UL oad: Choosing the Right Storage for your XML Application

Andrei Arion, Véronique Benzaken, loana Manolescu

INRIA Futurs and Univ. Paris XI, France
Andrei.Arion@inria.fr, Veronique.Benzaken@Iri.fr, loana.Manolescu@inria.fr

1 Introduction

A key factor for the outstanding success of database man-
agement systems is physical data independence: queries,
and application programs, are able to refer to the data at the
logical level, ignoring the details on how the data is physi-
cally stored and accessed by the system. The corner stone
of implementing physical data independence is an access
path selection algorithm: whenever a disk-resident data
item can be accessed in several ways, the access path se-
lection algorithm, which is part of the query optimizer, will
identify the possible alternatives, and choose the one likely
to provide the best performance for a given query [13].

Surprisingly, physical data independence is not
yet achieved by XML database management systems
(XDBMSs, in short). Numerous methods have been
proposed for XML storage, labeling and indexing and
implemented in various prototypes. However, the data
layout resulting from each of these schemes is hard-coded
within the query optimizer of the corresponding system.
Thus, adding a different type of storage structure (e.g.,
a new index) requires re-writing the query optimizer, to
inform it that a new access path becomes available. This
situation prevents XDBMSs from attaining two important
features: flexibility and extensibility. By flexibility, we
mean that widely different storage schemes must be
supported, for the varying needs of different workloads
and data sets. By extensibility, we mean that the XDBMS
must adapt gracefully to changes in the workload and/or
data set, which naturally require tuning the storage by
adding e.g., an index or a materialized view. Such exten-
sibility is a common feature of current relational database
management systems (RDBMSs), endowed with automatic
index and materialized view selection [2].

We demonstrate ULoad, an XML storage tuning tool,
which is a step towards achieving physical data indepen-
dence for XML. ULoad is meant to help the database ad-
ministrator (DBA) in choosing the persistent XML storage
and indexing modules best suited for a given dataset, and
workload, thus achieving our flexibility and extensibility
requirements.

Given a document to store, and a query workload,
ULoad: (¢) allows the DBA to choose, customize, and ap-
ply some storage and indexing models, picked among a
large set of existing ones; (i) lets the DBA define her own

specialized persistent structures; (ii¢) presents to the DBA
the query execution plans (QEPs) for the workload queries,
on the storage model chosen, and their costs; and (iv) may
propose a storage adapted to the data and workload, based
on a cost-driven search.

At the core of ULoad lies a novel algebraic formal-
ism (with a simple graphical representation), called XML
Access Modules (XAMs), describing the information con-
tained in a persistent XML storage structure. XAMs are
generic enough to capture many existing storage and index-
ing schemes, and they have several other innovative fea-
tures. First and foremost, a set of XAMs is a high-level
description of how a document is stored. Based on this de-
scription, with clear algebraic foundations, ULoad provides
an access path selection algorithm, identifying the storage
structures that can be used to answer a given query. When
changing a document’s storage, we only need to update the
set of XAMs describing it; no change to the optimizer’s
code is needed. Second, XAMs capture important proper-
ties of persistent XML identifiers, with a crucial impact on
the efficiency of XML query and update processing. Fi-
nally, XAMs provide an accurate model for XML indexes,
since they allow specifying the fields whose values have to
be known (that is, the index key), in order to access the
index data.

This document is structured as follows. Section 2 intro-
duces the XAM formalism. Section 3 describes the ULoad
tool functionalities. Section 4 outlines demonstration sce-
narios, while Section 5 discusses related works.

2 What the DBAs should know about XAMs

In order to interact with ULoad a DBA must have a ba-
sic understanding of our storage description language. We
present here the information needed for creating and tuning
a particular storage. We start with few general considera-
tions and then we illustrate them by an example.

An XML Access Module (XAM) corresponds to an
XML document fragment stored in a persistent data struc-
ture. A XAM is described as an ordered tree (NS, E'S, o),
where: NS is a node specification, ES is an edge specifi-
cation, and o is an order flag. If the XAM data is stored in
document order, o is set to true; otherwise, o is false.

