . . . ; tn→→→sn).λx.e, a = t→→→s: It is easy to see that ⊢ v : aif ∧∧∧i=1..n ti→→→si ≤ a and ⊢ v : ¬¬¬a otherwise. 232



Lemma 39 Jt1∨∨∨t2KV
= Jt1KV

∪ Jt2KV
.Proof: Using Lemmas 38, 36 and 34, we get: Jt1∨∨∨t2KV

=
J¬¬¬((¬¬¬t1)∧∧∧(¬¬¬t2))KV

= V \(J¬¬¬t1KV
∩ J¬¬¬t2KV

) = V \(V \Jt1KV
\Jt2KV

) = Jt1KV
∪

Jt2KV
. 2From Lemmas 38, 39 and 35, we get that J_K

V
is a set-theoreti
 interpreta-tion.To 
on
lude the proof of Theorem 11, we need to 
he
k that it is stru
tural.Clearly V 2 ⊆ V and Lemma 37 gives Jt1×××t2KV
= Jt1KV

× Jt2KV
. Also, therelation indu
ed by (v1, v2) ⊲ vi is 
learly noetherian.6.5 Closing the loopLemma 40 For every non-empty and �nite family of arrow types t1→→→s1, . . . , tn→→→sn,the expression µf(t1→→→s1; . . . ; tn→→→sn).λx.fx is a value.Proof: Dire
t appli
ation of the typing rules. 2Lemma 41 In every model, JtK = ∅ ⇐⇒ J1 → tK ⊆ J1 → 0K holds true.Lemma 42 The set-theoreti
 interpretation J_K

V
is a model if and only if itindu
es the same subtyping relation as J_K.Proof: The ⇐ impli
ation is given by Corollary 28. Let us assume that J_K

Vis a model and prove that JtK
V

= ∅ ⇐⇒ t ≃ 0 for any type t. The ⇐impli
ation is given by Lemma 35. Let t be a type su
h that JtK
V

= ∅.Be
ause J_K
V

is a model, Lemma 41 gives: J1 → tK
V

⊆ J1 → 0K
V
. Now we
onsider the expression v = µf(1 → t).λx.fx. A

ording to Lemma 40, it is avalue. A

ording to Lemma 37, it is an element of J1 → tK

V
, and thus also of

J1 → 0K
V
, whi
h means that 1 → t ≤ 1 → 0 (again Lemma 37), and �nallythat t ≃ 0 (Lemma 41 for the model J_K). 2Lemma 43 If the bootstrap model is well-founded, then J_K

V
is a model.Proof: Sin
e the type system, and thus J_K

V
, depends only on the subtypingrelation indu
ed by the bootstrap model, we 
an assume that it is not onlywell-founded, but also stru
tural. We will use the noetherian relation ⊲ fromDe�nition 6. 33



We need to prove that, for every type t, JtK
V

= ∅ ⇐⇒ t ≃ 0. The ⇐impli
ation is given by Lemma 35. We a
tually prove by indu
tion (using the
⊲ relation) that for all d ∈ D, the following property holds: (∀t ∈ T . d ∈
JtK ⇒ JtK

V
6= ∅).Consider a type t su
h that d ∈ JtK. If d = (d1, d2) ∈ D2, then it is in the set

JtK ∩ D2 =
⋃

(P,N)∈N (t)

(

D2 ∩
⋂

a∈P

JaK\
⋃

a∈N

JaK
)We 
an thus �nd (P, N) ∈ N (t) su
h that d ∈ D2 ∩

⋂

a∈P JaK\⋃a∈N JaK.Note that if a is an atom whi
h is not a produ
t type, then D2 ∩ JaK =
J1×××1K ∩ JaK = ∅, be
ause E(1×××1) ∩ E(a) = ∅. We 
an thus assume that
P ⊆ Aprod, and we have d ∈

⋂

t1×××t2∈P (Jt1K × Jt2K)\
⋃

t1×××t2∈N (Jt1K× Jt2K). Ifwe write d = (d1, d2), then Lemma 20 gives some N ′ ⊆ N su
h that d1 ∈ Js1Kand d2 ∈ Js2K for:














s1 =
∧∧∧

t1×××t2∈P

t1\\\
∨∨∨

t1×××t2∈N ′

t1

s2 =
∧∧∧

t1×××t2∈P

t2\\\
∨∨∨

t1×××t2∈N\N ′

t2The indu
tion hypothesis applied to d1 and d2 gives Js1KV
6= ∅ and Js2KV

6=
∅, and thus Js1×××s2KV

6= ∅. To 
on
lude this 
ase, we observe that s1×××s2 ≤ t,using again Lemma 20.Now, we assume that d 6∈ D2 = J1×××1K. We thus have d ∈ Jt\\\1×××1K, whi
himplies that t\\\1×××1 6≃ 0. As a 
onsequen
e E(t\\\1×××1) 6= ∅, and thus E(t) ∩
(ED\EprodD) 6= ∅. We are in at least one of the two 
ases:E(t) ∩ C 6= ∅: let c ∈ E(t)∩C . We have E(bc) = {c} ⊆ E(t), and thus bc ≤ t.We 
on
lude that ⊢ c : t.E(t) ∩ EfunD 6= ∅: we have:E(t) ∩ EfunD =

⋃

(P,N)∈N (t) | P⊆Afun(EfunD ∩
⋂

a∈P

E(a)\
⋃

a∈N

E(a)

)This set is not empty. We 
an thus �nd an element (P, N) in N (t) su
hthat P = {t1→→→s1, . . . , tn→→→sn}, N ∩ Afun = {t′1→→→s′1, . . . , t
′
m→→→s′m}, and

t′ =
∧∧∧

i=1..n ti→→→si\\\
∨∨∨

j=1..m t′j→→→s′j 6≃ 0. We have t′ ≤ t and the value
v = µf(t1→→→s1; . . . ; tn→→→sn).λx.fx has type t′. By subsumption, we get ⊢ v : t.

2Lemmas 43 and 42 entail Theorem 12.34



6.6 Type soundnessHere is the proof of the subje
t redu
tion property, Theorem 8 in Se
tion 5.Proof: If (Γ ⊢ e : t), then we prove by indu
tion on the derivation for Γ ⊢ e : tthat ∀e′.(e ; e′) ⇒ (Γ ⊢ e′ : t). We 
onsider the last rule used in thederivation of Γ ⊢ e : t.Rule (subsum): we have Γ ⊢ e : s ≤ t and e ; e′. The indu
tion hypothesisgives Γ ⊢ e′ : s, and by subsumption we get Γ ⊢ e′ : t.Rules (const),(var): the expression e is a 
onstant or a variable. It 
annot beredu
ed.Rule (proj): we have e = πi(e0), t = ti, Γ ⊢ e0 : t1×××t2. If e′ is obtainedby redu
ing e0, that is, e0 ; e′0 and e′ = πi(e
′
0), we get, by the indu
tionhypothesis: Γ ⊢ e′0 : t1×××t2 and thus Γ ⊢ e′ : ti. If e′ is obtained by redu
ingthe toplevel πi in e, then ne
essarily e0 is a value (v1, v2) (and thus, byLemma 37: Γ ⊢ vi : ti), and e′ = vi. We get Γ ⊢ e′ : ti.Rule (rnd): we have e = rnd(t). The redu
tion rule for this expression gives

⊢ e′ : t, whi
h implies Γ ⊢ e′ : t by Lemma 30.Rule (pair): we have e = (e1, e2), t = t1×××t2, and Γ ⊢ ei : ti for i = 1..2. Theonly possible way to redu
e e is to redu
e one of the ei, say e′ = (e′1, e2) where
e1 ; e′1. The indu
tion hypothesis gives Γ ⊢ e′1 : t1, and we get Γ ⊢ e′ : t1×××t2.Rule (appl): we have e = e1e2, Γ ⊢ e1 : s → t and Γ ⊢ e2 : s. If e′is obtained by redu
ing e1 or e2, we pro
eed as in the 
ase for the (pair)rule. Otherwise, we have ne
essarily e1 = µf(s1→→→t1; . . . ; sn→→→tn).λx.e0, e′ =
e0[f := e1; x := e2] and e2 is a value v2. We have ∧∧∧i∈I si→→→ti ≤ s → t, where
I = {1, . . . , n}. A

ording to Lemma 24, this means that s ≤

∨∨∨

i∈I si andthat for any non-empty I ′ ⊆ I su
h that s 6≤
∨∨∨

i∈I\I′ si, we have ∧∧∧i∈I′ ti ≤ t.We take I ′ = {i ∈ I | ⊢ v2 : si}. This set is not empty. Indeed, sin
e ⊢ v2 : sand s ≤
∨∨∨

i∈I si, we have at least one i su
h that ⊢ v2 : si (Lemma 39). Now,we 
laim that s 6≤
∨∨∨

