
Type-Based XML Projection

Véronique Benzaken1 Giuseppe Castagna2 Dario Colazzo1 Kim Nguyê˜n1

1LRI, Université Paris-Sud 11, Orsay - France 2 École Normale Supérieure de Paris - France

ABSTRACT
XML data projection (or pruning) is one of the main optimization
techniques recently adopted in the context of main-memory XML
query-engines. The underlying idea is quite simple: given aquery
Q over a documentD, the subtrees ofD not necessary to evaluate
Q are pruned, thus obtaining a smaller documentD′. ThenQ is
executed overD′, hence avoiding to allocate and process nodes that
will never be reached by navigational specifications inQ.

In this article, we propose a new approach, based on types, that
greatly improves current solutions. Besides providing comparable
or greater precision and far lesser pruning overhead our solution,
unlike current approaches, takes into account backward axes, pred-
icates, and can be applied to multiple queries rather than just to
single ones. A side contribution is a new type system for XPath
able to handle backward axes, which we devise in order to apply
our solution.

The soundness of our approach is formally proved. Furthermore,
we prove that the approach is also complete (i.e., yields thebest
possible type-driven pruning) for a relevant class of queries and
DTDs, which include nearly all the queries used in the XMark and
XPathMark benchmarks. These benchmarks are also used to test
our implementation and show and gauge the practical benefitsof
our solution.

1. MOTIVATIONS AND CONTRIBUTION
As explained by Marian and Siméon [14], main-memory XML

query engines are often the primary choice for applicationsthat do
not wish or cannot afford to build secondary storage indexesor load
a database before query processing. One of the main optimisation
techniques recently adopted in this context is XML data projection
(or pruning) [14, 9].

The basic idea behind document projection is very simple and
powerful at the same time. Given a queryQ over a documentD,
sub-trees ofD that are not necessary to evaluateQ are pruned, thus
yielding a smaller documentD′. ThenQ is executed overD′, hence
avoiding to allocate and process nodes that will never be reached by
navigational specifications inQ. This ensures that evaluation over
D′ is equivalent to and more efficient than the evaluation overD.

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06,September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

As shown in [14, 9], XML navigation specifications expressedin
queries tend to be very selective, especially in terms of document
structure. Therefore, pruning may yield significant improvements
both in terms of execution time and in terms of memory usage (for
main-memory XML query engines, very large documents can not
be queried without pruning).

1.1 State of the art
Marian and Siméon[14] propose that the actual data-needs ofa

queryQ (that is, the part of data that is necessary to the execution
of the query) is determined by statically extracting all paths inQ.
These paths are then applied toD at load time, in a SAX-event
based fashion, in order to prune unneeded parts of data. The tech-
nique is powerful since:(i) it applies to most of XQuerycore, (ii)
it can be applied to a set of queries over the same document, and
(iii) it does not require anya priori knowledge of the structure of
D. However, this technique suffers some limitations. First,the doc-
ument loader-pruner is not able to managebackward axesnor path
expressions with predicates (sometimes called “qualifiers”) which,
especially the latter, can contain precious information tooptimise
pruning. Also, as a consequence of(iii), the technique does not
behave efficiently in terms of loading time and pruning precision
(hence, memory allocation) when// occurs in paths. Indeed, when// is present in a projection path, the pruning process requires to
visit all descendants of a node in order to decide whether thenode
contains a useful descendant. What is worst is that pruning time
tends to be quite high and it drastically increases (together with
memory consumption) when the number of// augments in the
pruning path-set. As a matter of facts, in this technique pruning
corresponds to computing a further query, whose time and mem-
ory occupation may be comparable to those required to compute
the original query. In particular, in this technique every occurrence
of // may yield a full exploration of the tree (e.g. see in [14] the
test for the XMark [17] query Q7 which only contains three//
steps and for which just computing the pruning takes longer than
executing the query on the original document). Therefore, prun-
ing execution overhead and its high memory footprint may jeop-
ardise the gains obtained by using the pruned document. Finally,
as we explain in Section 5, the precision of pruning drastically de-
grades (even nullified) for queries containing the XPath expressions
descendant :: node[cond], which are very useful and used in prac-
tice.

Bressanet al. [9] introduce a different and quite precise XML
pruning technique for a subset of XQuery FLWR expressions. The
technique is based on thea priori knowledge of a data-guide forD.
The documentD is first matched against an abstract representation
of Q. Pruning is then performed at run time, it is very precise, and,
thanks to the use of some indexes over the data-guide, it ensures
good improvements in terms of query execution time. However,

the technique is one-query oriented, in the sense that it cannot be
applied to multiple queries, it does not handle XPath predicates,
and cannot handle backward axes (recall that the encodings of [15]
are defined for XPath, and no extension to XQuery-like languages
is known). Also, the approach requires the construction andman-
agement of the data-guide and of adequate indexes.

1.2 Our contribution
In this article, we present a new pruning approach which is ap-

plicable in the presence of typed XML data. This is often the case,
as most applications require that data are valid with respect to some
external schema (e.g.DTD or XML Schema).

Our technique combines the advantages of the previously men-
tioned works while relaxing their limitations. Unlike [14,9], our
approach accounts for backward axes, performs a fine-grained anal-
ysis of predicates, allows (unlike [9]) for dealing with bunches of
queries, and (unlike [14]) cannot be jeopardised by pruningover-
head. Our solution provides comparable or greater precision than
the other approaches, while it requires always negligible or no prun-
ing overhead. Moreover, contrary to [14, 9], our approach isfor-
mally proved to besound(pruning does not alter the result of que-
ries) and, furthermore, we can also prove it to becomplete(it pro-
duces the best possible type-driven pruning) for a substantial class
of queries andDTDs.

