
Structured Materialized Views for XML Queries

Andrei Arion12 Véronique Benzaken2 Ioana Manolescu1

Yannis Papakonstantinou3

1INRIA Futurs, France 2LRI - Univ. Paris-Sud, France 3CSE Department, UCSD, USA

ABSTRACT
The performance of XML database queries can be greatly enhanced
by rewriting them using materialized views. We study the problem
of rewriting a query using materialized views, where both the query
and the views are described by a tree pattern language, appropri-
ately extended to capture a large XQuery subset. The pattern lan-
guage features optional nodes and nesting, allowing to capture the
data needs of nested XQueries. The language also allows describ-
ing storage features such as structural identifiers, which enlarge the
space of rewritings. We study pattern containment and equivalent
rewriting under the constraints expressed in a structural summary,
whose enhanced form also entails integrity constraints. Our ap-
proach is implemented in the ULoad [7] prototype and we present
a performance analysis.

1. INTRODUCTION
The structural complexity of XML data and the potentially high

costs for processing complex, nested XQuery queries make materi-
alized views an essential tool for XML databases. Indeed, defining
a small set of materialized views may result in avoiding complex
computations, yielding important performance improvements for a
large set of queries. While many works have addressed the topic in
the context of the relational model, the issue is a topic of active re-
search in the context of XML. Previous works have mainly focused
on XPath [9, 28, 40, 26] and XQuery [16, 13] views. One work [26]
considers maximally contained rewriting under constraints.

We study the problem of rewriting a query using materialized
views, where both the query and the views are described by ex-
tended tree patterns. The rewriting algorithm exploits a set of con-
straints over the document structure, expressed in a structural sum-
mary. We discuss these aspects next.

Tree pattern views. The materialized views we consider are
specified using extended tree patterns, including optional and nested
edges, value predicates and element identifiers. The tree pattern
language has been introduced in [3]. It is not a subset of a query
language such as XPath or XQuery (although it includes core XPath
[30] and is semantically very close to XQuery, see Section 7). When
evaluated on a document, a materialized view yields a collection of

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

rew(q1)

rew(q1)

rew(q1)

rew(q1)

rew(q1)

rew(q1)

summary
Structural

Rewriting
Rewriting

Rewriting

XQuery
query

Cost−based

optimizer

plan

Query

engine
Execution

v2 v3 v4v1

XMLize

q1
q2 q3

XML result
to algebra

rew(q1)

rew(q1)

rew(q3)

extraction)
(Pattern

XQuery

rew(q2)

Figure 1: Outline of query processing in ULoad.

(possibly nested) tuples, whose attributes can be simple values, ele-
ment IDs, XML fragments, or other tuple collections. We consider
views with optional and nested edges, as they correspond to the se-
mantics of nested XQuery queries. Tuple-based views are useful
because they preserve the relationships between different nodes in
a document. For instance, one can store an XML element with its
(possibly empty) nested collection of descendants of a given tag
and its persistent identifier assigned by the system. Finally, when
a view stores persistent IDs for some nodes, our view language al-
lows specifying interesting properties of the IDs, which enlarge the
space of possible rewritings (Section 2 will illustrate this). This fea-
ture is interesting as special-properties identifiers are increasingly
used in research prototypes such as Timber [24] and MonetDB [11]
and also in Microsoft SQL Server [32]. Such identifiers enable
very efficient XML query processing techniques such as structural
joins [1] or the XPath accelerator [23].

Interestingly, our tree pattern language is able to describe XML
storage structures advocated in previous works such as [10, 25, 35],
as well as many XML index models [15, 34] and custom XPath
views [28, 40]. If all storage structures and indices in the system
are uniformly described, the rewriting algorithm we present in this
paper can jointly use them to rewrite the query.

From XML queries to tree patterns. The queries we con-
sider here are expressed in the same tree pattern formalism used to
describe the views. Real user queries, however, are specified in a
large subset of XQuery, featuring child and descendant navigation,
and nested for-where-return expressions [6]. The global query pro-
cessing strategy around the rewriting algorithm is outlined in Fig-
ure 1. From the user’s XQuery query, an algebraic expression is
extracted, representing the query as a join expression over one or
several tree patterns, perhaps topped with an XMLize operator if
new XML elements should be constructed. This pattern extrac-
tion process is described in a separate work [6]. Each tree pattern

is then rewritten separately into a set of alternative algebraic ex-
pressions; the rewriting algorithm is the main contribution of the
present work. The algebraic rewritings thus obtained are then han-
dled to a cost-based query optimizer, which chooses some combi-
nation of rewritings (one for each query pattern), adds the necessary
joins operators, may re-order operations etc.

Summary constraints. Practical application domains entail ap-
plication constraints on the data sources. We consider the con-
straints encapsulated in a structural summary (or Dataguide [21]),
which we then enhance with integrity constraints. Knowledge of
constraints increases the space of rewritings, as Section 2 illus-
trates. There is an interesting interplay between the benefits brought
by the special-properties IDs and those of a structural summary.
Indeed, while these IDs allow combining views in many ways, the
summary helps pruning out useless combinations. The summary
benefits come at a modest cost: Dataguides for tree-structured data
are typically compact and can be built and maintained in linear
time [21]. They can be also used when a schema is unavailable.

Contributions and outline. We focus on the problem of con-
tainment and equivalent rewriting of tree pattern queries in the pres-
ence of structural and integrity constraints. We consider queries
and views expressed in a rich tree pattern formalism, particularly
suited for nested XQuery queries, and which extends previously
used view [9, 28, 40] and tree pattern [2, 14] formalisms. Given a
query and a set of views:

• We characterize the complexity of pattern containment un-
der Dataguides [21] and integrity constraints, and provide a
containment decision algorithm, necessary for rewriting.

• We describe a sound and complete view-based rewriting al-
gorithm which produces an algebraic plan combining the tree
pattern views. The result of this plan is the same as the
query’s, for all inputs obeying the Dataguide constraints.

• The containment and rewriting algorithms have been fully
implemented in the ULoad prototype, which was recently
demonstrated [7]. We report on their practical performance.

The novelty of our work resides in two independent aspects.
(i) The expressive power of our view language goes beyond previ-
ous XPath-based proposals, and comes close to the needs of XQuery
queries, while avoiding structure and identity loss that XQuery-
expressed views may bring (see Section 7). We also improve over
all previous proposals by exploiting interesting ID properties for
rewriting. (ii) Ours is the first work to address XML query rewrit-
ing under Dataguide constraints. The Dataguide turns out to be
crucial for finding some interesting equivalent rewritings.

This paper is organized as follows. Section 2 presents a moti-
vating example, and Section 3 reviews preliminary definitions. For
readability, containment and rewriting algorithms are presented in
two steps. Section 4 considers containment and rewriting for a very
simple flavor of conjunctive patterns and constraints, while Sec-
tion 5 extends these results to the full tree pattern language and to
richer constraints. Section 6 presents a performance evaluation. We
review related works, and conclude.

2. MOTIVATING EXAMPLE
As an example illustrating key concepts, requirements and con-

tributions, consider the following XQuery:
for $x in document(“XMark.xml”)//item[//mail] return
〈res〉 {$x/name/text(),

for $y in $x//listitem return
〈key〉 {$y//keyword} 〈/key〉} 〈/res〉

Figure 2(a) shows a simplified XMark document fragment. At
the right of each node’s label, we show the node’s identifier, e.g.
n1, n2 etc.

We exploit XML structural summaries to increase the rewriting
opportunities. In short, a structural summary (or strong Dataguide [21])
of an XML document is a tree, including all paths occurring in the
document. Figure 2(b) shows the structural summary of the docu-
ment in Figure 2(a).

Each view is defined by an extended tree pattern and, evaluated
on a document, produces a nested table which may include null val-
ues. Figure 2(c) depicts the definitions of views V1 and V2, and the
result obtained by evaluating the views over the sample document
above. As is common in tree pattern languages, / denotes child and
// denotes descendant relationships. Variables, such as ID, C, and
V label certain nodes of the tree pattern. Dashed edges indicate that
a tuple should be produced even if the (sub)tree pattern hanging at
the dashed edge cannot bind to a corresponding subtree of the in-
put. For example, consider the last tuple of V1: The variable ID is
bound to n21, despite the fact that n21 has no 〈bold〉 descendant; V
is bound to null (⊥).

A pattern edge may be labeled n. In this case, there will be a
single attribute in the tuple for the subtree pattern hanging below
the n-edge. The content of this attribute is a relation whose tuples
are the bindings of the variables of the subtree. For example, the A
attribute of V1 corresponds to the subtree under the single n-edge of
the tree pattern. Its values are relations of unary tuples, whose only
attribute is the variable C of the pattern hanging at the n-edge.V1

stores, for every //regions//* element, four information items: (1) Its
identifier ID. We consider identifiers are simple atomic values.
(2) The grouped set of content of its possible parlist/listitem grand-
children nodes. The content C of a node denotes the subtree rooted
in the node, which the view may store directly (perhaps in a com-
pact encoding), or as a pointer to the subtree stored elsewhere. In
all cases, downward navigation is possible inside a C attribute.
(3) The value (text children) of its possible bold descendants. View
V2 stores, for every //regions//item element, its identifier ID, and
value V .