i∈I\I′ si. Otherwise, we would �nd some i 6∈ I ′ su
h that
⊢ v2 : si, whi
h 
ontradi
ts the de�nition for I ′. As a 
onsequen
e, we get
∧∧∧

i∈I′ ti ≤ t. We 
laim that Γ ⊢ e′ :
∧∧∧

i∈I′ ti (whi
h by subsumption yields
Γ ⊢ e′ : t i.e. the result). To prove our 
laim we show that for every i ∈ I ′we have Γ ⊢ e′ : ti, whi
h thanks to Lemma 31 yields our 
laim. So, letus 
onsider any i ∈ I ′, that is, any i su
h that ⊢ v2 : si. The abstra
tion
e1 is well-typed under Γ therefore in its derivation there is an instan
e ofthe (abstr) rule (possibly followed by several appli
ations of the subsumptionrule) whi
h infers for e1 a type t′ under Γ. One of the premises of this ruleis (f : t′), (x : ti), Γ ⊢ e0 : ti. We also have Γ ⊢ e1 : t′ and Γ ⊢ v2 : si(Lemma 30), and thus Γ ⊢ e′ : ti (Lemma 33) as expe
ted.Rule (abstr): the expression e is an abstra
tion, and the redu
tion 
an onlyo

ur within its body. We pro
eed as in the 
ase for the (pair) rule.Rule (case): we have e = (x = e0 ∈ s ? e1 | e2). If the redu
tion o

urswithin one of the sub-expressions e0,e1,e2, we pro
eed as in the 
ase for the
(pair) rule. Otherwise, the expression e0 is ne
essarily a value v, and we haveeither (⊢ v : s) ∧ (e′ = e1[x := v]) or (⊢ v : ¬¬¬s) ∧ (e′ = e2[x := v]). Let us35




onsider for instan
e the �rst 
ase. The typing rule gives: Γ ⊢ v : s0. Thanksto Lemma 31, we get Γ ⊢ v : s0∧∧∧s. Be
ause of Lemma 35, we know that
s0∧∧∧s 6≃ 0, that is s0 6≤ ¬¬¬s. So the typing rule (case) under 
onsideration hasa premise for e1, namely (x : s0∧∧∧s), Γ ⊢ e1 : t. Lemma 33 gives Γ ⊢ e′ : t asexpe
ted. 2And here is the proof of the progress property, Theorem 9 in Se
tion 5.Proof: We write e 6; if e 
annot be redu
ed (6 ∃e′.e ; e′). Suppose that
⊢ e : t; we prove on indu
tion on the derivation of ⊢ e : t that either e is avalue or it 
an be redu
ed. We 
onsider the last rule used in this derivation.Rule (subsum): straightforward appli
ation of the indu
tion hypothesis.Rule (var): a variable 
annot be well-typed in an empty environment. This
ase is thus impossible.Rule (const): the expression e is a 
onstant. It is thus a value.Rule (abstr): the expression e is an abstra
tion whi
h is well-typed under theempty environment. It is thus a value.Rule (proj): we have e = πi(e0), t = ti, ⊢ e0 : t1×××t2. If e0 
an be redu
ed to,say, e′0, then e ; πi(e

′
0). Otherwise, if e0 6;, then by the indu
tion hypothesis

e0 is a value. By Lemma 37, we get e0 = (v1, v2), and thus e ; vi.Rule (rnd): we have e = rnd(t) and thus e ; e′ for any e′ of type t (forinstan
e, we 
an take for e′ an expression of type 0, whi
h exists).Rule (pair): we have e = (e1, e2), t = t1×××t2, and ⊢ ei : ti for i = 1..2. Ifone of the ei 
an be redu
ed, then e 
an also be redu
ed. Otherwise, by theindu
tion hypothesis, we obtain that both e1 and e2 are values, and so is e.Rule (appl): we have e = e1e2, ⊢ e1 : s → t and ⊢ e2 : s. If one of the
ei 
an be redu
ed, then e 
an also be redu
ed. Otherwise, by the indu
tionhypothesis, we obtain that both e1 and e2 are values. By Lemma 37, we get
e1 = µf(s1→→→t1; . . . ; sn→→→tn).λx.e0. Then e ; e0[f := e1; x := e2].Rule (case): we have e = (x = e0 ∈ s ? e1 | e2). If e0 
an be redu
ed, then e
an also be redu
ed. Otherwise, by the indu
tion hypthesis, we obtain that
e0 is a value v. Be
ause of Lemma 39, we have ⊢ v : s or ⊢ v : ¬¬¬s, and thus
e ; e1[x := v] or e ; e2[x := v]. 26.7 Constru
tion of modelsA naive idea to build a model would be to look for an interpretation domain

D su
h that D = ED. Of 
ourse su
h a set 
annot exist, sin
e the 
ardinalityof EfunD, and thus of ED, is stri
ly larger than the 
ardinality of D. This
ardinality problem 
an be avoided by 
onsidering only �nite graphs to interpretfun
tions.For any set D, we write EfD = C + D2 + Pf (D × DΩ) where Pf denotesthe restri
tion of the powerset to �nite subsets.36



De�nition 44 A set-theoreti
 interpretation J_K : T → P(D) is �nitely extensionalif: 1. D = EfD2. JaK = E(a) ∩ D for any atom a.Lemma 45 If J_K is a �nitely extensional set-theoreti
 interpretation, then
JtK = E(t) ∩ D for any type t, and JτK = E(τ) ∩ D for any normal formal τ .Proof: Indu
tion on t. 2The next lemma shows that taking �nite sets as extensional models for fun
-tions does not 
hange the subtyping relation between arrow types (
ompare itwith Lemma 23).Lemma 46 Let (Xi)i∈P and (Xi)i∈N be two �nite families of subsets of D.Then:

⋂

i∈P

Pf (Xi) ⊆
⋃

i∈N

Pf (Xi) ⇐⇒ ∃io ∈ N.
⋂

i∈P

Xi ⊆ Xi0Proof: The ⇐ impli
ation is straightforward. Let us prove ⇒. We assumethat any �nite subset of X =
⋂

i∈P Xi is a subset of one of the Xi0 with
i0 ∈ N . We need to prove that the same holds for X itself. Otherwise, we
ould �nd for ea
h i0 ∈ N an element xi0 ∈ X\Xi0 and we would obtain a
ontradi
tion by 
onsidering the �nite set {xi0 | i0 ∈ N}. 2Lemma 47 Let P, N two �nite sets of arrow types and J_K an arbitratry set-theoreti
 interpretation. Then:

⋂

a∈P

E(a) ⊆
⋃

a∈N

E(a) ⇐⇒ Pf (D × DΩ) ∩
⋂

a∈P

E(a) ⊆
⋃

a∈N

E(a)(By 
onvention ⋂a∈∅
E(a) = P(D × DΩ).)Proof: Consequen
e of Lemmas 23, 46, and 22. 2It is, then, not surprising that �nitely extensional interpretations are models.Lemma 48 Every �nitely extensional interpretation is a model.

37



Proof: Sin
e JτK = E(τ) ∩ D, we need to prove thatE(τ) = ∅ ⇐⇒ E(τ) ∩ D = ∅for any normal form τ . We write:E(τ) =
⋃

u∈U

⋃

(P,N)∈τ

(EuD ∩
⋂

a∈P

E(a)\
⋃

a∈N

E(a)

)So we need to prove that for any u ∈ U and (P, N) two �nite sets of atoms,we have:EuD ∩
⋂

a∈P

E(a) ⊆
⋃

a∈N

E(a) ⇐⇒ D ∩ EuD ∩
⋂

a∈P

E(a) ⊆
⋃

a∈N

E(a)If u 6= fun, then EuD ⊆ D, and the equivalen
e is thus trivial. The 
ase
u = fun 
omes from Lemma 47. 26.8 A universal modelIn this se
tion, we de�ne a stru
tural and �nitely extensional model and thenshow that it is universal and, in the next se
tion, that the subtyping relationindu
ed by this model is de
idable.We need to build a set D0 su
h that D0 = EfD0, that is, a solution to theequation D0 = C +D0×D0+Pf (D0×D0

Ω). We will 
onsider the initial solutionto this equation. Con
retely, we de�ne D0 as the set of �nite terms generatedby the produ
tion d of the following grammar (c ranges over elements of C ):
d ::= c | (d, d) | {(d, d′), . . . , (d, d′)}
d′ ::= d | ΩNow, we need to de�ne a set-theoreti
 interpretation J_K0 : T → P(D0)su
h that JtK0 = E(a)0 ∩ D0. Be
ause of the indu
tive stru
ture of elementsof D0, this equation a
tually de�nes the fun
tion J_K0. To see this, we willde�ne a binary predi
ate (d : t) where d ∈ D0 and t ∈ T . The truth valueof (d : t) is de�ned by indu
tion on the pair (d, t) ordered lexi
ographi
ally,using the indu
tive stru
ture for elements of D0, and the indu
tion prin
iple wementioned earlier for types. Here is the de�nition:

(c : b) = c ∈ BJbK
((d1, d2) : t1×××t2) = (d1 : t1) ∧ (d2 : t2)
({(d1, d

′
1), . . . , (dn, d′n)} : t1→→→t2) = ∀i. (di : t1) ⇒ (d′i : t2)

(d : t1∨∨∨t2) = (d : t1) ∨ (d : t2)
(d : ¬¬¬t) = ¬(d : t)
(d : t) = false otherwise38



Now we de�ne JtK0 = {d ∈ D0 | (d : t)}. It is straightforward from thisde�nition to see that J_K0 is a set-theoreti
 interpretation and that it is stru
-tural (and thus well-founded). It is also 
lear that it is �nitely extensional. It isthus a model. It remains to prove that this model is universal. This is a dire
t
onsequen
e of the next lemma.Lemma 49 If S 0 = {τ | JτK0 = ∅} and S is a simulation, then S ⊆ S 0.Proof: Let S be a simulation. We need to prove that ∀τ ∈ S . JτK0 = ∅,that is:
∀d ∈ D0.∀τ ∈ S . d 6∈ JτK0We will prove this property by indu
tion on d ∈ D0. Let's take d ∈ D0 and

τ ∈ S . Sin
e S is a simulation, we also have τ ∈ ES , that is:
∀u ∈ U.∀(P, N) ∈ t. (P ⊆ Au ⇒ CP,N∩Au

u )} (6)where the 
onditions CP,N
u are as in De�nition 25.We need to prove that d 6∈ JτK0. The set JτK0 is equal to:

⋃

(P,N)∈τ

⋂

a∈P

JaK0\
⋃

a∈N

JaK0We prove that d does not belong to any of the terms of this union. Let
(P, N) ∈ τ and u be the kind of d (as for values, it is straightforward toasso
iate a unique kind to ea
h element of D0). If a ∈ A \Au, then 
learly
d 6∈ JaK0. As a 
onsequen
e, if P 6⊆ Au, then d 6∈

⋂

a∈P JaK0\⋃a∈N JaK0. Wenow assume that P ⊆ Au. We 
an apply (6). We obtain that CP,N∩Au

u holds.It remains to prove that:
d 6∈

⋂

a∈P

JaK0\
⋃

a∈N∩Au

JaK0

u = basi
, d = c. The 
ondition CP,N∩Au

u is:
C ∩

⋂

b∈P

BJbK ⊆
⋃

b∈N

BJbKAs a 
onsequen
e, we get:
d 6∈

⋂

b∈P

BJbK\
⋃

b∈N

BJbK =
⋂

a∈P

JaK0\
⋃

a∈N∩Abasi
 JaK0

u = prod, d = (d1, d2). The 
ondition CP,N∩Au

u is:
∀N ′ ⊆ N ∩ Aprod.



































N

(

∧∧∧

t1×××t2∈P

t1∧∧∧
∧∧∧

t1×××t2∈N ′

¬¬¬t1

)

∈ S

∨

N





∧∧∧

t1×××t2∈P

t2∧∧∧
∧∧∧

t1×××t2∈N\N ′

¬¬¬t2



 ∈ S39



For ea
h N ′, we apply the indu
tion hypothesis to d1 and to d2. We get:
d1 6∈

t
∧∧∧

t1×××t2∈P

t1∧∧∧
∧∧∧

t1×××t2∈N ′

¬¬¬t1

|0

∨ d2 6∈

u
v ∧∧∧

t1×××t2∈P

t2∧∧∧
∧∧∧

t1×××t2∈N\N ′

¬¬¬t2

}
~

0That is:
d 6∈

(

⋂

t1×××t2∈P

Jt1K0\
⋃

t1×××t2∈N ′

Jt1K0
)

×





⋂

t1×××t2∈P

Jt2K0\
⋃

t1×××t2∈N\N ′

Jt2K0


A

ording to Lemma 20 and to Jt1K0 × Jt2K0 = Jt1×××t2K0, we thus get:
d 6∈

⋂

a∈P

JaK0\
⋃

a∈N∩Aprod JaK0

u = fun, d = {(d1, d
′
1), . . . , (dn, d′n)}. The 
ondition CP,N∩Au

u says that thereexists t0→→→s0 ∈ N su
h that, for all P ′ ⊆ P :
N

(

t0∧∧∧
∧∧∧

t→→→s∈P ′

¬¬¬t

)

∈ S ∨















P 6= P ′

N



(¬¬¬s0)∧∧∧
∧∧∧

t→→→s∈P\P ′

s



 ∈ SApplying the indu
tion hypothesis to the di and d′i (note that if d′i = Ω, then
d′i 6∈ JτK0 is trivial for all τ):

di 6∈

t
t0∧∧∧

∧∧∧

t→→→s∈P ′

¬¬¬t

|0

∨















P 6= P ′

d′i 6∈

u
v(¬¬¬s0)∧∧∧

∧∧∧

t→→→s∈P\P ′

s

}
~

0Let us �rst assume that ∀i. (di ∈ Jt0K0 ⇒ d′i ∈ Js0K0). Then we have d ∈

Jt0→→→s0K0. Otherwise, let us 
onsider i su
h that di ∈ Jt0K0 and d′i 6∈ Js0K0.The formula above gives for any P ′ ⊆ P :
(

di ∈
⋃

t→→→s∈P ′

JtK0
)

∨



P ′ 6= P ∧ d′i ∈ {Ω} ∪
⋃

t→→→s∈P\P ′

J¬¬¬sK0


Let's take P ′ = {t→→→s ∈ P | di 6∈ JtK0}. We have di 6∈
⋃

t→→→s∈P ′ JtK0, and thus
P ′ 6= P and d′i ∈ {Ω}∪

⋃

t→→→s∈P\P ′ J¬¬¬sK0. We 
an thus �nd t→→→s ∈ P\P ′ su
hthat d′i 6∈ JsK0, and be
ause t→→→s 6∈ P ′, we also have di ∈ JtK0. We have thusproved that d 6∈ Jt→→→sK0 for some t→→→s ∈ P .In both 
ases, we get:
d 6∈

⋂

a∈P

JaK0\
⋃

a∈N∩Afun JaK0

240



6.9 Subtyping de
idability for the universal modelWe will now fo
us on Theorem 15. Let ≤0 denote the subtyping relation indu
edby the universal model J_K0. We have t1 ≤0 t2 ⇐⇒ Jt1\\\t2K0 = ∅ ⇐⇒

JN (t1\\\t2)K0 = ∅. Therefore we need to show how to de
ide, for a given normalform τ0, whether Jτ0K0 = ∅ or not. Thanks to the Lemma above, we get:
Jτ0K0 = ∅ if and only if there exists a simulation S su
h that τ0 ∈ S .A
tually, we 
an restri
t our attention to a �nite number of normal forms.Indeed, let us 
onsider the set A of all the atoms that o

ur in τ0 (in
ludingatoms nested in other atoms). Thanks to the regularity of types, this set A is�nite. Write N (A) for the set of normal forms built only on top of these atoms,that is: N (A) = P(P(A) × P(A)). This set is also �nite, and looking atDe�nition 25, we see that an interse
tion of a simulation and N (A) is again asimulation. As a 
onsequen
e, we get: Jτ0K0 = ∅ if and only if there exists asimulation S ⊆ N (A) su
h that τ0 ∈ S . A naive algorithm 
an simply enu-merate all the subset of N (A) whi
h 
ontains τ0 and by applying De�nition 25
he
k whether one of them is a simulation.Of 
ourse, there exist better algorithms. For instan
e, we 
an interpretthe de�nition of a simulation as saturation rules: the algorithm starts fromthe set {τ0} and tries to saturate it until it obtains a simulation. Be
auseof the disjun
tions in the de�nition of a simulation, this algorithm needs toexplore di�erent bran
hes. A bran
h 
annot be in�nite be
ause the algorithmwill only 
onsider the normal forms in N (A) whi
h is a �nite set. There existsa simulation whi
h 
ontains τ0 if and only if one of the bran
hes su

eeds inrea
hing a simulation. The Ph.D. thesis [14℄ des
ribes two algorithms whi
himprove over this simple saturation-based strategy.6.10 Non-universal modelsThe interpretation domainD of a �nitely extensional set-theoreti
 interpretationmust be a solution to the equation D = EfD. In the previous se
tion, we
onsidered the initial solution to this equation and we obtained a universalmodel. In this se
tion, we will build non-universal models by 
onsidering non-initial solutions to the equation D = EfD.A �rst attempt 
ould be to 
onsider in�nite (or maybe regular) terms gen-erated by the following produ
tions:

d ::= c | (d, d) | {(d, d′), . . . , (d, d′)}
d′ ::= d | ΩBut it is then impossible to build a �nitely extensional interpretation on thisdomain D∞. Indeed, if J_K is su
h an interpretation, we 
onsider the element

d ∈ D∞ su
h that d = (d, d) and the type t su
h that t = (¬¬¬t)×××(¬¬¬t). Sin
e
d ∈ D∞ and JtK = E(t) ∩ D∞ = (D∞\JtK) × (D∞\JtK), we have: d ∈ JtK ⇐⇒
(d, d) ∈ (D∞\JtK) × (D∞\JtK) ⇐⇒ d 6∈ JtK. Contradi
tion.41