For the sake of presentation we introduce our framework in three
steps. In the first step, we consider a simplified version of XPath,
we dub XPathℓ, which includes only upward/downward axes and
unnested disjunctive predicates. We define for XPathℓ a static anal-
ysis that determines a set of type names, atype projector, that is
then used to prune the document(s). One of the particular features
of this approach is that our pruning algorithm is characterised by a
constant (and low) memory consumption and by an execution time
linear in the size of the document to prune. More precisely, aprun-
ing based on type projectors is equivalent to a single bufferless one-
pass traversal of the parsed document (it simply discards elements
not generated by any of the names in the projector). So if embedded
in query processors, pruning can be executed during parsingand/or
validation and brings no overhead, while if used as an external tool
it requires a time always smaller than or equal to the time used to
parse the queried document. Soundness and (partial) completeness
results for the static analysis are stated.

The second step consists of extending the analysis to the whole
XPath (more precisely, to XPath 1.0), that is, we need to showhow
to deal with missing axes and with general predicates as defined in
the XPath specification. This is done by associating to each XPath
queryQ a XPathℓ queryP which soundly approximatesQ, in the
sense that the projector inferred forP is also a sound projector for
Q.

The final step is to extend the approach to XQuery (hence, to
XPath 2.0). This is obtained by defining a path extraction algo-
rithm as done in [14]. Our path extraction algorithm improves in
several aspects (in particular, in terms of extracted paths’ selectiv-
ity) the one of [14]. It also computes the XPathℓ approximation of
the extracted paths so that the static analysis of the first step can be
directly applied to them.

We gauged and validated our approach by testing it both on the
XPathMark [12] and on the XMark [17] benchmarks. This valida-
tion confirmed expected results: thanks to the handling of backward
axes and of predicates the precision of our pruning is in general no-
ticeably higher than for current approaches; the pruning time is lin-
ear in the size of the queried document and has a very low memory
footprint; the time of the static analysis is always negligible (lower
than half a second) even for complex queries andDTDs. But bench-

marks also brought unexpected (and pleasant) results. In particular,
they showed that type-based pruning brings benefits that go beyond
those of the reduced size of the pruned document: by excluding a
whole set of data structures (those whose type names are not in-
cluded in the type projector), the pruning may drastically reduce
the resources that must be allocated at run-time by the querypro-
cessor. For instance, our benchmarks show that for several XMark
and XPathMark queries our pruning yields a document whose size
is two thirds of the size of the original document, but the query
can then be processed using three times less memory than when
processed on the original document. This is a very importantgain,
especially for DOM-based processors, or memory sensitive proces-
sors as Galax [1]. As an aside we want to stress that our technique
relies on the definition of a new type system for XPath able to han-
dle backward axes, which constitutes a contribution on its own.

The article is organised as follows. Section 2 introduces basic
definitions and notations: data model,DTD, validation, projection,
type projector. In Section 3 we define XPathℓ and its semantics,
and formally describe how general XPath predicates can be soundly
approximated in it. In Section 4 we present our type projectors
inference algorithm for XPathℓ, state its formal properties, and deal
with the missing XPath axes. In Section 5 we extend our approach
to XQuery. Section 6 discusses our implementation and reports the
results of our benchmarks. We finally conclude in Section 7 by
presenting the perspectives of this work.

For space reasons all proofs of properties are omitted from this
presentation. They can be found in the extended version of this
work.

2. NOTATIONS

2.1 Data Model
For the sake of concision we present our solution for a simplified

version of the XQuery data model where we do not consider node
attributes. The extension of our approach to attributes is straight-
forward (and included in our implementation, see Section 6). An
instance of the XQuery data model can then be generated by the
following grammar:

Trees t ::= si | l i [f]
Forest f ::= () | f , f | t

Essentially, it is an ordered sequence of labelled orderedtrees(ran-
ged over byt), that is an orderedforest(ranged over byf), where
each node has a uniqueidentifier (ranged over byi) and where()
denotes the empty forest. Tree nodes are labelled byelement tags
(ranged over byl) while, without loss of generality, we consider
only leaves that are text nodes (that is, strings, ranged over by s) or
empty trees (that is, elements that label the empty forest).

We define a complete partial order� on forests (and thus on
trees) by relating a forest with the forests obtained eitherby adding
or by deleting subforests:

DEFINITION 2.1 (PROJECTION(�)). Given two forests f and
f ′ we say that f′ is a projectionof f , noted as f′ � f , if f ′ is ob-
tained by replacing some subforests of f by the empty forest.

DEFINITION 2.2 (GOOD FORMATION). A forest iswell formed
if every identifieri occurs in it at most once. Given a well-formed
forest f and an identifieri occurring in it, we denote by f@i the
unique subtree t of f such that t= si or t = l i [f ′]. The set of identi-
fiers of a forest f is then defined as Ids(f) = {i | ∃ t. f @i = t}

Henceforth we will consider only well-formed forests and con-
found the notions of a node with that of the identifier of the node.

DEFINITION 2.3 (ROOT ID). Given a tree t, if t= si or t =
l i [f] then we define RootId(t) = i.

2.2 DTDs and validation
In this work we present the approach forDTDs, but the treatment

for XML Schema is similar.1 Following [13] we define aDTD as
a local tree grammar, namely a pair(X,E) whereX is a distin-
guishedname(actually, a non-terminal meta-variable) andE is a
set of productions (oredges) of the form{X1 → R1, . . . ,Xn → Rn}
such that

1. theXi ’s are pairwise distinct;
2. eachRi is of the form ai [r i] or String, whereai is an el-

ement tag, and eachr i is a regular expression overnames
{X1, . . . ,Xn};

3. for each pairXi → ai [r i] andXj → a j [r j], i = j if and only if
ai = a j ;

4. X is in {X1, . . . ,Xn} (it denotes the root element type).

In the following we writeNames(r) for the set of all names used in
r andDN(E) for the set of names defined inE (that is,{X1 . . .Xn}).
We also say thatr is a regular expression over(X,E), if r is a
regular expression over names inDN(E). We will useW, X, Y, Z
to range overnames. We use Greek letters to range over sets of
names (in particular we useπ to stress that the set of names is a
type projector[cf. Def 2.6] andκ andτ to stress that the set is used
as a context or as a type, respectively [cf. Section 4.1]) andS to
range over sets of (node) identifiers. When speaking ofDTDs we
will often identify them with their set of edgesE, leaving the root
X as implicit.