A node specification contains an identifier specification
IDSpec, a tag specification T'Spec, a value specification

V Spec, and a content specification C'Spec.® By content,
we mean the full (serialized) representation of the XML el-
ement or attribute.?. An ID (resp. tag, value, content) spec-
ification, attached to a XAM node, denotes the fact that the
element/attribute ID (respectively, tag, value, or full textual
content) is stored in the XAM.

An R symbol in an ID specification denotes an access
restriction: the ID of this XAM node is required (must be
known) in order to access the data stored in the XAM. This
feature is important to model persistent tree storage struc-
tures, which enable navigation from a parent node to its
children, as in [9, 6]. More generally, R symbols allow to
model arbitrary XML indexes, on structure and values: key
values must be known to perform an index lookup [10].

A tag specification of the form Tag denotes the fact that
the element tag (or attribute name) can be retrieved from
the XAM. Alternatively, a tag specification predicate of the
form [Tag=c] signals that only data from the subtrees sat-
isfying the predicate is stored by the XAM. The tag value
can also be required; this is also marked by the symbol R.
Value and content specifications are very similar and we
omit them for space reasons (for details see [10]).

XAM edges can be either parent-child edges, marked /,
from ancestor-descendant edges, marked //. Furthermore,
we distinguish join, left outerjoin, left semijoin, nested join
and left nested outer join semantics for the XAM edges,
considering the parent node on the left hand; these are
marked by the symbols j, o, s, nj, respectively no.

The data stored by a XAM is a set (or list) of possibly
nested tuples, whose schema is derived from the XAM, and
whose content is derived from the stored XML document.
XAMs are defined based on a nested relational model [1],
but they also support un-nesting, to model e.g., relational
storage structure. More details are provided in [10].

Example. Consider the XML snippet and XAMs in Fig-
ure 1. The XAMs are depicted under a tree graphical form,
actually used in the ULoad GUI, following the XAM tree
structure. On the left side of begin tags, we show (pre-
order, postorder, depth) identifiers for the element and its
attributes. The preorder number reflects the element po-
sition in the document; we will use it as a simple order-
preserving ID, when needed. For simplicity, we assume all
XAMs ordered.

The XAM Yy, stores order-preserving IDs, and text val-
ues, of all email elements. On the document in Figure 1,
assuming integer 1Ds, x, thus stores the tuples:

(ID;=4 Val;="Kay@ny.org")
(ID;=10 Val;="Tom@md.com”)
The XAM y, stores parent-child IDs, enabling navigation

from parent to children elements. On our sample docu-
ment, some of the tuples stored by ,, are:

1Attribute nodes are uniquely identifi ed by their parent’s ID and the
attribute name. We use explicit structural 1Dsin the sequel but our system
supports many identifi er schemes

2Clearly, the content of an XML element can always be retrieved from
a non-lossy storage, by combining accesses to several storage modules.
Here, we use Cont only for the storage models able to retrieve it from a
single persistent data structure.

[1,14,1] <people>
[2,13,2] [3,1,3] <person id="1"> Xa T
) [Tag="email"]

[4,2,3] <email>Kay@ny.org</email>
[5,5,3] <watches> iD° (1) val
[6,3,4] <watch>al</watch> X T
[7,4,4] <watch>a2</watch> j)
</watches> i J
</person> ID'R
[8,8,2]9,6,3] <person id="2"> i no
[10,7,3] <email>Tom@md.com</email> ID n2) Tag
</person>
[11,12,2][12,9,3] <person id="3"> Xc
[13,11,3] <watches>
[14,10,4] <watch>a3</watch>
</watches>
</person> oN
</people> [Tag="email"][Tag="watch"]

Figure 1: Sample XML document, and XAMs.