So, we will build domains whi
h are intermediate between D0 and D∞. Weneed to introdu
e some new notions.For an arbitrary set X , we de�ne D[X] as the set of �nite terms generatedby the produ
tion d below:
d ::= x | c | (d, d) | {(d, d′), . . . , (d, d′)}
d′ ::= d | Ωwhere x ranges over elements of X . In other words, D[X] is the initial solution

D to the equation D = X + C + D2 + Pf (D × DΩ). We de�ne the predi
ate
∆ ⊢ d : t for d ∈ D[X], t ∈ T , ∆ ∈ P(T )X by indu
tion on the stru
ture of d:
(∆ ⊢ d : t1∨∨∨t2) = (∆ ⊢ d : t1) ∨ (∆ ⊢ d : t2)
(∆ ⊢ d : ¬¬¬t) = ¬(∆ ⊢ d : t)
(∆ ⊢ c : b) = c ∈ BJbK
(∆ ⊢ (d1, d2) : t1×××t2) = (∆ ⊢ d1 : t1) ∧ (∆ ⊢ d2 : t2)
(∆ ⊢ {(d1, d

′
1), . . . , (dn, d′n)} : t1→→→t2) = ∀i. (∆ ⊢ di : t1) ⇒ (∆ ⊢ d′i : t2)

(∆ ⊢ x : a) = a ∈ ∆(x)
(∆ ⊢ d : t) = false otherwiseA 
ongruen
e on D[X] is an equivalen
e relation ≡ su
h that (d1

1 ≡ d2
1∧d1

2 ≡
d2
2) ⇒ (d1

1, d
1
2) ≡ (d2

1, d
2
2) and (∀i.d1

i ≡ d2
i ∧ d

′1
i ≡ d

′2
i ) ⇒ {(d1

1, d
′1
1 ), . . .} ≡

{(d2
1, d

′2
1 ), . . .}. If for all x, we 
hoose an element dx ∈ Ef(D[X]) = D[X]\Xand if we 
onsider the smallest 
ongruen
e ≡ su
h that ∀x ∈ X.x ≡ dx, thenthe quotient D

[X]
≡ = D[X]/ ≡ is su
h that Ef (D

[X]
≡ ) = D

[X]
≡ (modulo an impli
itbije
tion). Let's 
hoose some ∆ ∈ P(T )X . We require the predi
ate (∆ ⊢ d : t)to be invariant under ≡, that is: d1 ≡ d2 ⇒ ((∆ ⊢ d1 : t) ⇐⇒ (∆ ⊢ d2 : t)).This is the 
ase if and only if ∀x.(∆ ⊢ x : t) ⇐⇒ (∆ ⊢ dx : t), that is, if andonly if:

(∗) ∀x ∈ X. ∆(x) = {t | ∆ ⊢ dx : t}When this property holds, we 
an de�ne J_K∆ : T → P(D
[X]
≡ ) by JtK∆ =

{[d]≡ | (∆ ⊢ d : t)}, where [d]≡ denotes the equivalen
e 
lass of d modulo
≡. This de�nes a �nitely extensional set-theoreti
 interpretation (and thus amodel).Of 
ourse, the di�
ulty is now to 
hoose X , the dx and ∆ su
h that (∗) holds.Let us 
onsider the 
ase where X = Z, and ea
h dk, k ∈ Z is de�ned using only
dk−1 in a uniform way. Formally, we 
onsider a �xed element δ ∈ D{•} su
hthat δ 6= • and we de�ne dk = δ[• := k−1] (that is, the element of DZ obtainedby substituting • by k−1 in δ). If ∆ ∈ P(T )Z, then ∆ ⊢ dk : t is equivalent to
∆ ⊢ δ[• := k − 1] : t, and an indu
tion on the stru
ture of δ shows that this isequivalent to (• 7→ ∆k−1) ⊢ δ : t. If we de�ne the operator F : P(T ) → P(T )by F (T ) = {t | (• 7→ T ) ⊢ δ : t}, then the 
ondition (∗) 
an be rewritten as:

∀k ∈ Z. ∆k = F (∆k−1)Building su
h a sequen
e is not straightforward. We will rely on a te
hni
allemma. 42



Lemma 50 Let A be a �nite set, f : A → A, and a0 ∈ A. There exists aunique periodi
 sequen
e (ak)k∈Z ∈ AZ su
h that:
∃n0 ∈ N.∀k ≥ n0.ak = fk(a0)(where fn denotes the n-th iterated 
omposition of f with itself). This sequen
eis su
h that:

∀k. ak+1 = f(ak)Proof: We 
onsider the sequen
e (an)n∈N de�ned by an = fn(a0). Sin
e
A is �nite, this sequen
e 
annot be inje
tive. We 
an �nd n0 < n1 su
hthat an0 = an1 . A re
urren
e gives an = an+(n1−n0) for any n ≥ n0: thesequen
e (an)n∈N is ultimately periodi
. As a 
onsequen
e, there exists aunique sequen
e (ak)k∈Z whi
h 
oin
ides ultimately with (an)n∈N.Clearly, the property ak+1 = f(ak) holds for k large enough, and be
ause
(ak)k∈Z is periodi
, it holds for any k. 2Theorem 51 Let T 0 be a set of types. There exists a sequen
e (∆k)k∈Z su
hthat:
• ∀k ∈ Z.∆k+1 = F (∆k)

• For any type t, the sequen
e of the truth values of (t ∈ ∆k)k∈Z is periodi
and ∃n0 ∈ N.∀k ≥ n0.(t ∈ ∆k ⇐⇒ t ∈ F k(T 0))Proof: Sin
e the set P(T ) is not �nite, we 
annot use the lemma dire
tly.The regularity of types will 
ome to the res
ue. We de�ne a 
one as a �niteset of types whi
h is 
losed under subterms de
omposition (that is, if the set
ontains a type, it also 
ontains all its subterms). Any type belongs to some
one be
ause a type is a regular term. For a 
one C, we 
an de�ne the fun
tion
FC : P(C) → P(C) by FC(T ) = F (T ) ∩ C. We 
an apply the lemma tothis fun
tion, be
ause P(C) is �nite. We write (T C

k )k∈Z for the sequen
e weobtain. Now, we observe on the de�nition of the ⊢ predi
ate that for t ∈ C,the assertion (• 7→ T ) ⊢ δ : t holds if and only if (• 7→ (T ∩ C)) ⊢ δ : t holds.This gives immediatly the following property:
∀T ⊆ T . C ∩ F (T ∩ C) = C ∩ F (T )From that, a re
urren
e gives Fn

C(T 0) = Fn(T 0) ∩ C. So, for t ∈ C, wehave t ∈ T C
k ⇐⇒ t ∈ F k(T0) when k is large enough. Sin
e the sequen
e

(t ∈ T C
k )k∈Z is periodi
, it does not depend on the 
hoi
e of the 
one C whi
h
ontains t. We 
an thus de�ne ∆k as the set of types t su
h that t ∈ T C

k forsome/any 
one C that 
ontains t. We have T C
k = ∆k ∩C. It remains to 
he
kthat ∆k+1 = F (∆k) for all k. Let t be a type and C a 
one whi
h 
ontains

t. We have t ∈ ∆k+1 ⇐⇒ t ∈ T C
k+1 and a

ording to the lemma, we have

T C
k+1 = F (T C

k ) ∩ C = F (∆k) ∩ C. So: t ∈ ∆k+1 ⇐⇒ t ∈ F (∆k). Sin
e thisproperty holds for an arbitrary t, we get ∆k+1 = F (∆k) as expe
ted. 243



We will give two examples of 
onstru
tions based on this theorem. First,we will build a model whi
h is not well-founded. In a well-founded model, there
ursive type t0 = t0×××t0 is empty. We will build a model where this type is notempty. We take δ = (•, •) and we build (∆k)k∈Z as given by the theorem. Wethus get a �nitely extensional set-theoreti
 interpretation J_K∆ : T → P(DZ
≡).For any set of types T , we have t0 ∈ F (T ) ⇐⇒ (• 7→ T ) ⊢ δ : t0 ⇐⇒ (• 7→