DEFINITION 2.4 (VALID TREES). A tree t isvalid with re-
spect to aDTD (X,E), if there exists a mapping (interpretation)ℑ
from Ids(t) to DN(E) such that:

1. ℑ(RootId(t)) = X
2. for eachi in Ids(t), if t@i = si then ℑ(i) = Y and (Y →

String) ∈ E
3. for eachi in Ids(t), if t@i = l i [t1, ...,tn], thenℑ(i) → l [r]∈ E

andℑ(RootId(t1)), . . . ,ℑ(RootId(tn)) is generated by r.
In this case we say that t isℑ-valid with respect to(X,E) and write
t ∈ℑ (X, E) to indicate it.

Algorithms to validate XML trees are well known (see [13]). Every
validation algorithm produces, as a side effect, an interpretation for
the validated tree. Note that ift is valid with respect to aDTD, then
there is a unique interpretationℑ from t to theDTD. This is a direct
consequence of the fact that, inDTDs, element tags determine their
content (as stated by the third condition on local tree grammars).

2.3 Type projectors
Given a treet valid with respect to aDTD (X,E), we can use

subsets ofDN(E) to project that tree. Essentially, only nodes that
are associated with names in the projecting subset ofDN(E) are
kept in the projection. Of course not every subset of names can
be used to project a tree, since we want to delete whole subtrees
(not nodes in the middle of a tree), thus if we discard some name,
we must also discard all the names it generates. In order to define
formally this notion we need to define the reachability relation⇒E,
that we introduce below together with several other definitions that
we use later in the paper.
1The extension of our approach to XML Schema simply needs
some special treatment of local elements. More difficult instead
is to modify it so as to obtain efficient pruning also for the new
XPath 2.0 tests that check the schema of nodes. See the discussion
in our conclusion.

DEFINITION 2.5 (FORWARD REACHABILITY). Given aDTD

(X,E) and Z∈DN(E), we write Z⇒E Y if and only if Z→ a[r]∈E
and Y∈ Names(r). We use⇒+

E and⇒∗
E to denote respectively the

transitive closure and the transitive and reflexive closureof⇒E.

Strings of names are calledchainsand ranged over byc, ci , c′,...
In particular we useChains(X,E)(Y) to denote the set of all chains
rooted atY, defined as{Y X1 . . . Xn | Y ⇒E X1 ⇒E . . . ⇒E Xn,n≥
0}. We useNames(c) to denote the set of all names occurring in a
chainc.

DEFINITION 2.6 (TYPE-PROJECTORS). Given aDTD (X,E),
a (possibly empty) set of namesπ ⊆ DN(E) is a type projectorfor
(X,E) if and only if there exists C⊆ Chains(X, E)(X) such that

π =
[

c∈C

Names(c)

A type projector is thus a set of names generated (i.e. reached) by
a suite of productions starting from the root of theDTD. A type
projector can be used to prune a valid tree as follows:

DEFINITION 2.7 (TYPE DRIVEN PROJECTIONS). Letπ be a
type projector for(X,E) and t a forest or tree such that t∈ℑ (X,E).
Theπ-projection of t, noted as t\ℑπ, is defined as follows:

l i [f]\ℑπ = l i [f \ℑπ] ℑ(i) ∈ π
l i [f]\ℑπ = () ℑ(i) 6∈ π
si\ℑπ = si ℑ(i) ∈ π
si\ℑπ = () ℑ(i) 6∈ π
(f , f ′)\ℑπ = (f \ℑπ),(f ′\ℑπ)

In words, pruning erases (by replacing it by an empty forest)every
node that corresponds to a name not inπ.

LEMMA 2.8. Let π be a type projector for(X,E). Then for
every tree t∈ℑ (X,E) it holds(t\ℑπ) � t.

3. XPATH AND XPATH ℓ

In XPath, queries are expressed by defining a path of steps sepa-
rated by/. For instance,

Q = /descendant :: author
/hild::text[self::node="Dante"℄
/parent::book/hild::title

is the query that returns all titles of books whose author is “Dante”.
First, the navigational part instructs to descend to all text nodes
whose parent is an author (/descendant :: author/child :: text),
then the predicate selects those nodes that are the string “Dante”
([self::node="Dante"℄), and finally the navigation ascends to
the book element and descends to the title.

The inference rules we define in Section 4 do not work directly
on queries such asQ. The rules are defined for XPathℓ a subset of
XPath that we introduce in this section. XPathℓ includes downward
and upward axes and a special kind of predicates. In order to stat-
ically analyseQ (or any other XPath query that is not in XPathℓ),
we will find a XPathℓ query that approximatesQ soundly with re-
spect to the pruning inferred by the rules (Section 3.3), anduse it
to deduce the pruning forQ.2 Of course, these approximations, as
well as those we introduce later on, will only be used to determine
the pruning: the pruned document will be queried by the original
query.

For the sake of presentation, we first deal with “simple paths”,
that is, path expressions with upward and downward axes in which
no predicate occurs. Then, in Section 3.2 we add XPathℓ predicates,

2For instance, the approximation of our sample queryQ is obtained
by replacing inQ the predicate[self::node℄ for the current one.

i.e. disjunctions of simple predicates, and finally in Section 3.3 we
show how to approximate generic XPath conditions into XPathℓ.
The missing axes are dealt with in Section 4.3.