(ID1=1[(ID2=2 Tag2="person”), (ID.=8 Tag="person”),
(ID2=11 Tag.="person”)])
(ID1=2[(ID2=3 Tag.="@id")]) (ID:=3[]) (ID1=4[])
Notice the nesting of information representing x; node
ng, inside tuples representing information of the parent
node ny. Since the edge ni-ny has outerjoin semantics,
childless nodes (such as the email element numbered 4) ap-
pear with an empty list of child tuples. The value of the ID;
attribute must be known, in order to access x tuples.
Finally, the XAM ¥ stores email children and watch de-
scendants of persons having some watch descendants. On
our sample document, . stores one nested tuple:

ID:=[2,13,2] [(ID2=[6,3,4] Val.="al"),
(ID2=[7,4,4] Valo="a2")]
[(ID3=[4,2,3] Valz="Kay@ny.org")])

Answering queries over XAMs Given a query and a
set of XAMs, ULoad identifies all XAM combinations that
may be used to answer the query. For example, consider
the query ¢ on the document in Figure 1:
for $p in //person return {$p//email}

ULoad will find ¢ may be answered by: using x; (with
the root ID;=1) to get the IDs of the root’s children; testing
the children tag to retain person children; using x; again to
find person email I1Ds; finally, using x,, to obtain the email
value. This corresponds to a top-down navigation plan®:
OTags=email (UTaggzperson (Xb > Xb) > Xb) ™ Xa-

X could also be used to answer ¢, but not alone, be-
cause it does not store the emails of users without watch
descendants. Thus, ULoad will construct a union plan over
Xe, and a navigation plan like the one above, but restricted
to persons without watch descendants.

Now, let ¢’ be: for $p in //person return {$p/@id}.

ULoad notices that @id attributes are not stored, and
signals that $p/@id (and thus, ¢’) cannot be matched on
the XAMs in Figure 1. ULoad will suggest a new XAM,
storing the @id attribute together with person identifiers;
this will enable answering ¢’

Now, consider the new XAM y4 shown in Figure 2.
For any tag, xq returns the structural IDs and values of all

3ULoad uses the structural constraints C, to stop navigation when all
email descendants have been found.

Xe| T

Xal T |

& [T "@'d"]‘j %j [T il"]
S ag="@i ag="email"
D TagR_Val Val R @ @ Val

Figure 2: Sample XAMs x4 and xe.

elements of that tag, in the style of the tag indexes used
in [9, 6]. If xq is available, ULoad will answer ¢ using
structural join plans on x4, as in [12].

Finally, consider the XAM Y. in Figure 2. It represents
an index, which allows to retrieve the email descendants of
any element having an @id attribute; the value of the @id
attribute is the index key. This illustrates the capacity of
XAMs to express generic XML indexes, including struc-
tural and content conditions.

3 ULoad tool outline

ULoad recommends, or assists the DBA in choosing or
defining, a persistent storage scheme adapted to a partic-
ular application. ULoad does not store XML data; rather,
it works in conjunction with an XDBMS, backed by a rela-
tional, native or mixed XML store (see Section 4). ULoad
checks and guarantees that the storage chosen is both suf-
ficient, and efficient for the application needs. Once the
DBA is satisfied with a given storage, ULoad emits a set of
loading directives to the XBMS, effectively materializing
this storage. ULoad offers the choice among a wide variety
of existing storage and indexing strategies, as well as the
ability to define custom storage structures and indexes.

ULoad needs several inputs. (1) A set of documents
to store; in this paper, for simplicity, we consider a sin-
gle document D. (2) A set of structural constraints C de-
scribing D’s structure. In general, such constraints may
come from a DTD or XML Schema. To handle XML doc-
uments with or without a schema, ULoad considers struc-
tural constraints under the form of a path summary, equiv-
alent to a Dataguide [8] for XML data. A path summary
is easy to extract from an XML document, easy to update,
compact, and quite expressive [10]. (3) An optional query
workload W. (4) Optionally, access to the XDBMS’s cost
estimator. ULoad needs to estimate the impact of a candi-
date storage structure, on the performance of the process-
ing of the queries in W. This impact is reflected by the
optimizer’s cost estimation for W, assuming the candidate
structure was available. Note that, when actually process-
ing the queries in W, the XDBMS will rely on the same
estimation.