Rewriting can benefit from knowledge of the structure of the
document and of the structure IDs. We describe our contributions
in the area using cases from the running example.

Summary-based rewriting Consider the following rewriting op-
portunities that are enabled by the structural summary. First, al-
though the tree pattern of V1 does not explicitly indicate that V1

stores data from 〈item〉 nodes, V1 is useful if the structural sum-
mary in Figure 2(b) guarantees that all children of 〈region〉 that
have 〈description〉 children are labeled item.

Second, in the absence of structural summaries, evaluation of
the $y//keyword path of the query is impossible since neither V1 nor
V2 store data from keyword nodes. However, if the structural sum-
mary implies that all //region//item//keyword nodes are descendants
of some //region//item/description/parlist/listitem, we can extract the
keyword elements by navigating inside the content of 〈listitem〉 nodes,
stored in the A.C attribute of V1.

Third, V1 stores //region//*/description/parlist/listitem elements, while
the query requires all 〈listitem〉 descendants of //regions//item. V1’s
data is sufficient for the query, if the summary ensures that //re-
gions//item//listitem and //regions//*/description/parlist/listitem deliver
the same data.

Summary-based optimization The rewritten query can be more
efficient if it utilizes the knowledge of the structural summary. For
example, V1 may store some tuples that should not contribute to
the query, namely from 〈item〉 nodes lacking 〈mail〉 descendants. In
this case, using V1 to rewrite our sample query requires checking

V1

n4

n10 n13

n14

n17 n18 n19

n28

n21

n27n23n22

n24

n26

n15

n9

n8 n12

n7

n6

n11

n25n20text

mail

tofrom date

n16

n5

n30n29

n1

n2

n3

site

regions

Can you...

n32

regions

nameID V

V2
n5

n22

ID V

Columbus pen

Monteverdi pen

italic keyword

site

regions

n21 <listitem><text>Monteverdi Invincia pen</text></listitem>

n4

<listitem><keyword>Columbus</keyword><text>Italic
 <keyword>fountain pen</keyword></text>
</listitem>

listitemC

(c)

mailbox

item

bob@u2.comHello,...
text

parlist

namedescription

parlist

Stainless steel, bold

listitem

text

name

text

Italic

fountain pen

keyword

keyword

listitem

Columbus pen

Columbus

bill@aol.com
jane@u2.com

4/6/2006 jim@gmail.com

item

mailboxdescription

listitem

mail

from

gold plated

Monteverdi Invincia pen

to

asia

n31date text

Monteverdi pen

3/4/2006

(a) (b)

mail

keyword

item

asia

description

parlist

listitem

text

bold

name mailbox

from
to text

date

ID VC

gold plated

</listitem>
<listitem><text>Stainless steel, <bold>gold plated</bold></text>

* ID

regions

description

parlist bold V
n

nested relation corresponding to the nodeparlist

Figure 2: (a) XMark document fragment, (b) its structural summary and (c) two materialized views.

for the presence of 〈mail〉 descendants in the C attribute of each V1

tuple. If all 〈item〉 nodes have 〈mail〉 descendants, V1 only stores
useful data, and can be used directly.

The above requires using structural information about the doc-
ument and/or integrity constraints, which may come from a DTD
or XML Schema, or from other structural XML summaries, such
as Dataguides [21]. The XMark DTD [39] can be used for such rea-
soning, however, it does not allow deciding that //regions//item//listitem
and //regions//*/description/parlist/listitem bind to the same data. The
reason is that 〈parlist〉 and 〈listitem〉 elements are recursive in the
DTD, and recursion depth is unbound by DTDs or XML Schemas.
While recursion is frequent in XML, it rarely unfolds at important
depths [29]. A Dataguide is more precise, as it only accounts for the
paths occurring in the data; it also offers some protection against a
lax DTD which “hides” interesting data regularity properties.

Rewriting with rich patterns In addition to structural summaries,
we also make use of the rich features of the tree patterns, such as
nesting and optionality. For example, in V1, 〈listitem〉 elements are
optional, that is, V1 (also) stores data from 〈item〉 elements with-
out 〈listitem〉 descendants. This fits well the query, which must in-
deed produce output even for such 〈item〉 elements. The nesting
of 〈listitem〉 elements under their 〈item〉 ancestor is also favorable
to the query, which must output such 〈listitem〉 nodes grouped in a
single 〈res〉 node. Thus, the single view V1 may be used to rewrite
across nested FLWR blocks.

Exploiting ID properties Maintaining structural IDs enables op-
portunities for reassembling fragments of the input as needed. For
example, data from 〈name〉 nodes can only be found in V2. V1 and
V2 have no common node, so they cannot be simply joined. If, how-
ever, the identifiers stored in the views carry information on their
structural relationships, combining V1 and V2 may be possible. For
instance, structural IDs allow deciding whether an element is a par-
ent (ancestor) of another by comparing their IDs. Many popular ID
schemes have this property [1, 32, 36]. Assuming structural IDs
are used, V1 and V2 can be combined by a structural join [1] on
their attributes V1.ID and V2.ID. Furthermore, some ID schemes
also allow inferring an element’s ID from the ID of one of its chil-
dren [32, 36]. Assuming V1 stored the ID of 〈parlist〉 nodes, we
could derive from it the ID of their parent 〈description〉 nodes, and

c

1a

b2

c

a

d
b b

t1 t4t3 a
c

b bd
b e

c

at2
c

b d

a

b
"1"

"2"
b

e
"3"

e
"6"

d

c

d

e

b4 5
3

76 b

Sa

d

cc

bd

b b
"5"

e

1

3,5

d

*

a

b *

p

4,6
4,5,6,7"4" "6"

Figure 3: Sample document d, its summary S, pattern p, and
canonical model modS(p) = {t1, t2, t3, t4}.

use it in other rewritings. Realizing the rewriting opportunities re-
quires ID property information attached to the views, and reasoning
on these properties during query rewriting. Observe that V1 and V2,
together, contain all the data needed to build the query result only
if the stored IDs are structural.

3. PRELIMINARIES
Data model We view an XML document as an unranked labeled
ordered tree. Every node n has (i) a unique identity from a set
I, (ii) a tag label(n) from a set L, which corresponds to the ele-
ment or attribute name, and (iii) may have a value from a set A,
which corresponds to atomic values of the document. We may de-
note trees in a simple parenthesized notation based on node labels
and ignoring node IDs, e.g. a(b c(d)). Figure 3 depicts a sample
document d, where node values appear under node labels, e.g. “1”,
“2” etc.

We denote that node n1 is node n2’s parent as n1 ≺ n2 and the
fact that n1 is an ancestor of n2 as n1≺≺n2.
Conjunctive tree patterns We recall the classical notions of con-
junctive tree patterns and embeddings [2, 30]. A conjunctive tree

pattern p is a tree, whose nodes are labeled from members of L ∪
{∗}, and whose edges are labeled / or //. A distinguished subset
of p nodes are called return nodes of p. Figure 3 shows a pattern p,
whose return nodes are enclosed in boxes.

An embedding of a conjunctive tree pattern p into a document d
is a function e : nodes(p)→ nodes(d) such that:

• For any n ∈ nodes(p), if label(n) 6= ∗, then label(e(n)) =
label(n).

• e maps the root of p into the root of d.

• For any n1, n2 ∈ nodes(p) such that n2 is a /-child of n1,
e(n2) is a child of e(n1).

• For any n1, n2 ∈ nodes(p) such that n2 is a //-child of n1,
e(n2) is a descendant of e(n1).

Dotted arrows in Figure 3 illustrate an embedding.
The result of evaluating a conjunctive tree pattern p, whose re-

turn nodes are np
1, . . . , n

p
k, on an XML document d, is the set p(d)

consisting of all tuples (nd
1, . . . , n

d
k) where nd

1, . . . , n
d
k are docu-

ment nodes and there exists an embedding e of p in d such that
e(np

i) = nd
i , i = 1, . . . , k.

Given a pattern p, a tree t and an embedding e : p → t, we
denote by e(p) the tree that consists of the nodes e(n) to which the
nodes of p map to, and the edges that connect such nodes. For ex-
ample, in Figure 3, e(p) is shown in bold. We may use the notation
u ∈ e(p) to denote that node u appears in the tree e(p). In Fig-
ure 3, e(p) has more nodes than p, since the intermediary c node
also belongs to e(p).
Notation: path Given a document d, a path is a succession of /-
separated labels /l1/l2/ . . . /lk, k ≤ 1, such that l1 is the label of
d’s root, l2 is the label of one of the root’s children etc. Only node
labels (not values) appear in paths. We say a node n is on path p if
the label path going down from the root to node n is p.

Summaries The summary of d, denoted S(d), is a tree, such that
there is a label and parent-preserving mapping φ : d → S(d),
mapping all d nodes reachable by the same path p from d’s root
to the same node np ∈ S(d). Summaries correspond to strong
Dataguides [21] of tree-structured data. In Figure 3, S is the sum-
mary of document d.

A document d conforms to a summary S1, denoted S1 |= d, iff
S(d) = S1.