3.1 Simple paths
Simple paths are defined by the following grammar:

SPath ::= Step | SPath/SPath | /SPath

Step ::= Axis::Test

Axis ::= self | child | descendant
| parent | ancestor | ancestor-or-self
| descendant-or-self

Test ::= tag | node | text

wheretag is a meta-variable ranging over element tags. Hencefor-
ward, we omit the treatment of leading/ (i.e., absolute paths) and
of desendant-or-self andanestor-or-self axes: their han-
dling would blur definitions and can be easily deduced from the
rest.

The formal semantics of paths is given in three definitions. First,
we formaliseTest filtering, then Axis selections, and finally we
combine the two notions to define the semantics of a single step
Axis :: Test. The definitions comply with the W3C XPath seman-
tics [2].

DEFINITION 3.1 (FILTERING). Given a tree t and a set of
nodes S⊆ Ids(t) we define

S::t l = {i ∈ S| t@i = l i [f]}
S::t node = S
S::t text = {i ∈ S| ∃ s . t@i = si}

DEFINITION 3.2 (AXES SELECTION). Given a tree t and a
set of nodes S⊆ Ids(t) (called context nodes), we defineJStepKt(S)
as the set of nodes resulting by applying Step to each node in S

JselfKt(S) = S
JchildKt(S) =

S

i∈S{i′ | (i, i′) ∈ E (t)}
JparentKt(S) =

S

i∈S{i′ | (i′, i) ∈ E (t)}
JdescendantKt(S) =

S

i∈S{i′ | (i, i′) ∈ E (t)+}
JancestorKt(S) =

S

i∈S{i′ | (i′, i) ∈ E (t)+}
whereE (t) is theedge relationof t, that is,E (t) = {(i, i′) | t@i =
l i [f ,t ′, f ′] ∧ RootId(t ′) = i′}, andE (t)+ is its transitive closure.

DEFINITION 3.3 (SIMPLE PATH SEMANTICS). Given t, a set
S⊆ Ids(t) and a path SPath, we define the evaluation of path SPath
over S nodes as follows:

JAxis:: TestKt(S) = (JAxisKt(S)) ::t Test
JSPath1/SPath2Kt(S) = JSPath2Kt(JSPath1Kt(S))

3.2 Predicates
XPath queries use predicates to express some filtering condi-

tions that cannot be expressed by simple paths. Predicates mix
structural conditions(directly expressed by means of paths) with
non-structural conditions(expressed by functions, operators, val-
ues, etc. . .).

We have seen an example of a non-structural condition in the
query Q extracting all book titles of books written by Dante, de-
fined at the beginning of the section. The best pruning for theQ
query is the one that deletes all books whose authors do not include
Dante. To implement such a pruning, one should extract from the
query value-based conditions (e.g. being equal to “Dante”). This
would drastically complicate the treatment without bringing a sig-
nificant gain: previous experiments have shown that navigational

specifications are already sufficient to obtain important improve-
ments in memory reduction and query execution time [14]. Hence
we’d rather abstract out non-structural conditions and only retain
structural ones. More precisely, our analysis will have to work only
on conditions defined as follows:

Cond ::= SPath | Condor Cond

XPathℓ is then defined by the following grammar:

Path ::= Step | Step[Cond] | Path/Path

We will use meta-variablesPath andP to range over these paths,
and reserveSPathfor simple paths andQ for general XPath queries.
Note that the definition ofCond uses simple paths, therefore in
XPathℓ conditions are not nested.

Semantics of XPathℓ’s paths is defined by substituting in Defini-
tion 3.3Pathfor SPathand by adding the following cases

Jself :: node[C]Kt(S) = {i ∈ S | Checkt [C](i)}
JAxis:: Test[C]Kt(S) = JAxis:: Test/self :: node[C]Kt(S)

whereCheckt [Cond](i) is the following boolean function:

Checkt [Path](i) = JPathKt({i}) 6= ∅

Checkt [C1 orC2](i) = Checkt [C1](i)∨Checkt [C2](i)

3.3 Handling XPath predicates
The predicates of the previous section cover only a small part

of XPath. If we want to apply our analysis to XPath and XQuery
we must be able to deal with the more general expressions usedin
conditions.

In this section we show how to rewrite every predicateExpex-
pressible in XPath to a simple conditionCondsuch thatCondis a
sound approximation ofExpwith respect to data needs: the prun-
ing determined forCondpreserves the semantics forExp. In other
words, if we take a generic XPath queryQ and approximate all its
predicates to infer a projectorπ, then the execution of (the original)
Q on a given document or on the document pruned byπ yield the
same result. This rewriting, together with the treatment ofmiss-
ing axes of Section 4.3, allows us to deal with a large subset of
XQuery and XPath queries, covering those in XPathMark [12] and
XMark [17] benchmarks.