T ) ⊢ (•, •) : t0×××t0 ⇐⇒ (• 7→ T ) ⊢ • : t0 ⇐⇒ t0 ∈ T . So if we 
hoose
T 0 su
h that t0 ∈ T 0, we have t0 ∈ ∆k for all k, from whi
h we 
on
lude that
Jt0K∆ 
ontains the [k]≡ for k ∈ Z. In parti
ular, it is not empty. To betterunderstand our 
onstru
tion, we 
an 
onsider the type t1 = (¬¬¬t1)×××(¬¬¬t1). We�nd that t1 ∈ F (T ) ⇐⇒ t1 6∈ T and we dedu
e that Jt1K∆ 
ontains the [k]≡for all even k ∈ Z (if t1 ∈ T 0) or for all k ∈ Z (if t1 6∈ T 0). For more 
omplexre
ursive types, we might see other periods that 2.Now, we will build a stru
tural (and thus well-founded) model whi
h is notuniversal. We 
onsider the re
ursive type t0 = (0→→→0)\\\(t0→→→0). If J_K is a�nitely extensional set-theoreti
 interpretation, a simple 
omputation gives:

Jt0K = {(di, d
′
i) | ∃i. di ∈ Jt0K}In parti
ular, this set is empty for the universal model built in the previousse
tion (be
ause its elements are �nite trees). We take δ = {(•, Ω)} and wepro
eed as above, with the following 
omputation: t0 ∈ F (T ) ⇐⇒ (• 7→ T ) ⊢

δ : t0 ⇐⇒ (• 7→ T ) ⊢ {(•, Ω)} : (0→→→0)\\\(t0×××0) ⇐⇒ (• 7→ T ) ⊢ • : t0 ⇐⇒
t0 ∈ T . We 
on
lude that the model J_K∆ is not empty. It remains to see thatit is stru
tural. The de
omposition relation ⊲ is de�ned by ([d1]≡, [d2]≡) ⊲ [di]≡.Be
ause of the de�nition of δ, if [d]≡ ⊲ [d′]≡, then d must be a pair (d1, d2) in
DZ × DZ . As a 
onsequen
e, the relation ⊲ is noetherian.6.11 Towards type-
he
kingIn this se
tion, we introdu
e notions that will be useful for deriving a type-
he
king algorithm. We also give the proof of Theorem 10 (lo
al exa
tness ofthe appli
ation rule). The existen
e results in this se
tion are e�e
tive (viz. itis possible to 
ompute the objets whose existen
e is asserted) provided that thesubtyping relation is de
idable.Lemma 52 Let t be a type su
h that t ≤ 1×××1. There exists a �nite set of pairsof types π(t) ∈ Pf (T 2) su
h that:

• t ≃
∨∨∨

(t1,t2)∈π(t)

t1×××t2

• ∀(t1, t2) ∈ π(t). t1 6≃ 0 ∧ t2 6≃ 0 44



Proof: We 
an write:
t ≃

∨∨∨

(P,N)∈N (t) | P⊆Aprod(1×××1)∧∧∧ ∧∧∧a∈P

a\\\
∨∨∨

a∈N∩Aprod aUsing Lemma 20, we 
an rewrite any interse
tion of produ
t types and 
om-plement of produ
t types as a union of produ
t types P ′ ⊆ Aprod:
t ≃

∨∨∨

a∈P ′

aWe simply de�ne π(t) as {(t1, t2) | t1×××t2 ∈ P ′ ∧ t1 6≃ 0 ∧ t2 6≃ 0}. 2Lemma 53 Let t be a type su
h that t ≤ 0→→→1. Then there exists a �nite setof pairs of types ρ(t) ∈ Pf (T 2) and a type Dom(t) su
h that:
∀t1, t2. (t ≤ t1→→→t2) ⇐⇒

{

t1 ≤ Dom(t)
∀(s1, s2) ∈ ρ(t). (t1 ≤ s1) ∨ (s2 ≤ t2)Proof: We 
an write:

t ≃
∨∨∨

(P,N)∈N (t) | P⊆Afun(0→→→1)∧∧∧ ∧∧∧
a∈P

a\\\
∨∨∨

a∈N∩Afun aClearly, the Lemma is true for t ≃ 0 (with Dom(t) = 1 and ρ(t) = ∅), and if itholds for t and t′, then it also holds for t∨∨∨t′ (with Dom(t∨∨∨t′) = Dom(t)∧∧∧Dom(t′)and ρ(t∨∨∨t′) = ρ(t)∪ ρ(t′)). We 
an thus assume with loss of generality that thas the form:
t =

∧∧∧

a∈P

a\\\
∨∨∨

a∈N

awith P, N ⊆ Afun, P 6= ∅, and t 6≃ 0. We 
on
lude easily with Lemma 24. 2Corollary 54 Let t and t1 be two types. If t ≤ t1→→→1, then t ≤ t1→→→t2 has asmallest solution t2 whi
h we write t • t1.Proof: Sin
e t ≤ t1→→→1, we have t1 ≤ Dom(t). The assertion t ≤ t1→→→t2 is thusequivalent to:
∀(s1, s2) ∈ ρ(t). (t1 ≤ s1) ∨ (s2 ≤ t2)that is:




∨∨∨

(s1,s2)∈ρ(t) | (t1 6≤s1)

s2



 ≤ t2We write t • t1 for the left-hand side of this equation. 245



We 
an now prove Theorem 10.Proof: Let t, t1 be two types su
h that t ≤ t1→→→1. Clearly, if ⊢ vf : t and
⊢ vx : t1, then ⊢ vfvx : t • t1, and thus, subje
t redu
tion gives ⊢ v : t • t1 if
vfvx

⋆
; v.Let's prove the opposite impli
ation:

∀v. ⊢ v : t • t1 ⇒ ∃vf , vx. (vfvx
⋆
; v) ∧ (⊢ vf : t) ∧ (⊢ vx : t1)This property is 
learly true for t ≃ 0, and if it is true for t and t′, then it istrue for t∨∨∨t′ (be
ause 0 • t1 ≃ 0 and (t∨∨∨t′) • t1 ≃ (t • t1)∨∨∨(t′ • t1)). We 
anthus assume, as in the proof of Lemma 53, that t has the form:

t =
∧∧∧

a∈P

a\\\
∨∨∨

a∈N

awith P, N ⊆ Afun, P 6= ∅, and t 6≃ 0. Lemma 24 gives:
t • t1 =

∨∨∨

P ′⊆P | t1 6≤
W

W

W

t′
1
→→→t′

2
∈P ′ t′

1





∧∧∧

t′
1
→→→t′

2
∈P\P ′

t′2



and
t1 ≤

∨∨∨

t′
1
→→→t′

2
∈P

t′1Let v be a value of type t•t1. We 
an �nd P ′ ⊆ P su
h that t1 6≤
∨∨∨

t′
1
→→→t′

2
∈P ′ t′1and ⊢ v :

∧∧∧

t′
1
→→→t′

2
∈P\P ′ t′2. Let vx be a value of type t1\\\

∨∨∨

t′
1
→→→t′

2
∈P ′ t′1 and vfthe abstra
tion

µf(P ).λx. (y = x ∈
∨∨∨

t′
1
→→→t′

2
∈P ′

t′1 ? fy | v)It is then easy to 
he
k that ⊢ vf : t and vfvx
⋆
; v. 26.12 Type-
he
king algorithmIn this se
tion, we assume that the subtyping relation ≤ is de
idable and wegive a type-
he
king algorithm for our type system.The key di�
ulty to over
ome is that the set of types t su
h that Γ ⊢ e : t,for a given environment Γ and a given expression e has no smallest elementin general. Indeed, 
onsider the 
ase where e is a well-typed abstra
tion. The

(abstr) rule allows us to 
hoose an arbitrary number of arrow types.46



We will thus introdu
e a new synta
ti
 
ategory, 
alled type s
heme to de-note su
h sets of types. The syntax for type s
hemes is given by the followingprodu
tions: t ::= t t ∈ T

| [t1→→→s1; . . . ; tn→→→sn] n ≥ 1; ti, si ∈ T

| t1 ⊗ t2
| t1 > t2
| ΩWe will write [ti→→→si]i=1..n for [t1→→→s1; . . . ; tn→→→sn]. We de�ne the fun
tion {{{_}}}whi
h maps s
hemes to sets of types:

{{{t}}} = {s | t ≤ s}

{{{[ti→→→si]i=1..n}}} = {s | ∃s0 =
∧∧∧

i=1..n

(ti→→→si) ∧
∧∧∧

j=1..m

¬¬¬(t′j→→→s′j). 0 6≃ s0 ≤ s}

{{{t1 ⊗ t2}}} = {s | ∃t1 ∈ {{{t1}}}, t2 ∈ {{{t2}}}. t1×××t2 ≤ s}
{{{t1 > t2}}} = {s | ∃t1 ∈ {{{t1}}}, t2 ∈ {{{t2}}}. t1∨∨∨t2 ≤ s}
{{{Ω}}} = ∅Lemma 55 Let t be a type s
hema. Then {{{t}}} = ∅ if and only if Ω appears int. Moreover, {{{t}}} is 
losed under subsumption (t ∈ {{{t}}} ∧ t ≤ t′ ⇒ t′ ∈ {{{t}}}) andinterse
tion (t ∈ {{{t}}} ∧ t′ ∈ {{{t}}} ⇒ t∧∧∧t′ ∈ {{{t}}}).Proof: Straightforward indu
tion of the stru
ture of t. 2Lemma 56 Let t be a type s
heme and t0 a type. We 
an 
ompute a types
heme, written t0 ? t, su
h that:

{{{t0 ? t}}} = {s | ∃t ∈ {{{t}}}. t0∧∧∧t ≤ s}Proof: We de�ne t0?t by indu
tion on t. If t is a type t, we take t0?t = t0∧∧∧t.If t is a union t1∨∨∨t2, we distribute: t0 ? t = (t0 ? t1) > (t0 ? t2). If t is Ω, orif {{{t}}} = ∅, we take t0 ? t = Ω. For the two remaining 
ases, we assume thatt 6= ∅, and we observe that:
t0 ≃

∨∨∨

(P,N)∈N (t)

∧∧∧

a∈P

a∧∧∧
∧∧∧

a∈N

¬¬¬aWe 
an thus see t0 as a boolean 
ombination built with 0, 1, ∨∨∨, ∧∧∧, atoms and
omplement of atoms. For t0 ≃ 0, we take t0 ? t = 0. For t0 ≃ 1, we take
t0 ? t = t. For t0 ≃ t1∨∨∨t2, we take t0 ? t = (t1 ? t)> (t2 ? t). For t0 ≃ t1∧∧∧t2,we take t0 ? t = t1 ? (t2 ? t). It remains to deal with the 
ase of an atom ora 
omplement of an atom.For the 
ase t = t1 ⊗ t2, we take:

(t1×××t2) ? (t1 ⊗ t2) = (t1 ? t1) ⊗ (t2 ? t2)47



¬¬¬(t1×××t2) ? (t1 ⊗ t2) = ((¬¬¬t1 ? t1) ⊗ t2) > (t1 ⊗ (¬¬¬t2 ? t2))and if a ∈ A \Aprod:
a ? (t1 ⊗ t2) = 0

¬¬¬a ? (t1 ⊗ t2) = (t1 ⊗ t2)For the 
ase t = [ti→→→si]i=1..n, we take:
(t→→→s) ? [ti→→→si]i=1..n =















[ti→→→si]i=1..n si ∧∧∧

i=1..n

ti→→→si ≤ t→→→s0 si ∧∧∧

i=1..n

ti→→→si 6≤ t→→→s

¬¬¬(t→→→s) ? [ti→→→si]i=1..n =















0 si ∧∧∧

i=1..n

ti→→→si ≤ t→→→s

[ti→→→si]i=1..n si ∧∧∧

i=1..n

ti→→→si 6≤ t→→→sand if a ∈ A \Afun:
a ? [ti→→→si]i=1..n = 0

¬¬¬a ? [ti→→→si]i=1..n = [ti→→→si]i=1..n

2Lemma 57 Let t be a type s
heme and t a type. We 
an de
ide the assertion
t ∈ {{{t}}}, whi
h we also write t ≤ t.Proof: First, we make the observation that t ∈ {{{t}}} if and only if 0 ∈
{{{(¬¬¬t) ? t}}}. Indeed: 0 ∈ {{{(¬¬¬t) ? t}}} ⇐⇒ ∃s ∈ {{{t}}}. (¬¬¬t)∧∧∧s ≤ 0 ⇐⇒
∃s ∈ {{{t}}}. s ≤ t ⇐⇒ t ∈ {{{t}}}. As a 
onsequen
e, we only need to dealwith the 
ase t = 0. If {{{t}}} = ∅, then 0 ∈ {{{t}}} does not hold. Otherwise, we
on
lude by indu
tion over the stru
ture of t:0 ∈ {{{t}}} ⇐⇒ t ≃ 00 6∈ {{{[ti→→→si]i=1..n}}}0 ∈ {{{t1 ⊗ t2}}} ⇐⇒ (0 ∈ {{{t1}}}) ∨ (0 ∈ {{{t2}}})0 ∈ {{{t1 > t2}}} ⇐⇒ (0 ∈ {{{t1}}}) ∧ (0 ∈ {{{t2}}})0 6∈ {{{Ω}}}

2Lemma 58 Let t by a type s
heme and i ∈ {1, 2}. We 
an 
ompute a types
heme πi(t) su
h that
πi(t) = {s | ∃t1×××t2 ∈ {{{t}}}.ti ≤ s}48



Proof: Let's take for instan
e i = 1. Note that ∃t1×××t2 ∈ {{{t}}}.t1 ≤ s isequivalent to s×××1 ∈ {{{t}}}.If t 6≤ 1×××1, then we take {{{π1(t)}}} = Ω. Otherwise, we pro
eed by indu
tionover the stru
ture of t. For t = t1 > t2, we take π1(t) = π1(t1) > π1(t2). Fort = t1 ⊗ t2, we take π1(t) = t1. For t = t, we take π1(t) =
∨∨∨

(t1,t2)∈π(t) t1.The other 
ases are impossible. 2Lemma 59 Let t and t1 be two type s
hemes. We 
an 
ompute a type s
hemet • t1 su
h that
{{{t • t1}}} = {s | ∃t1→→→t2 ∈ {{{t}}}.t1 ∈ {{{t1}}} ∧ t2 ≤ s}Proof: We pro
eed by indu
tion over the stru
ture of t. For t = t1 > t2, wetake t • t1 = t1 • t1 > t2 • t1. For t = t1 ⊗ t2 or t = Ω, we take t • t1 = Ω.For t = [t′i→→→s′i]i=1..n, we take t • t1 = (

∧∧∧

i=1..n(t′i→→→s′i)) • t1, so the onlyremaining 
ase if t = t. We observe that ∃t1→→→t2 ∈ {{{t}}}.t1 ∈ {{{t1}}} ∧ t2 ≤ s isequivalent to ∃t1 ∈ {{{t1}}}.t ≤ t1→→→s. A

ording to Lemma 53, this is equivalentto: ∃t1 ∈ {{{t1}}}.t1 ≤ Dom(t) ∧ ∀(s1, s2) ∈ ρ(t). (t1 ≤ s1) ∨ (s2 ≤ s). We 
laimthat this is equivalent to t1 ≤ Dom(t) ∧ ∀(s1, s2) ∈ ρ(t). (t1 ≤ s1) ∨ (s2 ≤ s).The ⇒ impli
ation is immediate. Let us 
he
k the ⇐ impli
ation. For every
(s1, s2) ∈ ρ(t) su
h that s2 6≤ s, we have t1 ≤ s1 and it is thus possible to�nd a type t′1 ∈ {{{t1}}} su
h that t′1 ≤ s1. We de�ne t1 as the interse
tion of allthese t′1 and of Dom(t), and we thus have t1 ∈ {{{t1}}} ∧ t1 ≤ Dom(t) ∧ ∀(s1, s2) ∈
ρ(t). (t1 ≤ s1) ∨ (s2 ≤ s). To 
on
lude, we de�ne t • t1 as Ω if t1 6≤ Dom(t),and otherwise as:

∨∨∨

(s1,s2)∈ρ(t).(t1 6≤s1)

s2

2We 
an now des
ribe a type-
he
king algorithm. We de�ne a s
heme environmentas a �nite mapping � from variables to type s
hemes su
h that {{{�(x)}}} 6= ∅ forevery x in the domain of �. The type-
he
king algorithm is formalized as a totalfun
tion whi
h maps a s
heme environment � and an expression e to a s
hemewritten �[e]. This fun
tion is de�ned by indu
tion on the stru
ture of e by the
49



following equations:


































































































































�[c] = bc�[(e1, e2)] = �[e1] ⊗ �[e2]�[µf(t1→→→s1; . . . ; tn→→→sn).λx.e] =

{ t if ∀i = 1..n. si ≤ si

Ω otherwisewhere { t = [ti→→→si]i=1..nsi = ((f : t), (x : ti),�)[e] (i = 1..n)�[x] =