Notations: paths and summary nodes Given a summary S, the
set of S nodes is clearly in bijection with the set of S paths (which
is the set of paths in any document conforming to S). For ease of
explanation, we may refer to a path by its corresponding summary
node, or vice-versa.

3.1 Summary-based canonical model
Let p be a conjunctive tree pattern, and S be a summary. Let

e : p → S be an embedding of p in S. The canonical tree derived
from e, denoted te, is obtained as follows:

• For each n ∈ p, te contains a distinguished node whose label
is that of e(n). When n is a returning node in p, we say e(n)
is a returning node in te.

• Let n ∈ p be a node and m1, m2, . . . , mk its children. Then,
the te node corresponding to e(n) has exactly k children, and
for 1 ≤ i ≤ k, its i-th child consists of a parent-child chain
of nodes, whose labels are those connecting e(n) to e(mi)
in S.

For instance, in Figure 3, an embedding e1 : p → S maps the
upper ∗ in p to the S node numbered 3, and the lower returning
∗ node in p to the S node numbered 5. The tree t1 in Figure 3 is
the canonical tree derived from e1. Similarly, another embedding
e2 : p → S associates the upper ∗ node in p to the S node num-
bered 5, and the lower ∗ node to the S tree numbered 7. The tree t2
in Figure 3 is the canonical tree derived from e2. Note that an em-
bedding needs not to be an injective function. The return nodes of p
can be embedded into the same b node in S, yielding the canonical
trees t3 and t4.

Let the return nodes in p be np
1, . . . , n

p
k. Then for every tree te ∈

modS(p) corresponding to an embedding e, the tuple (e(np
1), . . . , e(n

p
k))

is called the return tuple of te. Note that two different trees t1, t2 ∈
modS(p) may have the same return tuples.

The S-canonical model of p, denoted modS(p), is the set of the
canonical trees obtained from all possible embeddings of p in S.
Clearly, for any canonical tree te, S |= te.

Observe that two distinct embeddings may yield the same canon-
ical tree. For instance, let p′ be the pattern /a// ∗ //b where b is
the returning node, and consider the following two embeddings of
p in the summary S in Figure 3:

• e′1 maps the ∗ node of p′ to the S node numbered 3;

• e′2 maps the ∗ node of p′ to the S node numbered 5.

The canonical trees derived from e′1 and e′2 coincide. When defin-
ing S, we consider it duplicate-free.

In Figure 3, for the represented pattern p and summary S, we
have modS(p) = {t1, t2, t3, t4}.

In the following, we use the term subtree in the following sense.
We say a tree t′ is a subtree of the tree t if (i) t′ and t have the same
root, (ii) the nodes of t′ are a subset of the nodes of t and (iii) the
edges of t′ are a subset of the edges of t.

PROPOSITION 3.1. Let t be a tree and S be a summary such
that S |= t, p be a k-ary conjunctive pattern, and {nt

1, . . . , n
t
k} ⊆

nodes(t).
(nt

1, . . . , n
t
k) ∈ p(t)⇔ ∃ te ∈ modS(p) such that:

1. t has a subtree isomorphic to te. For simplicity, we shall
simply say te is a subtree of t.

2. For every 0 ≤ i ≤ k, node nt
i is on path nS

i , where nS
i is the

i-th return node of te.

/

Proof:
⇐: Let e : p→ S be one of the embeddings associated to te (recall
that several such embeddings may exist). We define e′ : p → t
as follows: for every n ∈ p, e′(n) = e(n), which is safe since
e(p) ⊆ nodes(te) ⊆ nodes(t). Clearly, e′ is an embedding, and
e(np

i) = nt
i for every 0 ≤ i ≤ k, thus (nt

1, . . . , n
t
k) ∈ p(t).

⇒: By definition, if (nt
1, . . . , n

t
k) ∈ p(t), there exists an embed-

ding e : p → t, such that e(np
i) = nt

i for every 0 ≤ i ≤ k. We
denote by eS : p → S the embedding obtained from e, by setting
eS(n) to be the path of e(n) for each node n of p. Let te be the
modS(p) tree corresponding to eS . We show that te is a subtree of
t.

Let n be a te node such that n = eS(np) for some np ∈ p. Then,
n is the path of e(np), and since e is an embedding of p in t, then
n belongs to t. Thus, all the images of p nodes through eS belong
to t.

Now consider a te node n, and let us prove that its children also
belong to t. Let m be a direct child of n. Then, by definition of te,

m participates in a chain of nodes connecting eS(np) to eS(mp),
for some mp child of np in p. By definition of eS , eS(mp) is the
path of e(mp) ∈ t, thus the chain of nodes between e(np) and
e(mp) belongs to t, thus all edges and nodes between these two
nodes (including m) belong to t. Thus, te is a subtree of t.

To see that for each i, nd
i is on path ne

i , observe that nd
i is e(np

i)
for some returning node np

i of p, and furthermore eS(np
i) is the

path of nd
i and is also ne

i .

For example, in Figure 3, bold lines and node names trace a d sub-
tree isomorphic to t2 ∈ modS(p) (recall t2 from Figure 3). For
the sample document and pattern, the thick-lined subtree is the one
Proposition 3.1 requires in order for the boxed nodes in d to belong
to p(d).

A pattern p is said S-unsatisfiable if for any document d such that
S |= d, p(d) = ∅. The above proposition provides a convenient
means to test satisfiability: p is S-satisfiable iff modS(p) 6= ∅.

DEFINITION 3.1. Let S be a summary, p be a pattern, and n
a node in p. The set of paths associated to n consists of those S
nodes sn, such that for some embedding e : p→ S, e(n) = sn. /

At right in Figure 3, the pattern p is repeated, showing next to
each node (in italic font) the paths associated to that node.

The paths associated to all p nodes can be computed in O(|p| ×
|S|) time and space complexity [22].

4. SUMMARY-BASED CONTAINMENT AND
REWRITING OF CONJUNCTIVE PAT-
TERNS

4.1 Summary-based containment
We start by defining pattern containment under summary con-

straints:

DEFINITION 4.1. Let p, p′ be two tree patterns, and S be a
summary. We say p is S-contained in p′, denoted p ⊆S p′, iff
for any t such that S |= t, p(t) ⊆ p′(t). /

A practical method for deciding containment is stated in the fol-
lowing proposition:

PROPOSITION 4.1. Let p, p′ be two conjunctive k-ary tree pat-
terns and S a summary. The following are equivalent:

1. p ⊆S p′

2. ∀ tp ∈ modS(p) ∃ tp′ ∈ modS(p′) such that (i) tp′ is a
subtree of tp and (ii) tp, tp′ have the same return nodes.

3. ∀ tp ∈ modS(p) whose return nodes are (nt
1, . . . , n

t
k), we

have (nt
1, . . . , n

t
k) ∈ p′(tp). /

Proof:
In order to prove the equivalences, note that by definition, p ⊆S p′

is equivalent to: ∀ t such that S |= t, and nodes nt
1, . . . , n

t
k of t:

(nt
1, . . . , n

t
k) ∈ p(t)⇒ (nt

1, . . . , n
t
k) ∈ p′(t).

For any such t and nt
1, . . . , n

t
k, let nS

1 , . . . , nS
k be the S nodes

corresponding to the paths of nt
1, . . ., respectively nt

k in t. Then,
p ⊆S p′ is equivalent to:

(∗) ∀ t such that S |= t, {nt
1, . . . , n

t
k} nodes of t, S1 ⇒ S2

where S1 is:

∃ te ∈ modS(p) such that te is a subtree of t and (nS
1 , . . . , nS

k)
are the return nodes of te

and S2 is:

∃ te′ ∈ modS(p′) such that te′ is a subtree of t and (nS
1 , . . . , nS

k)
are the return nodes of t′e

(1) ⇒ (2): if p ⊆S p′, let the role of t in (∗) be successively
played by all te ∈ modS(p) (clearly, S |= te). Each such te

naturally contains a subtree (namely, itself) satisfying S1 above,
and since S1 ⇒ S2, te must also contain a subtree te′ ∈ modS(p′)
with the same return nodes as te.

(2) ⇒ (1): let t be a tree and (nt
1, . . . , n

t
k) ∈ p(t). By Propo-

sition 3.1, t contains a subtree te ∈ modS(p), such that the return
nodes of t are those of te, namely (nt

1, . . . , n
t
k). By (2), te contains

a subtree te′ ∈ modS(p′) with the same return nodes, and te′ is a
subtree of t, thus (again by Proposition 3.1) (nt

1, . . . , n
t
k) ∈ p′(t).

(2)⇔ (3) follows directly from Proposition 3.1.

Proposition 4.1 gives an algorithm for testing p ⊆S p′: com-
pute modS(p), then test that (nS

1 , . . . , nS
k) ∈ p′(te) for every

te ∈ modS(p), where (nS
1 , . . . , nS

k) are the return nodes of p. The
complexity of this algorithm is O(|modS(p)| × |S| × |p| × |p′|),
since each modS(p) tree has at most |S| × |p| nodes., and p′(te)
can be computed in |te|× |p′| [22]. In the worst case, |modS(p)| is
|S||p|. This occurs when any p node matches any S node, e.g. if all
p nodes are labeled ∗, and p consists of only the root and // chil-
dren. For practical queries, however, |modS(p)| is much smaller,
as Section 6 shows.