More formally, we show how to rewrite an expressionExpinto a
conditionCond, whereExpis defined as

Exp::= Q | Exp op Exp| f (Exp1, . . . ,Expn) | AExp

whereop∈{eq, ne, lt, le, gt, ge, =, !=, <, <=, >, >=, is, <<,>>, or, and} is an operator,AExpranges over arithmetic expres-
sions (see [2]) and base values (PCDATA),f ranges over XPath and
XQuery functions and operators [5] such asount, ontains,is-zero, not, empty, etc., andQ is a generic XPath query, that
is:

Q ::= Step | Step[Exp] | Step/Q | Step[Exp]/Q

The rewriting is obtained by a path-extracting functionP that ap-
plied to an expressionExpreturns a set ofsimplepaths whose “or”
constitutes the approximation ofExp.3

Let us outline the rewriting by an example. Consider the predi-
cate[position()>1 and parent::node/book/author="Dante"

3For lack of space we cannot present the full treatment of predi-
cates that we have implemented in our prototype. In particular, we
do not consider absolute paths (although they need special treat-
ment they do not introduce any significant problem) nor we for-
mally define the approximation for each XPath and XQuery func-
tion.

and year>1313℄. In our system this predicate is approximated by[self::node or parent::node/book/author or year ℄. Es-
sentially, given a predicateExp we obtain a conditionCond that
soundly approximates it by retaining the disjunction of allstruc-
tural conditions (likeparent::node/book/author andyear in the
previous example), plus eitherdesendant-or-self::node or
self :: node if some non-structural condition is present (for in-
stance,position()>1). The choice betweenself::node anddesendant-or-self::node depends on the functions and oper-
ators used in the condition: for instance functions likeposition
or ount requireself::node since their execution requires only
the root nodes; instead a function such asstring needs the whole
tree. Therefore we suppose to have a predefined functionF that for
eachf returns eitherdesendant-or-self::node or self::node.
For the sake of generality we suppose that this function depends
on the position of the argument inn-ary function. Thus, for, say,ount(SPath) andstring(SPath), we haveP(ount(SPath)) =
SPath/F(ount,1) = SPath/self::node, andP(string(SPath)) =
SPath/F(string,1) = SPath/descendant-or-self :: node. For-
mally, we have:

P(Step) = {Step}
P(Step[Exp]) = Step/P(Exp)
P(Step/Q) = Step/P(Q)
P(Step[Exp]/Q) = Step/(P(Q)∪P(Exp))
P(Exp op Exp′) = P(Exp)∪P(Exp′)
P(f (Exp1, . . . ,Expn)) =

S

i=1,n(P(Expi)/F(f , i))∪
∪{self :: node}

where we used the notationStep/A as a shorthand to denote the set
{Step/SPath| SPath∈ A} whenA is a set of simple paths (similarly
for A/Step).

The presence of{self :: node} in the last line is motivated by
the fact that when we have a non structural condition, paths must
not be used to restrict the inferred projectors, since this would not
yield a sound approximation. More precisely, whenExp is purely
structural, that is it only involves paths in (possibly nested) condi-
tions, then these paths are extracted to refine the projection. For
instance, indescendant :: node[child :: a] we can use the con-
dition [hild::a℄ to refine projection inference : we select only
element types having ana child. On the other hand, whenExp is
not purely structural, as indescendant :: node[not(child :: a)]
or descendant :: node[ount(child :: a)<5], we can not use the
same projector as fordescendant :: node[child :: a]: if we use
[child :: a] to restrict the projection, we would alter the result
of the last two queries, so the projector would be unsound. To
guarantee soundness, we extract paths from the argumentsnot andount and add the condition{self :: node} to ensure that we do
not prune nodes necessary to the evaluation of the functions. So,
for the two queries, after condition rewriting, we have the approx-
imating querydescendant :: node[child :: a or self :: node],
yielding a sound projector.

To resume, to indicate the fact that, in the presence of not purely
structural conditions, paths must not be used to restrict inferred
projectors, we add the always true condition{self :: node}. Of
course, we could have adopted more precise (and complex) tech-
niques, but we preferred this solution as we consider it a good com-
promise between precision and simplicity.

We want also to stress that here we reach the limits of XQuery
and XPath type systems. If we had worked on more advanced XML
languages such asCDuce [6] orCQL [7] their richer type system (it
includes union, intersection, negation, and singleton types) would
allow us to precisely capture more predicates and use them for a
much finer pruning (as it is done inCQL query optimisation).

4. STATIC ANALYSIS
In this section we define deduction rules to statically inferfrom

a XPathℓ pathP and aDTD E a type-projector for an input docu-
ment validatingE. We show that the analysis is sound, and that
it enjoys completeness for a large class of queries whenE is a∗-
guarded and non-recursiveDTD (see Definition 4.3 below). Sound-
ness means that executing the query on the original documentand
on the document pruned by the inferred projector yields the same
result. Completeness means that if we take a type projector smaller
(i.e., more selective) than the inferred one, then there exists a docu-
ment validatingE for which the result of the two executions is not
the same. When the conditions onDTDs or on queries are relaxed
the analysis is still sound but it may be not complete. Nevertheless,
as we will illustrate, it still is very precise.

In order to define our static type inference we proceed in two
steps.

1. Given a pathP and aDTD E we typeP by the set of all
elements that may appear in the result of applyingP to a
document validatingE. This is done in Section 4.1 (actually,
we will be more precise and typeP by the set of all names of
E thatgeneratethe elements in the result).

2. We use the type inference at the previous point to define the
inference of type projectors. In particular we will use the
cases in which the previous type inference returns the empty
set to determine the points in which pruning must be per-
formed. This is done in Section 4.2.

4.1 Type inference
Given a pathPathand aDTD E we want to find a set of names

of E that generates elements that can be found in the result ofP.
Formally, we want to infer a setτ ⊆ DN(E) such that

∀t ∈ℑ E. ℑ(JPathKt(RootId(t))) ⊆ τ (1)

which states the soundness of the analysis.
Moreover, we aim at an analysis which is precise enough to guar-

antee, on a large class of types and for a large class of queries, that
whenever the path semantics is empty over all possible instances of
the inputDTD, then the inferred typeτ is empty, as well:

∀t ∈ℑ E. ℑ(JPathKt(RootId(t))) = ∅ ⇒ τ = ∅ (2)

(the converse is a consequence of (1)). The precision described
by (2) will then be used during the inference of type-projectors to
discard elements that are useless in the evaluation ofPath.

We start by inferring types for single-step paths.