Based on these inputs, ULoad allows the user to perform
several actions, outlined in Figure 3:

Choose a (set of) storage and indexing models from a
set of existing ones, such as [4, 7, 14], according to which
D will be stored. Different parts of D may be stored ac-
cording to different models; indices can be selectively built
to support W. Or, the user may define her own persistent
data structures (in the style of materialized views) using a

D, set of XAMs

DBA
N
ULoad XDBMS
Al
Load
&%
\ N
Data
Create Check if
s 1 e
Edit Estimate

XAM Recommend| |cost & uer
\9 XAMs %Xec)_/

show plan

XAMs for D

\

Figure 3: Outline of ULoad’s functions.

graphical language. The result of this stage is a set of XAMs
for D): each of them describes a persistent data structure
storing some part of D (see Section 2).

Check if a set of XAMs is sufficient to answer WW. ULoad
determines this by analyzing the set of XAMs, the struc-
tural constraints C and the workload W. If the XAMs are
insufficient, ULoad points out the (parts of) queries that
cannot be answered.

Estimate the cost of answering WV on a set of XAMs.
ULoad finds all XAM subsets that may jointly be used
to answer the W queries, under the constraints C. If the
XDBMS cost estimator is available, ULoad calls it to assess
the quality of the query plans the DBMS would generate on
such storage. Otherwise, ULoad computes its own query
plan, applies simple heuristics such as selection pushing
and join reordering, and uses its own cost estimations.

Obtaining a recommended set of XAMs. The DBA may
want to get a baseline recommendation, which she can then
tune. To that purpose, ULoad applies some efficient heuris-
tics to pick a set of XAMs providing reasonable perfor-
mance for D, C and W.

Loading D in the XDBMS'’s store following the XAMs
for D, and run W queries using the XDBMS query engine.

In the ULoad box in Figure 3, buttons represent possible
tool actions, centered around the set of XAMs for D. An
arrow connecting an action to the XAMs shows whether
the action produces or uses them.

4 Demonstration scenario

The concepts behind ULoad, in particular the XAM for-
malism, apply both to relational storage models, and to na-
tive ones. To demonstrate this, and to explore the trade-offs
between robust relational stores, and more flexible, but less
mature, native ones, we will show ULoad in two settings.

First, we assign the XDBMS role (Figure 3) to Postgres.
Each XAM is stored in a table; a clustered index is added,
if the XAM has R fields. ULoad relies on Postgres’s loader,
query engine and cost estimates.

Second, we pair ULoad with an experimental native
XML data store, built on the persistent storage library
BerkeleyDB [15]. In this setting, ULoad uses its own sim-
ple cost model, mainly accounting for the number of ac-
cesses to BerkeleyDB disk-resident structures.

In both these settings (relational and native backend
storage), we plan to demonstrate:

e How to specify XAMs in our graphical language. To
demonstrate XAM expressive power, we will show
how existing storage and indexing schemes, can be
automatically compiled into XAM sets.

e The data required by an XQuery query over a docu-
ment D; ULoad extracts this under a tree form, simi-
lar to a XAM. We show how ULoad uses this form to
highlight the parts of the query for which the storage
is insufficient (if any).

e The alternative access paths identified by ULoad for
each query in the workload, and the resulting QEPs
with their cost estimates.

e ULoad’s algorithm for choosing the views and indexes
to materialize over a storage model. This algorithm
aims at a trade-off between the performance of queries
in W, and the views and index storage occupancy.

o Data loading and query processing performance.

5 Comparison with related works

ULoad’s genericity allows it to express many existing stor-
age and indexing schemes; ULoad complements their ben-
efits with those of a flexible and extensible storage.