A simple extension of Proposition 4.1 addresses containment for
unions of patterns:

PROPOSITION 4.2. Let p, p′1, . . . , p
′
m be k-ary conjunctive pat-

terns and S be a summary. Then, p ⊆S (p′1 ∪ . . . ∪ p′m) ⇔ for
every te ∈ modS(p) such that (n1, . . . , nk) are the return nodes of
te, there exists some 1 ≤ i ≤ m such that (n1, . . . , nk) ∈ p′i(te).
/

We define S-equivalence as two-way containment, and denote it
≡S . When S is known, we simply call it equivalence.

4.2 Summary-based rewriting
Let p1, . . . , pn and q be some patterns and S be a summary. The

rewritings we consider are logical algebraic expressions (or sim-
ply plans) built with the patterns pi, and with the following opera-
tors: ∪ (duplicate-preserving union), ./= (join pairing input tuples
which contain exactly the same node), ./≺ and ./≺≺ (structural
joins, pairing input tuple whenever nodes from the left input are
parents/ancestors of nodes from the right input), and π (duplicate-
preserving projection)1.

Observe that allowing unions in rewritings leads to finding some
rewritings for cases where no rewriting could be found without
them. For instance, in Figure 5, the only rewriting of p1 based
on q and p3 is q ∪ p3. This contrasts with traditional conjunctive
query rewriting based on conjunctive views [27], and is due to the
summary constraints.

A set of plans is said redundant if it contains two plans e1, e2

returning the same data on any XML document (thus, regardless
of any summary constraints). For instance, for any pattern p, if
1Other operators (σ, nesting and unnesting, and XPath navigation)
will be introduced for more complex patterns in Section 5.6.

x

x y
a c

2 4 5 61 b
x y

b
x y

b
x y

b
x y

rS

3

1,3,4,6

c a

c

b b

x y x y

1 3

b
x y

a

b
x y

c f

c f a f

a

b

r

1,2,3,5 b
y yx

p1 p2 p3 p4 p5

b

f

2,4,5,6

c

rq

b 1,2,3,4,5,6

a

r rrr

Figure 4: Summary S, query q and patterns.

r

b
*

5

4

r

b 2,5

r

a 3

p4
r

e

f

1

6

7

p3p1 p2
r

a

b

b

c

1

4

5

3

2

7 f 2

r
q

6e

S

b

Figure 5: Pattern join configuration.

e1 = πn1(p) and e2 = πn1(πn1,n2(p)), the set {e1, e2} is clearly
redundant. We are not interested in redundant plans, since our fo-
cus is on rewriting under summary constraints. Furthermore, e1 is
typically preferrable to e2 in the example above, since e1 is more
concise. More generally, among all plans e that are S-equivalent to
q, and also equivalent among themselves independently of S, we
are interested in finding a minimal plan, i.e., one having the small-
est number of operators (there may be several minimal plans, which
we regard as equally interesting).

Our rewriting problem can thus be formally stated as: find a max-
imal, non-redundant set of plans e over p1, . . . , pn, such that each
plan e in the set satisfies e ≡S q.

Our query rewriting follows the general “generate-and-test” ap-
proach: produce candidate rewritings, and test their equivalence
to the query. We first consider testing.

We need to test the S-equivalence between a plan e and a query
pattern q. The usage of different formalisms for e and q has its
advantages: tree patterns are suited for queries, while an algebraic
rewriting language is easy to translate in executable plans. How-
ever, testing S-equivalence is more natural on patterns. Therefore,
for each algebraic rewriting e, the rewriting algorithm builds an S-
equivalent pattern pe, and it is pe that will be tested for equivalence
to q. However, all plans do not have an S-equivalent pattern ! For
example, in Figure 4, no pattern is S-equivalent to p1 ./b=b p2.
The intuition is that we can’t decide whether a should be an an-
cestor, or a descendant of c in the hypothetic equivalent pattern.
Fortunately, it can be shown [5] that any plan is S-equivalent to
some union of patterns. For example, p1 ./b=b p2 ≡S (p4 ∪ p5)
in Figure 4. Thus, to test whether e ≡S q, we can rely on our
algorithms for testing the S-equivalence of q with (a union of) pat-
terns corresponding to e. The containment tests may be expensive,
thus the importance of a rewriting generation strategy that does not
produce many unsuccessful ones.

Let us now consider possible generation strategies. Conjunctive
query rewriting, in the relational setting [27] as well as in more re-

Algorithm 1: Summary-based pattern rewriting
Input : summary S, patterns p1, . . . , pn, q
Output: rewritings of q using p1, . . . , pn

M0 ← {(pi, pi) | 1 ≤ i ≤ n}; M ←M01
repeat2

foreach (ei, pi) ∈M, (ej , pj) ∈M0 do3
foreach possible way of joining ei and ej using4
./=id , ./≺, ./≺≺ do

(e, p)← (ei, pi) ./ (ej , pj)5
if p 6= pi and p 6= pj then6

if p ≡S q then7
output e8

else9
if |e| ≤ |q| × |S| then10

M ←M ∪ {(e, p)}11

until M is stationary12
foreach minimal N ⊆M s.t. ∪(e,p)∈N p ≡S q do13

output ∪(e,p)∈N p14

cent XML-oriented incarnations [16], follows a “bucket” approach,
collecting all possible rewritings for every query atom (or node),
and combining such partial rewritings into increasingly larger can-
didate rewritings.

Bucket-style generation of rewriting is not adapted in the pres-
ence of summary constraints. First, rewriting must consider also
views that do not fit in any bucket, i.e. do not cover any query
atom. For instance, in Figure 5, q asks for b elements at least two
levels below the root, while p1 provides all b elements, including
some not in q. The pattern p2 does not cover any q nodes, yet
(p2 ./a≺≺ b p1) ≡S q. Second, a rewriting may fail to cover some
query nodes, yet be equivalent to the query. For instance, consider
a summary S = r(a(b)), the query q = /r//a//b, and the pattern
p1 = /r//b. Clearly, p1 ≡S q, yet p1 lacks an a node (implicitly
present above b, due to the S constraints).

As a consequence, our basic generation approach should not start
with buckets, but proceed in an inflationary manner, combining
views into increasingly larger plans.

Summary impact on the search space When should rewriting
generation stop ? Since our patterns include a limited form of re-
cursion (descendant edges), it may seem that the search space is
infinite; consider rewriting a // query based on a two-node parent-
child view. Indeed, under DTD constraints, the size of a join rewrit-
ing in this case is unbound. Fortunately, in our setting, a summary
limits the maximal depth of a parent-child chain. More generally,
given a query q and summary S, the number of views used in a join
plan e, part of a minimal rewriting of q, is at most |q| × |S|, where
|q| is the number of q nodes [4].

Summary-based pruning A summary enables restricting the set
of views initially considered for rewriting, without losing solutions.
Assume that for a view pi, for any np ∈ nodes(pi) \ root(pi) and
x associated path of np, and for any nq ∈ nodes(q) \ root(q)
and y associated path of nq , x 6= y, x is neither an ancestor nor
a descendant of y. Then, the rewriting algorithm can ignore pi.
The intuition is pi’s data belongs to different parts of the document
than those needed by the query. An example is pattern p4 for the
rewriting of q in Figure 5.

The summary can also be used to restrict the set of intermedi-
ary rewritings. The rewriting algorithm manipulates (e, p) (plan,
pattern) pairs, where e ≡S p. Consider two pairs (ex, px) and

(ey, py), and a possible join result (ez, pz) = (ex, px) ./ (ey, py).
(i) If pz is S-unsatisfiable, we can discard (ez, pz). (ii) If the pro-
duced pattern (or pattern union) pz coincides with px, we may dis-
card the partial rewriting (ez, pz), since any complete rewriting e′

based on ez is non-minimal (ez can be replaced with ex, which is
smaller). The role of S here is to prune non-minimal plans.

Summary-based reduction of containment tests Structural sum-
maries also allow reducing the number of containment tests per-
formed during rewriting. Since containment is only defined on
same-arity patterns, prior to testing whether p ⊆S q, one must
identify k return nodes of p, where k is the arity of q, extract from
p a pattern p′ returning those k nodes, then test if p′ ⊆S q. If p’s
arity is smaller than k, clearly p /≡S q. Otherwise, there are many
ways of choosing k return nodes of p, which may lead to a large
number of containment tests. However, if p ⊆S q, then for every
return node ni of p and corresponding return node mi of q, the S
paths associated to ni must be a subset of the S paths associated
to mi. We only test containment for those choices of k nodes of p
satisfying this path condition.