DEFINITION 4.1 (SINGLE STEP TYPING). Let E be aDTD

andτ ⊆ DN(E), then:
AE(τ,ancestor) =

S

Y∈τ{Z | Z ⇒+
E Y}

AE(τ,child) =
S

Y∈τ{Z |Y ⇒E Z}
AE(τ,parent) =

S

Y∈τ{Z | Z ⇒E Y}
AE(τ,descendant) =

S

Y∈τ{Z |Y ⇒+
E Z}

AE(τ,self) = τ
TE(τ,a) = {Y |Y ∈ τ, E(Y) = a[r]}

TE(τ,node) = τ
TE(τ,text) = {Y |Y ∈ τ, E(Y) = String}

The type of a single step queryAxis:: Testfor theDTD (X,E) is then
given byTE(AE({X},Axis),Test). Soundness of this definition, i.e.
property (1), is given by the following lemma.

LEMMA 4.2. Let t be a treeℑ-valid with respect to theDTD E.
For every S⊆ Ids(t) and typeτ, if ℑ(S) ⊆ τ then

1. ℑ(JAxisKt(S)) ⊆ AE(τ,Axis)
2. ℑ(S::t Test) ⊆ TE(τ,Test)

Primitive Single Step

Axis∈ {self, child, descendant}
Σ ⊢E Axis:: node : (AE(Στ,Axis) , Σκ ∪AE(Στ,Axis))

Axis∈ {parent, ancestor}
Σ ⊢E Axis:: node : (AE(Στ,Axis))∩Σκ , AE(Σκ,Axis)∩Σκ)

Test6= node

Σ ⊢E self :: Test: (TE(Στ, Test) , (Σκ ∩AE(TE(Στ, Test),ancestor))∪TE(Στ, Test))

∀Xi ∈ Στ,Pj ∈ Cond, ({Xi},Σκ) ⊢E Pj : Σi j

τ = {Xi | ∃ j .Σi j
τ 6= ∅}

Σ ⊢E self :: node[Cond] : (τ , (Σκ ∩AE(τ,ancestor))∪ τ)

Encoded Single Step

Σ ⊢E Axis:: node/self :: Test: Σ′
Test6= node

∧
Axis 6= selfΣ ⊢E Axis:: Test: Σ′

Σ ⊢E Axis:: Test/self :: node[Cond] : Σ′
Test6= node

∨
Axis 6= selfΣ ⊢E Axis:: Test[Cond] : Σ′

Composed paths
Σ ⊢E Step: Σ′′ Σ′′ ⊢E Path: Σ′

Σ ⊢E Step/Path: Σ′

Figure 1: Inference rules for single step queries

The presence of upward axes makes the typing of composed paths
much more difficult. To ensure precision, i.e. property (2),we have
to be careful in dealing withDTDs in which an element may occur
in the content of different elements. The naive solution consisting
of inferring a type for composed paths by composing the functions
we just defined for single steps, works only in the absence of up-
ward axes. This can be illustrated by an example. Consider the
following DTD rooted atX:

{X → c[Y, Z], Y → a[W,String], Z → b[String], W → d[Y?]}

and observe thatY occurs in two different element content defini-
tions. If we consider the pathself :: c/child :: a/parent :: node
over documents of the aboveDTD, then the precise type that this
path should have is{X}. However, by using Definition 4.1 we end
up with{X,W}. This is because the first step selects{Y} and then,
according to Definition 4.1, the second step selects{X,W}, asY is
in the content definition of these two names.

To solve this problem we introduce particular types, calledcon-
texts, to be updated at each step and containing names already en-
countered in previous steps. We then use them to refine type infer-
ence for upward axes. In the previous example, when typing the
first step we build acontext{X,Y} indicating that for the moment
the two names are the only ones visited by the traversal. Then, we
use Definition 4.1 to typeparent thus obtaining{X,W}, as be-
fore, but this time we intersect it with the context thus obtaining
the precise answer{X}.

This idea is formalised by the (deterministic) type system of Fig-
ure 1. We use the meta-variablesτ to range over types andκ over
contexts, both denoting sets of names defined by the inputDTD E.
An environment, ranged over byΣ, is a pair(τ,κ); we useΣτ and
Σκ to denote the first and second projection ofΣ, respectively.

Environments Σ ::= (τ,κ)

Judgements J ::= Σ ⊢E Path: Σ

The judgement(τc,κc) ⊢E Path: (τr ,κr) means that given aDTD

E, starting from the names inτc and the current contextκc, the path
Pathgenerates the namesτr in an updated contextκr .

An environment(τ,κ) is well-formed with respect toE, if τ ⊆
DN(E), andκ ⊆ τ∪AE(τ,ancestor), that is, if the context con-
tains only names that occur in chains ending with names inτ. A
judgementΣ ⊢E Path: Σ′ is well formed if bothΣ andΣ′ are well
formed with respect toE. It is easy to see that the type inference
rules of Figure 1 preserve well-formedness.

The rules are relatively simple to understand. The first two rules
implement our main idea: when we follow an axisAxis, we com-
pute the type byAE(Στ,Axis); if the axis is a downward one, then
we add this type to the current context, otherwise if the axisis an
upward one, then we intersect it with the current context (both for
the type part and for the context part). The rule forself :: Test
is slightly more difficult since it discards from the currentset of
nodes those that do not satisfy the test: the type is computedby
TE(Στ,Test), while the context is obtained by erasing all the names
that were in there just because they generated one of the discarded
nodes; to do it it generates (the type of) all ancestors of thenodes
satisfying the test, and intersects them with the current context.
These first three rules are enough to type all the paths of the form
Axis :: Testsince, as stated by the fifth typing rule, all remaining
cases are encoded asAxis:: node/self :: Test. The fourth rule is
the most difficult one: recall thatCond is a disjunction ofsimple
paths; the typeτ is obtained by discarding fromΣτ all (names of)
nodes for whichCondnever holds; thus for eachXi in Στ we com-
pute the type of all the paths inCond, and keep inτ only names for
which at least one path may yield a non-empty result; the context
then is computed as in the third rule, by discarding from the con-
text all names that generated only names discarded fromΣτ. Once
more, all the remaining cases of conditional steps are encoded by
this one, as stated by the sixth rule. Finally, step composition is
dealt as a logical cut.