{ �(x) if �(x) is de�ned
Ω otherwise�[πi(e)] = πi(�[e])�[e1e2] = �[e1] • �[e2]�[(x = e ∈ t ? e1|e2)] = s1 > s2where 















t0 = �[e]t1 = t ? t0t2 = (¬¬¬t) ? t0si =







((x : ti),�)[ei] if ti 6≤ 0,{{{ti}}} 6= ∅0 if ti ≤ 0
Ω if {{{ti}}} = ∅

(i = 1..2)We are now going to prove soundness and 
ompleteness of the algorithm. If �is a s
heme environment and Γ is a typing environment, we write � ≤ Γ when �and Γ have the same domain and for all x in this domain �(x) ≤ Γ(x). If Γ1 and
Γ2 are two typing environment, we de�ne Γ1∧∧∧Γ2 by (Γ1∧∧∧Γ2)(x) = Γ1(x)∧∧∧Γ2(x)(unde�ned when one of the Γi(x) is not de�ned). Note that if � ≤ Γ1 and� ≤ Γ2, then � ≤ Γ1∧∧∧Γ2.Lemma 60 (Corre
tness) If �[e] ≤ t, then there exists Γ ≥ � su
h that
Γ ⊢ e : t.Proof: By indu
tion over the stru
ture of e.

e = c. We have bc ≤ t, and thus ⊢ c : t. We 
an take for Γ an arbitrary typingenvironment su
h that Γ ≥ �. We use the ∧∧∧ operator on typing environmentand Lemma 30 to re
on
ile di�erent Γ's given by several uses of the indu
tionhypothesis.
e = x. We have Γ(x) ≤ t. We 
an 
hoose Γ ≥ � su
h that Γ(x) = t.
e = (e1, e2). We have �[e1] ⊗ �[e2] ≤ t. We 
an thus �nd t1 ≥ �[e1] and
t2 ≥ �[e2] su
h that t1×××t2 ≤ t. The indu
tion hypothesis gives Γ1 ≥ � su
hthat Γ1 ⊢ e1 : t1 and Γ2 ≥ � su
h that Γ2 ⊢ e2 : t2. We take Γ = Γ1∧∧∧Γ2.
e = e1e2. We have �[e1]•�[e2] ≤ t. We 
an thus �nd t1, t2 su
h that t1→→→t2 ≥�[e1], t1 ≥ �[e2] and t2 ≤ t. The indu
tion hypothesis gives Γ1 ≥ � su
h that
Γ1 ⊢ e1 : t1→→→t2 and Γ2 ≥ � su
h that Γ2 ⊢ e2 : t1. We take Γ = Γ1∧∧∧Γ2.
e = πi(e

′). We have πi(�[e′]) ≤ t. We 
an thus �nd t1, t2 su
h that t1×××t2 ≥�[e′] and ti ≥ t. The indu
tion hypothesis gives Γ ≥ � su
h that Γ ⊢ e′ :
t1×××t2. We dedu
e that Γ ⊢ e : ti and by subsumption Γ ⊢ e : t.50



e = (x = e′ ∈ t′ ? e1 | e2). We take t0 = �[e′], t1 = t′?t0 and t2 = (¬¬¬t′)?t0.We also take s1 and s2 as in the 
orresponding 
ase of the de�nition of �[e].We have s1>s2 ≤ t. We 
an thus �nd s1 ≥ s1 and s2 ≥ s2 su
h that t ≥ s1∨∨∨s2.Let's take i ∈ {1, 2}. We will de�ne a type ti. We have si 6= Ω sin
e si ≥ si.There remains two 
ases. If ti 6≤ 0, we have si = ((x : ti),�)[ei]. Theindu
tion hypothesis gives Γi ≥ � and ti ≥ ti su
h that (x : ti), Γi ⊢ ei : si.Otherwise, we have si = 0 and we take ti = 0. In both 
ase, we have ti ≥ ti.Let's 
onsider the type t0 = (t1∧∧∧t′)∨∨∨(t2∧∧∧¬¬¬t′). We now prove that t0 ≥ t0.Sin
e t1 ≥ t1 = t′ ? t0, there exists t′1 ≥ t0 su
h that t′∧∧∧t′1 ≤ t1. Similarly,we have t′2 ≥ t0 su
h that (¬¬¬t′)∧∧∧t′2 ≤ t2. We get t0 ≥ (t′∧∧∧t′1)∨∨∨((¬¬¬t′)∧∧∧t′2) ≥
(t′∧∧∧t′1∧∧∧t′2)∨∨∨((¬¬¬t′)∧∧∧t′1∧∧∧t′2) ≃ t′1∧∧∧t′2 ≥ t0.Sin
e t0 ≥ t0, the indu
tion hypothesis gives Γ0 ≥ � su
h that Γ0 ⊢ e′ : t0.Let's 
onsider the types t′′1 = t0∧∧∧t ≤ t1 and t′′2 = t0∧∧∧(¬¬¬t) ≤ t2. By 
onsideringthe interse
tion of Γ0 and of Γ1 and Γ2 when they are de�ned, we �nd Γ ≥ �su
h that Γ ⊢ e′ : t0 and (xi : t′′i ), Γ ⊢ ei : si when ti 6≤ 0. The rule (case)gives Γ ⊢ e : s1∨∨∨s2. By subsumption, we get Γ ⊢ e : t.
e = µf(t1→→→s1; . . . ; tn→→→sn).λx.e′. We take t and si as in the de�nition of the
orresponding 
ase for �[e]. Sin
e �[e] 6= Ω, we get t ≤ t and si ≤ si for all
i = 1..n. The indu
tion hypothesis gives, for ea
h i, an environment Γi ≥ �,and two types ti ≥ t, t′′i ≥ ti su
h that (f : ti), (x : t′′i ), Γi ⊢ e′ : si.We de�ne the type t′ as ∧∧∧i=1..n ti∧∧∧t. We have t′ ≥ t = [ti→→→si]i=1..n. We 
anthus �nd a type t′′ of the form t′′ =

∧∧∧

i=1..n ti→→→si∧∧∧
∧∧∧

j=1..m¬¬¬(t′j→→→s′j) su
hthat t′ ≥ t′′ and t′′ 6≃ 0.If we take for Γ the interse
tion of all the Γi, we obtain (f : t′′), (x : ti), Γ ⊢
e′ : si for all i from whi
h we 
on
lude Γ ⊢ e : t′′ and thus Γ ⊢ e : t. 2Lemma 61 (Completeness) If � ≤ Γ and Γ ⊢ e : t then �[e] ≤ t.Proof: By indu
tion over the derivation of Γ ⊢ e : t and 
ase disjun
tion overthe last rule used in this derivation. The proof is me
hani
al. We give thedetails only for the rule (case).

Γ ⊢ e : t0

{

t0 6≤ ¬¬¬t ⇒ (x : t0∧∧∧t), Γ ⊢ e1 : s
t0 6≤ t ⇒ (x : t0\\\t), Γ ⊢ e2 : s

Γ ⊢ (x = e ∈ t ? e1|e2) : sWe assume that � ≤ Γ and we take t0,t1, t2,s1,s2 as in the de�nition of�[(x = e ∈ t ? e1|e2)]. We need to prove that s1 > s2 ≤ s, that is s1 ≤ s ands2 ≤ s. We will do the proof for s1 (the proof for s2 is similar).The indu
tion hypothesis gives t0 = �[e] ≤ t0, from whi
h we get t1 ≤ t∧∧∧t0.If t1 ≤ 0, then s1 = 0 ≤ s. Otherwise, sin
e {{{t1}}} 6= ∅, we have s1 = ((x :t1),�)[e1]. We have t0 6≤ ¬¬¬t, otherwise t1 ≤ 0. We thus have a sub-derivation
(x : t0∧∧∧t), Γ ⊢ e1 : s. The indu
tion hypothesis, applied to the environment
(x : t1),� gives s1 ≤ s. 251



By 
ombining the two previous lemmas, we get an exa
t 
hara
terization ofthe type-
he
king algorithm in terms of the type system.Theorem 62 For any s
heme environment � and expression e:
{{{�[e]}}} = {t | ∃Γ ≥ �.Γ ⊢ e : t}Corollary 63 Let Γ be a typing environment. It 
an also be seen as a s
hemeenvironment. For any expression e and any type t, we have:

Γ ⊢ e : t ⇐⇒ Γ[e] ≤ tAs a spe
ial 
ase, the expression e is well-typed under Γ if and only if {{{Γ[e]}}} 6= ∅.7 Con
lusionOur original motivation for developing the theory presented in this arti
le wasthe addition of �rst-
lass fun
tions to XDu
e while preserving the set-theoreti
approa
h to subtyping. This was the starting point of the CDu
e proje
t [10℄,aiming at developing a programming framework 
overing several aspe
ts of XMLprogramming: e�
ient implementation, query languages, web-servi
es, web pro-gramming, and so on.The reader might be surprised to fa
e su
h a 
omplex theory in the setting ofan XML-oriented fun
tional language. First, we should mention that XML playsno role in the 
omplexity of the theory. The 
ir
ularity whi
h our bootstrappingte
hnique addresses 
omes only from the 
ombination of arrow types, re
ursivetypes and Boolean 
onne
tives. Sin
e XDu
e already had re
ursive types andBoolean 
onne
tives, it seemed natural to add arrow types and to fully integratethem with these features. Simpler solutions 
ould have been possible, e.g. bystratifying the type algebra so as to avoid any intera
tion between arrow typesand existing XDu
e types: this is what the �rst author did to integrate XDu
etypes into an ML-based type system [15℄.Se
ond, we 
ould have presented the theory without introdu
ing the abstra
t
on
ept of models. Indeed, for the appli
ation to a spe
i�
 programming lan-guage, we 
ould have worked dire
tly with the universal model (Se
tion 6.8).That said, we believe that the 
urrent presentation better 
aptures the essen
eof our approa
h. Working dire
tly with a spe
i�
 model would be mysteriousand ad ho
.Although we presented our notion of model and the bootstrapping te
hniqueon a spe
i�
 type algebra and for a spe
i�
 
al
ulus, our framework is quite ro-bust. Fris
h's Ph.D. thesis [14℄ des
ribes some variants of the system (removingtype error at appli
ation, removing overloading) and shows how minimal mod-i�
ations to the theory are enough to deal with them.More importantly, our approa
h and the te
hniques we developed turnedout to have mu
h a broader appli
ation than we initally expe
ted. What wedevised is the �rst approa
h for a higher order λ-
al
ulus in whi
h union, in-terse
tion, and negation types have a set-theoreti
 interpretation. The logi
al52



relevan
e of the approa
h was independently 
on�rmed by Dezani et al. [13℄who showed that the subtyping relation indu
ed by the universal model of Se
-tion 6.8 restri
ted to its positive part (that is arrows, unions, interse
tions butno negations) 
oin
ides with the relevant entailment of the B+ logi
 (de�ned30 years before we started our work). This same approa
h 
an be applied toparadigms other than λ-
al
uli: Castagna, De Ni
ola and Vara

a [9℄ use ourte
hnique to de�ne the Cπ-
al
ulus, a π-
al
ulus where Boolean 
ombinatorsare added to the type 
onstru
tors ch+(t) and ch
−(t) whi
h 
lassify all the 
han-nels on whi
h it is possible to read or, respe
tively, to write a value of type t.The te
hnique using the extensional interpretation is still needed for 
ardinalityreasons, however bootstrapping in Cπ has a di�erent �avour, sin
e it generatesa model that is mu
h 
loser to the model of values. Interestingly, this modelis de�ned by a �x-point 
onstru
tion. Cπ features several points that are in
ommon with or dual to CDu
e: Cπ presents the same paradox one meets whenadding referen
e types to CDu
e [7℄. The paradox 
an be avoided by restri
tingCπ to its �lo
al� version [9℄ but in that 
ase the type s
hemes of Se
tion 6.12must be reintrodu
ed, in spite of the fa
t that they are not needed for the fullversion of Cπ. Another striking resemblan
e between CDu
e and Cπ that isworth mentioning is that in order to de
ide the subtyping relation for the Cπ,one ta
kles the same di�
ulties as those met in de
iding general subtyping forthe polymorphi
 extension of CDu
e [19℄, namely, one must be able to de
idewhether a type is a singleton or not. An informal introdu
tion to these aspe
ts
an be found in [5℄, while the formal 
orresponden
e between CDu
e and Cπ isstudied in [6℄.Referen
es[1℄ A. Aiken and E. L. Wimmers. Type in
lusion 
onstraints and type in-feren
e. In Pro
eedings of the Seventh ACM Conferen
e on Fun
tionalProgramming and Computer Ar
hite
ture, pages 31�41, Copenhagen, Den-mark, June 93.[2℄ A. Asperti and G. Longo. Categories, Types and Stru
tures: An Introdu
-tion to Category Theory for the Working Computer S
ientist. MIT-Press,1991.[3℄ H. Barendregt, M. Coppo, and M. Dezani-Cian
aglini. A �lter lambdamodel and the 
ompleteness of type assignment. Journal of Symboli
 Logi
,48(4):931�940, 1983.[4℄ V. Benzaken, G. Castagna, and A. Fris
h. CDu
e: an XML-friendly generalpurpose language. In ICFP '03, 8th ACM International Conferen
e onFun
tional Programming, pages 51�63, Uppsala, Sweden, 2003. ACM Press.[5℄ G. Castagna. Semanti
 subtyping: 
hallenges, perspe
tives, and open prob-lems. In ICTCS 2005, Italian Conferen
e on Theoreti
al Computer S
ien
e,53



number 3701 in Le
ture Notes in Computer S
ien
e, pages 1�20. Springer,2005.[6℄ G. Castagna, M. Dezani, and D. Vara

a. En
oding CDu
e into the Cπ-
al
ulus. In CONCUR '06, Le
ture Notes in Computer S
ien
e. Springer-Verlag, 2006. To appear.[7℄ G. Castagna and A. Fris
h. A gentle introdu
tion to semanti
 subtyping. InPro
eedings of PPDP '05, the 7th ACM SIGPLAN International Sympo-sium on Prin
iples and Pra
ti
e of De
larative Programming, ACM Press(full version) and ICALP '05, 32nd International Colloquium on Automata,Languages and Programming, Le
ture Notes in Computer S
ien
e n. 3580,Springer (summary), Lisboa, Portugal, 2005. Joint ICALP-PPDP keynotetalk.[8℄ G. Castagna, G. Ghelli, and G. Longo. A 
al
ulus for overloaded fun
tionswith subtyping. Information and Computation, 117(1):115�135, 1995.[9℄ G. Castagna, R. D. Ni
ola, and D. Vara

a. Semanti
 subtyping for the π-
al
ulus. In LICS '05, 20th Annual IEEE Symposium on Logi
 in ComputerS
ien
e. IEEE Computer So
iety Press, 2005.[10℄ The CDu
e programming language. http://www.
du
e.org.[11℄ M. Coppo and M. Dezani-Cian
aglini. An extension of the basi
 fun
-tionality theory for the λ-
al
ulus. Notre-Dame Journal of Formal Logi
,21(4):685�693, O
tober 1980.[12℄ F. Damm. Subtyping with union types, interse
tion types and re
ursivetypes II. Resear
h Report 816, IRISA, 1994.[13℄ M. Dezani-Cian
aglini, A. Fris
h, E. Giovannetti, and Y. Motohama. Therelevan
e of semanti
 subtyping. In Interse
tion Types and Related Systems.Ele
troni
 Notes in Theoreti
al Computer S
ien
e 70(1), 2002.[14℄ A. Fris
h. Théorie, 
on
eption et réalisation d'un langage de programmationfon
tionnel adapté à XML. PhD thesis, Université Paris 7, De
. 2004.[15℄ A. Fris
h. OCaml + XDu
e. In Programming Languages Te
hnologies forXML (PLAN-X), 2006.[16℄ A. Fris
h, G. Castagna, and V. Benzaken. Semanti
 Subtyping. In LICS'02, 17th Annual IEEE Symposium on Logi
 in Computer S
ien
e, pages137�146. IEEE Computer So
iety Press, 2002.[17℄ R. Hindley and G. Longo. Lambda-
al
ulus models and extensionality.Zeit. Math. Logik Grund. Math., 26(2):289�319, 1980.[18℄ H. Hosoya. Regular Expression Types for XML. PhD thesis, The Universityof Tokyo, 2001. 54



[19℄ H. Hosoya, A. Fris
h, and G. Castagna. Parametri
 polymorphism forXML. In POPL '05, 32nd ACM Symposium on Prin
iples of ProgrammingLanguages. ACM Press, 2005.[20℄ H. Hosoya and B. Pier
e. Regular expression pattern mat
hing for XML.In POPL '01, 25th ACM Symposium on Prin
iples of Programming Lan-guages, 2001.[21℄ H. Hosoya and B. Pier
e. XDu
e: A typed XML pro
essing language. ACMTransa
tions on Internet Te
hnology, 3(2):117�148, 2003.[22℄ J. C. Reynolds. The 
oheren
e of languages with interse
tion types. InT. Ito and A. R. Meyer, editors, Theoreti
al Aspe
ts of Computer Software,volume 526 of Le
ture Notes in Computer S
ien
e, pages 675�700, Berlin,1991. Springer-Verlag.[23℄ J. C. Reynolds. Design of the programming language Forsythe. Te
hni
alReport CMU-CS96 -146, Carnegie Mellon University, Pittsburgh, Pennsyl-vania, June 1996.

55