Rewriting algorithm Algorithm 1 outlines the rewriting process
discussed above. M0 is the set of initial (plan, pattern) pairs, and M
is the set of intermediary rewritings. Initial view pruning is applied
prior to step 1, while partial rewritings are pruned in step 6 (for
conciseness, some pruning steps are omitted). Lines 13-14 com-
pute union plans. The algorithm’s soudness is guaranteed by the
equivalence test (line 7). The algorithm is complete due to its ex-
haustive search. The search space is finite thanks to the summary:
it can be shown that all patterns above a certain size (thus their
equivalent plans) have an equivalent smaller pattern (thus plan).
The complexity is determined by the size of the search space, mul-
tiplied by the complexity of an equivalence test. The search space

size is in O(2
C
|q|
|p|), where |p| = Σi=1,...,n|nodes(pi)| and |q| =

|nodes(q)| (the formula assumes that every pi node, 1 ≤ i ≤ n,
can be used to rewrite every q node).

5. COMPLEX SUMMARIES AND PATTERNS
We now present a set of useful, mutually orthogonal extensions

to the tree pattern containment and rewriting problems discussed
previously. The extensions consist of using more complex sum-
maries, enriched with a class of integrity constraints (Section 5.1),
respectively, more complex patterns. Section 5.2 considers pat-
terns endowed with value predicates, Section 5.3 addresses patterns
with optional edges, Section 5.4 describes containment of patterns
which may store several data items for a given node, and Sec-
tion 5.5 enriches patterns with nested edges. Finally, Section 5.6
outlines the impact of these extensions on the rewriting algorithm.

5.1 Enhanced summaries
Useful rewriting information may be derived from an enhanced

summary, or summary with integrity constraints. An enhanced
summary S of document d is obtained from its simple summary
S0 by distinguishing a set of strong edges. Let n1 be an S node,
and n2 be a child of n1. The edge between n1 and n2 is strong if
every d node on path n1 has at least one child on path n2. Such
edges reflect the presence of integrity constraints, obtained from
a DTD or XML Schema, or by counting nodes when building the
summary. We depict strong edges by thick lines, as in Figure 6.

A document d conforms to an enhanced summary S iff d con-
forms to S viewed as a simple summary, and it respects the parent-
child constraints enforced by strong S edges.

Enhanced summaries modify the definition of canonical mod-
els. The canonical model of p based on the enhanced summary S,

p1 a

b *

d

a

f

b

p2S a

b c

db

b e

f

c

d

b e

f

b

at1

Figure 6: Enhanced summary example.

denoted modS(p), is obtained as follows. For every embedding
e : p → S, modS(p) includes the minimal tree te containing:
(i) all nodes in e(p) and (ii) all nodes connected to some node in
e(p) by a chain of strong edges only. For example, in Figure 6, the
canonical model of pattern p1 consists of the tree t1, where the b
child of the c node and the f node appear due to the strong edges
above them in S. Enhanced summary-based containment is de-
cided similarly to the simple summary case. For example, applying
Proposition 4.1 in Figure 6 yields p1 ≡S p2.

Besides strong summaries, we consider another class of integrity
constraints. Assume a distinguished subset of S edges are one-to-
one, meaning every XML node on the parent path s1 has exactly
one child node on the child path s2. Canonical pattern models can
be easily adapted to the presence of one-to-one edges.

5.2 Value predicates on pattern nodes
A useful feature consists of attaching value predicates to pat-

tern nodes. Summary-based containment in this case requires some
modifications, as follows.

A decorated conjunctive pattern is a conjunctive pattern where
each node n is annotated with a logical formula φn(v), where the
free variable v represents the node’s value. The formula φn(v) is
either T (true), F (false), or an expression composed of atoms of
the form v θ c, where θ ∈ {=, <, >}, c is some A constant, using
∨ and ∧. In Figure 7, pφ1 − pφ4 are decorated patterns. Next
to their return nodes we show the corresponding path annotations,
based on the summary in Figure 3.

We assume A, the domain of atomic values, is totally ordered
and enumerable (corresponding to machine-representable atomic
values). Then, any φ(v) can be represented compactly (e.g. by a
union of disjoint intervals of A on which φ(v) holds), and for any
formulas φ1(v), φ2(v), one can easily compute ¬φ1(v), φ1 ∨ φ2,
φ1 ∧ φ2, and φ1(v)⇒ φ2(v).

We extend our model of labeled trees to decorated labeled trees,
whereas instead of an A value, every node n is decorated with a
(non-F) formula φn(v) as described above. Observe that simple
labeled trees are particular cases of decorated ones, where for every
n, φn(v) is v = vn, where vn ∈ A is n’s value.

A decorated embedding of a decorated pattern pφ into a deco-
rated tree tφ is an embedding e, such that for any n ∈ nodes(pφ),
φe(n)(v) ⇒ φn(v). Figure 7 illustrates a decorated embedding
from pφ1 to t. The semantics of a decorated pattern is defined sim-
ilarly to the simple ones, based on decorated embeddings.

Given a summary S, the S canonical model modS(pφ) of a
decorated pattern pφ, is obtained from modS(p) (where p is the
pattern obtained by erasing pφ’s formulas) by decorating, in every
tree te ∈ modS(p) corresponding to an embedding e: (i) each
node s = e(n), for some n ∈ nodes(p), with the formula φn(v)
from pφ, (ii) all other nodes with T . For example, in Figure 7,
modS(pφ1) = {tφ1}, modS(pφ2) = {t′φ2, t

′′
φ2}, modS(pφ3) =

{tφ3} and modS(pφ4) = {tφ4}.
Let tφ be a decorated tree, pφ a k-ary decorated pattern and

S a summary. A characterization of the tuples in pφ(tφ) derives
directly from Proposition 3.1, considering decorated patterns and

b

a

d

c

v<5

v>2

φ4tpφ4

b6

a

d

c

v<5

v>2

5

6

3

1φ3t

b

a

c v>1

b

a

c v>1

4

pφ3

pφ1

b

e
v=4 v=4

b b

φ1t

a

d

c

v<5

v=3
6

a

d

v<5

v=3

a

d

c

v=3

t
v=1

v=2

5

6

3

1 a

*
b v>0

v=3

4,6

pφ2

4

3

1

b v>0

v=3

φ2t’

a

c

b

φ2t’’

a

d

c

v>0

v=3

1

3

5

6

4

1

3

Figure 7: Decorated patterns pφ1, pφ2, pφ3 and pφ4, their
canonical models, and a decorated embedding.

trees. A characterization of S-containment among decorated pat-
terns can be similarly obtained from Proposition 4.1. Consider-
ing two decorated patterns pφ, p′φ and a summary S, condition 3
from Proposition 4.1 is replaced by: ∀tpφ ∈ modS(pφ) such that
the return nodes of tpφ are (n1, . . . , nk), we have (n1, . . . , nk) ∈
p′φ(tpφ). For example, in Figure 7, pφ1 ⊆S pφ2.

The inclusion of a decorated pattern in a union of decorated pat-
terns can be decided along the same lines. For instance, in Figure 7,
we have pφ2 ⊆S pφ1 ∪ pφ3 ∪ pφ4. The containment conditions can
be found in the full version of this paper [4].

5.3 Optional pattern edges
We extend patterns to allow a distinguished subset of optional

edges, depicted with dashed lines in patterns p1 and p2 in Figure 8.
Pattern nodes at the lower end of a dashed edge may lack matches
in a data tree, yet matches for the node at the higher end of the
optional edge are retained in the pattern’s semantics. For example,
in Figure 8, where t is a data tree (with same-tag nodes numbered
to distinguish them), p1(t) = {(c1, b2), (c1, b3), (c2,⊥)}, where
⊥ denotes the null constant. Note that b2 lacks a sibling node, yet
it appears in p1(t); and, c2 appears although it has no descendants
matching d’s subtree.

d

c

b

eb

b

aS
a

c

p1

b *

d

c1

a1

d3 d4

b3b2

d2

e3e2e1

1b

1d

c2

t
c

d

b e

a

c

a

b

c

d

a a

c

t1 t2 t3

b

p2

Figure 8: Optional patterns example.

Optional pattern embeddings are defined as follows. Let t be a
tree and p be a pattern with optional edges. An optional embedding
of p in t is a function e : nodes(p)→ nodes(t) ∪ {⊥} such that:

1. e maps the root of p into the root of t.

2. ∀ n ∈ nodes(p), if e(n) 6= ⊥ and label(n) 6= ∗, then
label(n) = label(e(n)).

3. ∀ n1, n2 ∈ nodes(p) such that n1 is the /-parent (respec-
tively, //-parent) of n2:

(a) If the edge (n1, n2) is not optional, then e(n2) is a child
(resp. descendant) of e(n1).

(b) If the edge (n1, n2) is optional: (i) If e(n1) = ⊥ then
e(n2) = ⊥. (ii) If e(n1) 6= ⊥, let E′ be the set of

optional embeddings e′ from the p subtree rooted at n2,
into some t subtree rooted in a child (resp. descendant)
of e(n1). If E′ 6= ∅, then e(n2) = e′(n2) for some
e′ ∈ E′. If E′ = ∅, then e(n2) = ⊥.

Conditions 1-3(a) above are those for standard embeddings. Con-
dition 3(b) accounts for the optional pattern edges: we allow e to
associate⊥ to a node n2 under an optional edge only if no child (or
descendant) of e(n1) could be successfully associated to n2. Based
on optional embeddings, optional pattern semantics is defined as in
Section 3.