The type system is sound. It is also complete forDTDs that are
∗-guarded, non-recursive, and parent-unambiguous. Intuitively, a
DTD is ∗-guarded when every union occurring in its productions
is guarded by∗ (or by +), it is non recursive if the depth of all
documents validating it is bound, while it is parent-unambiguous if
no name types both the parent and a strict ancestor of the parent of
another name. Formally, we have the following definition

DEFINITION 4.3. Let (X,E) be aDTD.

1. E is∗-guardedif for each Y→ l [r] in E, the regular expres-
sion is a product r= r1, . . . , rn and whenever ri contains a
union, then ri = (r ′)∗;

2. E isnon-recursiveif it is never the case that Y⇒+
E Y , for any

name Y∈ DN(E);
3. E isparent-unambiguousif for all chains c and names Y,Z

such that cY Z∈ Chains(X, E)(X) the following implication
cY c′Z ∈ Chains(X, E)(X) =⇒ c′ = ε

holds (ε denotes the empty chain).

Non-recursivity and∗-guardedness are properties enjoyed by a large
number of commonly usedDTDs. As an example, the reader can
consider theDTDs of the XML Query Use Cases [3]: among the
ten DTDs defined in the Use Cases, seven are both non-recursive
and∗-guarded, one is only∗-guarded, one is only non-recursive,
and just one does not satisfy either property. Furthermore our per-
sonal experience is that most of theDTDs available on the web are
∗-guarded. Concerning the parent-unambiguous property, although
DTDs satisfying this property are less frequent (five on the tenDTDs
in [3]), its absence is in practice not very problematic since, as we
will see, only the presence of theparent axis may hinder com-
pleteness.

THEOREM4.4 (SOUNDNESS ANDCOMPLETENESS). Let
(X,E) be a DTD and P a path. If({X},{X}) ⊢E P : (τ,κ) then
(soundness):

τ ⊇
S

t∈ℑE ℑ(JPKt(RootId(t)))

Furthermore, if(X,E) is ∗-guarded and non-recursive, and parent-
unambiguous , then we also have (completeness):

τ ⊆
S

t∈ℑE ℑ(JPKt(RootId(t)))

To see why completeness does not hold in general consider the
following DTD rooted atX and which is recursive and not∗-guarded

{X → c[Y | Z], Y → a[Y∗,String], Z → b[String]}

and the following two queriesself :: c[child :: a]/child :: b and
self :: c/child :: a/parent :: node. The type inferred for the first
query contains bothY andZ. These are useless since the query is
always empty. This is due to the non∗-guarded unionY | Z: if we
had(Y | Z)∗ instead, then the query might yield a non-empty result,
thereforeY andZ must correctly (and completely) be in the query
type. The second query shows the reason why completeness does
not hold in presence of recursion and backward axes (recursion
with only forward axes does not pose any problem for complete-
ness). The type of the second query should be{X}, but instead the
type{X,Y} is inferred. This is due to the recursionY → a[Y∗, . . .]:
sinceY ⇒E Y, onceY is reached it is kept in the inferred type for
every backward step.4

For queries over parent-ambiguousDTDs, completeness does not
hold because the fourth rule in Figure 1—the one defined forself ::

4The techniques developed in [11, 10] can be adapted to recover
completeness for cases like the first query, while a more sophisti-
cated type analysis could solve the problem with the second.In
view of the precision of the current approach this is not a priority
and we leave this investigation as future work.

node[Cond]—is not precise for the parent axis. For instance, con-
sider the followingDTD rooted atX

{X → a[Y,Z], Y → b[Z], Z → c[]}

and the queryself :: a/child :: b/child :: c/parent :: node.
The precise type of this query should be{Y}. However, the inferred
type is{X,Y}. This is because the last stepparent :: node is typed
with the context{X,Y,Z} and this containsAE({Z},parent) =
{X,Y}. HereZ is the type for thec node selected bychild :: c
and theAE(,) operator assigns it{X,Y} as parent type, even if
the real parent type forZ in this case should be{Y}. Hence, the
intersections operated by the type rule forparent are not pow-
erful enough to guarantee precision for cases like this one.In a
nutshell, this happens because in the presence of parent-ambiguous
DTDs the type analysis may produce contexts containing false par-
ent types (with respect the current typeτ). This suggests that to be
extremely precise, instead of sets of names, contexts should rather
be sets ofchainsof names, computed and opportunely managed by
the type analysis. However(i) managing sets of chains instead of
simple sets of names dramatically complicates the treatment, due
to recursive axes likedescendant, (ii) the problem may arise only
for queries that use parent axis and the concomitance of parent-
ambiguity make the event rare in practice, and(iii) the loss of pre-
cision looks in most cases negligible. Therefore we considered that
such a small gain (remember that completeness is just some icing
on the cake since while it helps to gauge the precision of the ap-
proach its absence does not hinder its application) did not justify
the dramatic increase in complexity needed to handle this case.

Note also that the type system, hence the completeness result,
is stated for predicates of the form described in Section 3.2, there-
fore it does not account for the approximations introduced in Sec-
tion 3.3. However very few non-structural conditions can beex-
pressed at the level of types, so the impact of these approximations
on completeness is very light.