The ULoad approach compares most directly to the
Agora [11], Mars [5] and LegoDB [4] projects. Different
from these, ULoad:

e is based on a nested (as opposed to relational) alge-
braic model, better suited to XML querying;

e models important properties of element I1Ds, with a
strong impact on query performance;

e extends the access patterns paradigm to nested data
models, thus encompassing complex XML indexes;

o takes explicitly into consideration a generic set of
structural constraits and uses these constraints to rea-
son about the equivalence of alternative access paths
to the same data;

e can combine transparently both nested and
flat(relational) storage modules in order to answer a
given query (unlike previous works).

XAMs are reminiscent of query pattern formalisms,
such as the Abstract Tree Patterns [12]. However, XAMs
are focused on storage modelling, as reflected by their ID
specifications, and required fields. Also the ULoad ap-
proach is reminiscent of clustering strategies in object-
oriented systems (eg. [3]).

One may wonder why we do not describe storage struc-
tures by XQuery queries, and apply view-based query
rewriting. One reason is that crucial features of an XML
storage, such as persistent IDs and their properties, are not
explicitly present in XQuery (nor in XML itself !). Second,
the notion of XQuery materialized view is not yet clearly

defined, since the result of an XQuery is considered a dif-
ferent (thus, disjoint) document from its input. For more
information on XAMs, and how they compare with other
storage models, see [10].

References

[1] S. Abiteboul and N. Bidoit. Non first normal form relations:
An algebra allowing data restructuring. Journal of Com-
puter Systems Science, 1986.

[2] S.Agrawal, S. Chaudhuri, and V. Narasayya. Automated se-
lection of materialized views and indexes in SQL databases.
In VLDB, 2000.

[3] Véronique Benzaken and Claude Delobel. Enhancing per-
formance in a persistent object store: Clustering strategies in
0o. In Implementing Persistent Object Bases, Principlesand
Practice, Proceedings of the Fourth International \Workshop
on Persistent Objects, pages 403-412, 1990.

[4] P. Bohannon, J. Freire, P. Roy, and J. Simeon. From XML
schemato relations: A cost-based approach to XML storage.
In ICDE, 2002.

[5] A.Deutsch and V. Tannen. MARS: A system for publishing
XML from mixed and redundant storage. In VLDB, 2003.

[6] T. Fiebig, S. Helmer, C. Kanne, G. Moerkotte, J. Neumann,
R. Schiele, and T. Westmann. Anatomy of a native XML
base management system. VLDB Journal, 11(4), 2002.

[7] D. Florescu and D. Kossmann. Storing and querying XML
data using an RDMBS. In |EEE Data Eng. Bull., 1999.

[8] R. Goldman and J. Widom. Dataguides: Enabling query
formulation and optimization in semistructured databases.
In VLDB, 1997.

[9] H. V.Jagadish, S. Al-Khalifa, A. Chapman, L. Lakshmanan,
A. Nierman, S. Paparizos, J. Patel, D. Srivastava, N. Wiwat-
wattana, Y. Wu, and C. Yu. Timber: A native XML database.
VLDB J., 11(4), 2002.

[10] I. Manolescu, A. Arion, and V. Benzaken. XML access
modules. Technical report, 2005.

[11] I. Manolescu, D. Florescu, and D. Kossmann. Answering
XML queries over heterogeneous data sources. In VLDB,
2001.

[12] S. Paparizos, Y. Wu, L. Lakshmanan, and H. Jagadish. Tree
logical classes for efficient evaluation of XQuery. In SG-
MOD, 2004.

[13] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and
T. Price. Access path selection in relational database sys-
tems. In SGMQOD, 1979.

[14] J. Shanmugasundaram, H. Gang, K. Tufte, C. Zhang, D. De-
Witt, and J. Naughton. Relational databases for querying

XML documents: Limitations and opportunities. In VLDB,
1999.

[15] The BerkeleyDB library. www.sleepycat.com.