The canonical model modS(p) of an optional pattern is obtained
as follows. Let E be the set of optional p edges. Let p0 be the
strict pattern obtained from p by making all edges non-optional.
For every te ∈ modS(p0) and set of edges F ⊆ E, let te,F be
the tree obtained from te by erasing all subtrees rooted in a node at
the lower end of a F edge. If p(te,F) 6= ∅, add te,F to modS(p).
As described, the canonical model of an optional pattern may be
exponentially larger than the simple one. In practice, however, this
is not the case, as Section 6 shows.

For example, in Figure 8, let p0 be the strict pattern correspond-
ing to p1 (not shown in the figure), then modS(p0) = {t1}. Ap-
plying the definition above, we obtain: t1 when F = ∅; t2 when F
contains the edge under the d node; t3 when F contains the edge
under the c node, or when F contains both optional edges. Thus,
modS(p1) = {t1, t2, t3}.

Containment for (unions of) optional patterns is determined based
on canonical models as in Section 4. For example, in Figure 8, we
have p1 ⊆S p2.

5.4 Multiple attributes per return node
So far, we have defined pattern semantics as tuples of nodes. A

practical view language should allow specifying what information
items does the pattern retain from every return node. To express
this, we define attribute patterns, whose nodes may be annotated
with up to four attributes:

• ID specifies that the pattern contains the node’s identifier.
The identifier is understood as an atomic value, uniquely
identifying the node.

• L (respectively V) specifies that the pattern contains the node’s
label (respectively value).

• C specifies that the pattern contains the node’s content, i.e.
the subtree rooted at that node, either stored in the view, or
as a reference to some repository etc. Navigation is possible
in a C node attribute, towards the node’s descendants.

In Figure 9, p1 and p2 are sample attribute patterns.

"d", fID(b), val(b), val(e), cont(e)
"d", fID(b), val(b), val(e), cont(e)

p1

b

a

c

*
e

L

ID,V V,C

d

c

b

eb

b

aS

b
* L

ID,V V,C*

p2 a
c1

a1

d3 d4

b2

d2

e3

1b

1d

c2

3 13 1

3 23 2

t

b3 e1 e2

b eL ID V V C

Figure 9: Attribute pattern example.

Attribute pattern semantics is defined as follows. Let p be an
attribute pattern, whose return nodes are (n1, . . . , nk), and t be a
tree. Let fID : nodes(t) → A be a labeling function assigning
identifiers to t nodes. Then, p(t, fID) is:

{ tup(n1, n
t
1) + . . . + tup(nk, nt

k) |
∃ e : p→ t, e(n1) = nt

1, . . . , e(nk) = nt
k }

where + stands for tuple concatenation, and tup(ni, n
t
i) is a tu-

ple having: an attribute IDi = fID(nt
i) if ni is labeled ID; an

attribute Li = label(nt
i) if ni is labeled L; an attribute Vi =

value(nt
i) if ni is labeled V ; and an attribute Ci = cont(nt

i) if
ni is labeled C. For example, Figure 9 depicts p1(t, fID), for the
tree t and some function fID .

The S-canonical model of an attribute pattern is defined just like
for regular ones. Attribute pattern containment is characterized
by the same conditions as for simple patterns, and requires that
corresponding return nodes be annotated with exactly the same at-
tributes. In Figure 9, p1 ⊆S p2. Containment of unions of attribute
patterns may be characterized by extending Proposition 4.2.

5.5 Nested pattern edges
We extend patterns to distinguish a subset of nested edges, marked

by an n edge label. For example, pattern p3 in Figure 10 is identical
to p1 in Figure 9 except for the n edge. The semantics of a nested
pattern is a nested relation. Let n1 be a pattern node and n2 be a
child of n1 connected by a nested edge. Let nt

1 be a data node cor-
responding to n1 in some data tree. The data extracted from all nt

1

descendants matching n2 appears as a table nested inside the tuple
corresponding to nt

1. Figure 10 shows p3(t) for the tree t from Fig-
ure 9: the attributes Ve and Ce are nested under a single attribute
A, corresponding to the third return node. Compare this with p1(t)
in Figure 9. More details can be found in [3].

Let pn,1, pn,2 be two nested patterns whose return nodes are
(n1

1, . . . , n
1
k), respectively, (n2

1, . . . , n
2
k), and S be a summary. For

each n1
i and embedding e : pn,1 → S, the nesting sequence of n1

i

and e, denoted ns(n1
i , e), is the sequence of S nodes p′ such that:

(i) for some n′ ancestor of n1
i , e(n′) = p′; (ii) the edge going

down from n′ towards n1
i is nested. Clearly, the length of the nest-

ing sequence ns(n1
i , e) for any e is the number of n edges above

n1
i in pn,1, and we denote it |ns(n1

i)|. Similar definitions hold for
every n2

i and e′ : pn,2 → S.

d fID(b) val(b)

fID(c) val(d)

val(d)

fID(c)

val(d)val(e) cont(e)
val(e) cont(e) cont(e)

cont(e)

cont(e)

e e V C

1 3

4

2

2

C
B

b
ID,V

e
V,C

a

c

* L

p3

n
d

a

c

n

n

e

ID

V

C

p4
p3(t)

 AL ID V

2

2

2

2

b

3 3

 A
p4(t)

1

2

3

ID V

Figure 10: Nested patterns example.

PROPOSITION 5.1. Let pn,1, pn,2 be two nested patterns and S
a summary as above. pn,1 ⊆S pn,2 iff:

1. Let p1 and p2 be the unnested patterns obtained from pn,1

and pn,2. Then, p1 ⊆S p2.

2. For every 1 ≤ i ≤ k, the following conditions hold:
(a) |ns(n1

i)| = |ns(n2
i)|.

(b) for every embedding e : pn,1 → S, an embedding
e′ : pn,2 → S exists, with the same return nodes as e,
such that ns(n1

i , e) = ns(n2
i , e

′). /

Intuitively, condition 1 ensures that the tuples in pn,1 are also
in pn,2, ignoring their nesting. Condition 2(a) requires the same
nested signature for pn,1 and pn,2, while 2(b) requires nesting “un-
der the same nodes” in both patterns.

Condition 2(b) can be omitted, if all edges in the nesting se-
quences ns(n1

i , e) and ns(n2
i , e

′) are one-to-one. Intuitively, nest-
ing data under an s1 node is the same as nesting it under its s2

child.
Nested edges combine naturally with the other pattern extensions

we presented. For example, Figure 10 shows the pattern p2 with
two nested, optional edges, and p4(t) for the tree t in Figure 8.
Note the empty tables resulting from the combination of missing
attributes and nested edges.

5.6 Extending rewriting
The pattern and summary extensions presented in Sections 5.1-

5.5 entail, of course, that the proper canonical models and contain-
ment tests be used during rewriting. In this section, we review the
remaining necessary changes to be applied to the rewriting algo-
rithm of Section 4 to handle these extensions.

Extended summaries can be handled directly.
Decorated patterns entail the following adaptation of Algorithm 1.

Whenever a join plan of the form l1 ./n1=n2 l2 is considered (line
5), the plan is only built if φn1(v) ∧ φn2(v) 6= F , in which case,
the node(s) corresponding to n1 and n2 in the resulting equivalent
pattern(s) are decorated with φn1(v) ∧ φn2(v).

Optional patterns can be handled directly.
Attribute patterns require a set of adaptations. First, some selec-

tion (σ) operators may be needed to ensure no plan is missed, as
follows. Let p be a pattern corresponding to a rewriting and n be a
p node. At lines 7 and 13 of the algorithm 1, we may want to test
containment between q (the target pattern) and (a union involving)
p. Let nq be the q node associated to n for the containment test.

• If n is labeled ∗ and stores the attribute L (label), and nq is
labeled l ∈ L, then we add to the plan associated to p the
selection σn.L=l.

• If n is decorated with the formula φn(v) = T and stores
the attribute V (value), and nq is decorated with the formula
φnq (v), then we add to the plan associated to p the selection
σφnq (v).

Second, prior to Algorithm 1, we unfold all C attributes in the
query and view patterns:

• Assume the node n in pattern p has only one associated path
s ∈ S. To unfold n.C, we erase C and add to n a child
subtree identical to the S subtree rooted in s, in which all
edges are parent-child and optional, and all nodes are labeled
with their label from S, and with the V attribute.

• If n has several associated paths s1, . . . , sl, then (i) decom-
pose p into a union of disjoint patterns such that n has a sin-
gle associated path in each such pattern and (ii) unfold n.C
in each of the resulting patterns, as above.

Before evaluating a rewriting plan, the nodes introduced by un-
folding must be extracted from the C attribute actually stored by the
ancestor n. This is achieved by XPath navigation on n.C. Rewrit-
ings in this case will use a navq operator, where q is an XPath
expression using the child and descendant axes, applying on the C
attribute. Navigation-based rewriting is studied in [9, 28, 40].

A view pre-processing step may be enabled by the properties of
the ID function fID employed in the view. For some ID functions,
e.g. ORDPATHs [32] or Dewey IDs [36], fID(n) can be derived
by a simple computation on fID(n′), where n′ is a child of n.
If such IDs are used in a view, let n1 ∈ pi be a node annotated
with ID, and n2 be its parent. Assume n1 is annotated with the

paths s1
1, . . . , s

1
k, and n2 with the paths s2

1, . . . , s
2
l . If the depth

difference between any s1
i and s2

j (such that s2
j is an ancestor of

s1
i) is a constant c (in other words, such pairs of paths are all at

the same “vertical distance”), we may compute the ID of n2 by c
successive parent ID computation steps, starting from the values of
n1.ID.

Based on this observation, we add to n2 a “virtual” ID attribute
annotation, which the rewriting algorithm can use as if it was orig-
inally there. This process can be repeated, if n2’s parent paths are
“at the same distance” from n2’s paths etc. Prior to evaluating a
rewriting plan which uses virtual IDs, such IDs are computed by a
special operator navfID which computes node IDs from the IDs of
its descendants.

Nested patterns entail the following adaptations:
First, Algorithm 1 may build, beside structural join plans (line 5),

plans involving nested structural joins, which can be seen as simple
joins followed by a grouping on the outer relation attributes. Intu-
itively, if a structural join combines two patterns in a large one by
a new unnested edge, a nested structural join creates a new nested
edge. Nested structural joins are detailed in [3, 14].

Second, prior to the containment tests, we may adapt the nesting
path(s) of some nodes in the patterns produced by the rewritings.
Let (l, r) be a plan-pattern pair produced by the rewriting. (i) If r
has a nesting step absent from the corresponding q node, we elim-
inate it by applying an unnest operator on l. (ii) If a q node has
a nesting step absent from the nesting sequence of the correspond-
ing r node, if this r node has an ID attribute, we can produce the
required nesting by a group-by ID operator on l; otherwise, this
nesting step cannot be obtained, and containment fails.

6. EXPERIMENTAL EVALUATION
Our approach is implemented in the ULoad prototype [7]. We

report on measures performed on a laptop with an Intel 2 GHz CPU
and 1 GB RAM, running Linux Gentoo, and using JDK 1.5.0. We
denote by XMarkn an XMark [39] document of n MB.

Containment To start with, we gather some statistics on sum-
maries of several documents2, include two snapshots of the DBLP
data, from 2002 and 2006. In Table 1, ns is the number of strong
edges, and n1 the number of one-to-one edges; such edges are
quite frequent, thus many integrity constraints can be exploited by
rewriting. Table 1 demonstrates that summaries are quite small, and
change little as the document grows: from XMark11 to XMark232,
the summary only grows by 10%, and similarly for the DBLP data.
Intuitively, the complexity of a data set levels off at some point.
Thus, while summaries may have to be updated (in linear time [21]),
the updates are likely to be modest.

To test containment, we first extracted the patterns of the 20
XMark [39] queries, and tested the containment of each pattern
in itself under the constraints of the largest XMark summary (548
nodes). Figure 11 (top) shows the canonical model size, and con-
tainment time. Note that |modS(p)| is small, much less than the
theoretical bound of |S||p|. The S-model of query 7 (shown at top
right in Figure 11) has 204 trees, due to the lack of structural rela-
tionships between the query variables. Such queries are not likely
to be frequent in practice.

We also generated synthetic, satisfiable patterns of 3−13 nodes,
based on the 548-nodes XMark summary. Pattern node fanout is
f = 3. Nodes were labeled ∗ with probability 0.1, and with a
value predicate of the form v = c with probability 0.2. We used 10
different values. Edges are labeled // with probability 0.5, and are

2All documents, patterns and summaries used in this section are
available at [37].

annotation
C

mail

site

C

n

C

n
n

description

XMark query 7

Figure 11: XMark pattern containment.

optional with probability 0.5. For this measure, we turned off edge
nesting, since: randomly generated patterns with nested edges eas-
ily disagree on their nesting sequences, thus containment fails, and
nesting does not significantly change the complexity (Section 5.5).
For each n, we generated 3 sets of 40 patterns, having r=1, 2,
resp. 3 return nodes; we fixed the labels of the return nodes to
item, name, and initial, to avoid patterns returning unrelated
nodes. For every n, every r, and every i = 1, . . . , 40, we tested
pn,i,r ⊆S pn,j,r with j = i, . . . , 40, and averaged the containment
time over 780 executions. Figure 11 shows the result, separating
positive from negative cases. The latter are faster because the al-
gorithm exits as soon as one canonical model tree contradicts the
containment condition, thus modS(p) needs not be fully built. Suc-
cessful test time grows with n, but remains moderate. The curves
are quite irregular, since |modS(p)| varies a lot among patterns,
and is difficult to control.

We repeated the measure with patterns generated on the DBLP’06
summary. The containment times (detailed in [4]) are 4 times smaller
than for XMark. This is because the XMark summary contains
many nodes named bold, emph etc., thus our pattern generator in-
cludes them often in the patterns, leading to large canonical models.
A query using three bold elements, however, is not very realistic.
Such formatting tags are less frequent in DBLP’s summary, mak-
ing DBLP synthetic patterns closer to real-life queries. We also
tested patterns with 50%, and with 0% optional edges, and found
optional edges slow containment by a factor of 2 compared to the
conjunctive case. The impact is much smaller than the predicted
exponential worst case (Section 5.3), demonstrating the algorithm’s
robustness.

Rewriting We rewrite the query patterns extracted from the XMark
queries [39]. The view pattern set is initialized with 2-node views,
one node labeled with the XMark root tag, and the other labeled
with each XMark tag, and storing ID, V , to ensure some rewrit-

Doc. Shakespeare Nasa SwissProt XMark11 XMark111 XMark233 DBLP ’02 DBLP ’06
Size 7.5 MB 24 MB 109 MB 11 MB 111 MB 233 Mb 133 MB 280 MB
|S| 58 111 264 536 548 548 145 159

nS(n1) 40 (23) 80 (64) 167 (145) 188 (153) 188 (153) 188 (153) 43 (34) 47 (39)

Table 1: Sample XML documents and their summaries.

Figure 12: XMark query rewriting

ings exist. Experimenting with various synthetic views, we noticed
that large synthetic view patterns did not significantly increased the
number of rewritings found, because the risk that the view has little,
if any, in common with the query increases with the view size. The
presence of random value predicates in views had the same effect.
Therefore, we then added 100 random 3-nodes view patterns based
on the XMark233 summary, with 50% optional edges, such that a
node stores a (structural) ID and V with a probability 0.75. Fig-
ure 12 shows for each query: the time to prepare the rewriting and
prune the views as described in Section 4, the time elapsed until
the first equivalent rewriting is found (this includes the setup time),
and the total rewriting time. The first rewriting is found quite fast.
This is useful since in the presence of many rewritings, the rewrit-
ing process may be stopped early. Also, view pruning was very
efficient: of the 183 initial views, on average only 57% were kept.

Experiment conclusions Pattern containment performance closely
tracks the canonical model size for positive tests; negative tests per-
form much faster. Containment performance scales up with the
summary and pattern size. Rewriting performance depends on the
views and number of solutions; a first rewriting is identified fast.
7. RELATED WORKS

Containment and rewriting for semistructured queries have re-
ceived significant attention in the literature [20, 30, 33], in partucu-
lar under schema and other constraints [17, 18, 31, 38]. We studied
pattern containment in the presence of Dataguide [21] constraints
which, to our knowledge, had not been previously addressed. A
summary limits tree depth (and guarantees finite algebraic rewrit-
ing), while a (recursive) schema does not. In practical documents,
recursion is present, but not very deep [29], making summaries an
interesting rewriting tool. More generally, schemas and summaries
enable different (partially overlapping) sets of rewritings. Sum-
mary constraints are related to path constraints [12], and to the con-
straints used for query minimization in [2]. However, summaries
describe all possible paths in the document, unlike the constraints
of [2]. Our containment decision algorithm is related to the basic
containment algorithm of [30], enhanced to benefit from summary
constraints. (In the absence of a summary, our algorithm would use
the canonical model of [30].) The techniques employed in [30] to

speed up containment test could also be applied to our setting.
Containment of nested XQueries has been studied in [19], based

on a model without node identity, unlike our model.
Query rewriting based on XPath materialized views is addressed

in [9, 28, 26, 40]. Our work differs in several important respects.
(i) The materialized views we consider include optional nodes, al-
lowing them to closely fit the data needs of XQuery queries. For
instance, consider the query for $x in /site//item return
〈res〉{$x//keyword}〈/res〉. The approach of [9, 28, 40] would nav-
igate inside the view /site//item to answer. Given this view, our
approach would do the same, but our view language allows speci-
fying a much smaller view, storing the (possibly empty) nested list
of keyword values for each item element, i.e. the query’s data needs
and nothing more. Observe that an XPath view /site//item//keyword
cannot be used, since 〈res〉 elements must be produced even for
items lacking keywords. (ii) The views we consider store nested
tuples, allowing rewriting of queries with complex return clauses.
Consider the query for $x in /site//item return 〈res〉〈k〉{$x//keyword}〈/k〉,
〈p〉{$x//price}〈/p〉 〈res〉. No XPath view can fit tightly this query,
whereas a view with two nested outerjoin edges going from an item
node to the keyword and price nodes directly matches the query.
(iii) Our views allow specifying interesting storage features, such
as structural IDs, which increase the set of possible rewritings by
allowing structural view joins. The rewritings considered in [9, 28]
are limited to applying XPath navigation.

Rewriting of XQuery queries using nested XQuery views is ad-
dressed in [13, 16]. Our approach is different due to the pres-
ence of constraints (which leads to a different containment algo-
rithm), and structural node identifiers. While using XQuery to
define views seems tempting, there are some shortcomings, both
noted in [16]. (i) If an XQuery view builds new elements includ-
ing elements from the input, the identity of the input elements is
lost (element constructors have COPY semantics). XQuery-based
rewritings are thus correct as long as node identity is not an issue.
We explicitly model the IDs frequently present in the store, allow-
ing their usage in the rewriting. (ii) Consider the XQuery mate-
rialized view for $x in //item return 〈res〉{$x//description//keyword,
$x//mail//keyword}〈res〉. One cannot answer //item//mail//keyword
based on this view, because each item may have zero or more key-
words both in its description and in the associated mailbox, and
they are impossible to separate. In our approach, a view with two
nested optional edges would allow answering this query.

We briefly discuss the main limitations of our approach. First, as
all XPath views but unlike XQuery views, our views cannot invert
the document nesting (e.g. store for each keyword the collection
of items where it appears)3. This allows our views to retain their
simple, easy to write tree pattern paradigm. Queries are often based
on the document’s original structure, thus the nesting preserved by
our views is useful. We are able to rewrite queries inverting the
document nesting. Second, our views do not store “derived” XML
elements, thus, some tagging is needed for element-constructing
queries. Since this is a constant-memory, linear-time operation,
this is not a serious shortcoming.

Value joins are a useful feature for materialized views. Such
joins can be easily supported by extending our patterns with pred-

3Observe that this corresponds to a group-by-value.

icates over V attributes of different nodes. Such predicates can
be regarded as selections over the basic pattern; containment and
rewriting are fundamentally unchanged.

In our own work, we detailed our tree pattern language in [3],
and described the extraction of tree patterns from XQuery queries
in [6]. The algorithm computing the equivalent pattern to a given
plan (part of the rewriting algorithm in Section 4) is detailed in [5].
The ULoad system architecture was outlined in a four-pages demo
proposal [7]. We study some optimization techniques enabled by
structural summaries in XML query processing (excluding contain-
ment or rewriting) in [8].
8. CONCLUSION

We studied the problem of XML query pattern rewriting based
on summary constraints, using detailed information about view con-
tents and interesting properties of element IDs. Each of these fea-
tures enables rewritings which would not otherwise be possible.
Our future work includes extending ULoad with XML Schema
constraints, and view maintenance in the presence of updates.

This work is partially funded by the French government “ACI
TRALALA” and “Young Researcher“ research grants.

9. REFERENCES
[1] S. Al-Khalifa, H.V. Jagadish, J.M. Patel, Y. Wu, N. Koudas,

and D. Srivastava. Structural joins: A primitive for efficient
XML query pattern matching. In ICDE, 2002.

[2] S. Amer-Yahia, S. Cho, L. Lakshmanan, and D. Srivastava.
Tree pattern query minimization. VLDBJ, 11(4), 2002.

[3] A. Arion, V. Benzaken, and I. Manolescu. XML Access
Modules: Towards Physical Data Independence in XML
Databases. XIMEP Workshop, 2005.

[4] A. Arion, V. Benzaken, I. Manolescu, and
Y. Papakonstantinou. Structured Materialized Views for
XML. Technical report. Available at hal.inria.fr, 2006.

[5] A. Arion, V. Benzaken, I. Manolescu, and
Y. Papakonstantinou. Trading with plans and patterns in
XQuery optimization. Tech. report, available at
www-rocq.inria.fr/˜arion, 2006.

[6] A. Arion, V. Benzaken, I. Manolescu, Y. Papakonstantinou,
and R. Vijay. Algebra-based identification of tree patterns in
XQuery. In Flexible Query Answering Systems, 2006.

[7] A. Arion, V. Benzaken, I. Manolescu, and R. Vijay. ULoad:
Choosing the Right Store for your XML Application (demo).
In VLDB, 2005.

[8] A. Arion, A. Bonifati, I. Manolescu, and A. Pugliese. Path
summaries and path partitioning in modern XML databases.
Currently under revision for WWW Journal.

[9] A. Balmin, F. Ozcan, K. Beyer, R. Cochrane, and
H. Pirahesh. A framework for using materialized XPath
views in XML query processing. In VLDB, 2004.

[10] P. Bohannon, J. Freire, P. Roy, and J. Simeon. From XML
schema to relations: A cost-based approach to XML storage.
In ICDE, 2002.

[11] P. Boncz, T. Grust, M.van Keulen, S. Manegold, J. Rittinger,
and J. Teubner. MonetDB/XQuery: a fast XQuery processor
powered by a relational engine. In SIGMOD, 2006.

[12] P. Buneman, W. Fan, and S. Weinstein. Interaction between
path and type constraints. ACM Trans. Comput. Log, 4(4),
2003.

[13] L. Chen and E. Rundensteiner. XCache: XQuery-based
Caching System. In WebDB, 2002.

[14] Z. Chen, H.V. Jagadish, L. Lakshmanan, and S. Paparizos.
From tree patterns to generalized tree patterns: On efficient

evaluation of XQuery. In VLDB, 2003.
[15] B. Cooper, N. Sample, M. Franklin, G. Hjaltason, and

M. Shadmon. A fast index for semistructured data. In VLDB,
2001.

[16] A. Deutsch, E. Curtmola, N. Onose, and
Y. Papakonstantinou. Rewriting nested XML queries using
nested XML views. In SIGMOD, 2006.

[17] A. Deutsch and V. Tannen. Containment and integrity
constraints for XPath. In KRDB Workshop, 2001.

[18] A. Deutsch and V. Tannen. MARS: A system for publishing
XML from mixed and redundant storage. In VLDB, 2003.

[19] X. Dong, A. Halevy, and I. Tatarinov. Containment of nested
XML queries. In VLDB, 2004.

[20] D. Florescu, A. Levy, and D. Suciu. Query containment for
conjunctive queries with reg. expressions. In PODS, 1998.

[21] R. Goldman and J. Widom. Dataguides: Enabling query
formulation and optimization in semistructured databases. In
VLDB, 1997.

[22] G. Gottlob, C. Koch, and R. Pichler. The complexity of
XPath query evaluation. In PODS, 2003.

[23] T. Grust, M. van Keulen, and J. Teubner. Accelerating XPath
evaluation in any RDBMS. TODS, 29(1), 2004.

[24] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. Lakshmanan,
A. Nierman, S. Paparizos, J. Patel, D. Srivastava,
N. Wiwatwattana, Y. Wu, and C. Yu. Timber: A native XML
database. VLDB J., 11(4), 2002.

[25] H. Jiang, H. Lu, W. Wang, and J. Xu. XParent: An efficient
RDBMS-based XML database system. In ICDE, 2002.

[26] L. Lakshmanan, H. Wang, and Z. Zhao. Answering Tree
Pattern Queries Using Views. In VLDB, 2006.

[27] A. Levy, A. Mendelzon, Y. Sagiv, and D. Srivastava.
Answering queries using views. In PODS, 1995.

[28] B. Mandhani and D. Suciu. Query caching and view
selection for XML databases. In VLDB, 2005.

[29] L. Mignet, D. Barbosa, and P. Veltri. The XML web: A first
study. In Proc. of the Int. WWW Conf., 2003.

[30] G. Miklau and D. Suciu. Containment and equivalence for an
XPath fragment. In PODS, 2002.

[31] F. Neven and T. Schwentick. XPath containment in the
presence of disjunction, DTDs, and variables. In ICDT, 2003.

[32] P. O’Neil, E. O’Neil, S. Pal, I. Cseri, G. Schaller, and
N. Westbury. ORDPATHs: Insert-friendly XML node labels.
In SIGMOD, 2004.

[33] Y. Papakonstantinou and V. Vassalos. Query rewriting for
semistructured data. In SIGMOD, 1999.

[34] C. Qun, A. Lim, and K. Ong. D(k)-index: An adaptive
structural summary for graph-structured data. In SIGMOD,
2003.

[35] J. Shanmugasundaram, H. Gang, K. Tufte, C. Zhang,
D. DeWitt, and J. Naughton. Relational databases for
querying XML documents: Limitations and opportunities. In
VLDB, 1999.

[36] I. Tatarinov, S. Viglas, K. Beyer, J. Shanmugasundaram,
E. Shekita, and C. Zhang. Storing and querying ordered
XML using a relational database system. In SIGMOD, 2002.

[37] ULoad Web site. gemo.futurs.inria.fr/projects/XAM.
[38] P. Wood. Containment for XPath fragments under DTD

constraints. In ICDT, 2003.
[39] The XMark benchmark. www.xml-benchmark.org, 2002.
[40] W. Xu and M. Ozsoyoglu. Rewriting XPath queries using

materialized views. In VLDB, 2005.