4.2 Type-Projection inference
In this section we use the type inference of the previous section

to infer type-projectors. Once more naive solutions do not work.
For instance, for simple pathsStep1/. . . /Stepn, we may consider
as type projector with respect to(X,E) the set

S

i=1...nτi ∪ {X},
where fori = 1. . .n:

({X},{X}) ⊢E Step1/. . ./Stepi : (τi ,−)

(we use “−” as a placeholder for uninteresting parameters). This
definition is sound but not precise at all, as can be seen by consid-
eringdescendant :: node/Path: the use of the above union yields
a set containingτ1 defined as

({X},{X}) ⊢E descendant :: node : (τ1,−)

that is, all descendants of the rootX (no pruning is performed).
Instead, we would like to discard, at least, all names that are de-
scendants ofX but that are not ancestors of a node matchingPath.
These are the namesY ∈ TE(AE({X},descendant), node) such
that

({Y},κ) ⊢E descendant :: node/Path: (∅, −)

for some appropriate contextκ. A similar reasoning applies toanestor.
Such a selection is performed by the inference rules of Figure 2.

For paths formed by a single step, if the step has no condition(first
rule), then the type inference of the previous section is enough;
otherwise (second rule) the step is transformed into a complex path
(a simple trick to avoid the definition of several rules). Thanks to
the third rule the type inference can work on just one node at atime,
and thanks to the fourth and fifth rule, it just analyses pathswhose

Base and induction

Σ ⊢E Step: (τ,κ)

Σ E Step: τ∪κ

Σ E Step[Cond]/self :: node : τ

Σ E Step[Cond] : τ

({X1},κ) E P : τ1 · · · ({Xn},κ) E P : τn
if no other
rule applies

({X1, . . . ,Xn} , κ) E P :
[

i=1..n

τi

Encoded Rules

Σ E Axis:: node/self :: Test/P : τ Test6= node
∧

Axis 6= selfΣ E Axis:: Test/P : τ

Σ E Axis:: Test/self :: node[Cond]/P : τ Test6= node
∨

Axis 6= selfΣ E Axis:: Test[Cond]/P : τ

Primitive Rules

({Y},κ) ⊢E self :: Test: Σ Σ E P : τ

({Y},κ) E self :: Test/P : {Y}∪ τ

({Y},κ) ⊢E self :: node[P1or . . .orPn] : Σ Σ E P : τ Σ E Pi : τi
n≥1

({Y},κ) E self :: node[P1or . . .orPn]/P : {Y}∪ τ∪ τ1∪·· ·∪ τn

({Y},κ) ⊢E Axis:: node : ({X1, ...,Xn},κ′) ({Xi},κ′) ⊢E P : Σi (τ,κ′) E P : τ′
Axis∈ {parent,child}
τ = {Xi | Σi

τ 6= ∅}({Y},κ) E Axis:: node/P : {Y}∪ τ∪ τ′

({Y},κ) ⊢E des :: node : ({X1, ...,Xn},κ′) ({Xi},κ′) ⊢E des :: node/P : Σi (τ,κ′) E child :: node/P : τ′
τ = {Xi | Σi

τ 6= ∅}∪{Y}
({Y},κ) E des :: node/P : τ∪ τ′

({Y},κ) ⊢E ans :: node : ({X1, ...,Xn},κ′) ({Xi},κ′) ⊢E ans :: node/P : Σi (τ,κ′) E parent :: node/P : τ′
τ = {Xi | Σi

τ 6= ∅}∪{Y}
({Y},κ) E ans :: node/P : τ∪ τ′

Figure 2: Projectors inference rules (whereans and des are shorthands foranestor and desendant)

components have one of the following three forms:(i) self::Test,
(ii) self::node[Cond], or (iii) Axis::node. These three cases are
handled by the “Primitive Rules” of Figure 2: The first rule handles
the case(i) simply by collecting the current context. The second
rule handles the case(ii), by collecting besides the context also all
the parts that are necessary to compute the condition (whichin the
rule is expanded in its more general form); the case(iii) is handled
by the last three rules which are nothing but slight variations of
the same rule according to the particular axis taken into account:
each rule infers the typeτ obtained by discarding from the type
{X1, ...,Xn} of the step, all names that are useless for the rest of the
path, and then uses thisτ to continue the inference of the projector.

THEOREM4.5 (SOUNDNESS OF PROJECTOR INFERENCE).
Let (X,E) be a DTD and P a path. If({X},{X}) E P : τ, then
τ is a type projector for(X,E) and for every t∈ℑ E

JPKt\ℑτ(RootId(t)) = JPKt(RootId(t))

The above theorem states that executing the queryP on a treet
returns the same set of nodes as executing it ont \ℑτ the treet
pruned by the inferred projector. From a practical perspective it
is important to notice that according to standard XPath semantics,
the semantics of a query containsonly the nodes of the result of
the query not their sub-trees. The latter may thus be pruned by the
inferred projector. Therefore, if we want tomaterialisethe result
of a query we must not cut these nodes, and rather use the projec-
tion τ = τ′∪AE(τ′′,descendant) where({X},{X}) E P : τ′ and
({X},{X}) ⊢E P : (τ′′;−).

Completeness requires not only completeness of the type system
(thus, ∗-guarded, non-recursive, and parent-unambiguousDTDs),
but also the following condition on queries:

DEFINITION 4.6. An XPath query Q isstrongly-specifiedif (i)
its predicates do not use backward axes,(ii) along Q and along
each path in the predicates of Q there are no two consecutive (pos-
sibly conditional) steps whose Test part isnode, and (iii) each
predicate in Q contains at most one path and this does not ter-
minate by a step whose Test isnode.

For instance, among the following queries, only the first twoare
strongly-specified.

1. desendant::node/self::a /anestor::node
2. desendant::node[hild::b]/self::a/parent::node
3. desendant::node/anestor::node/self::a
4. desendant::node[hild::b/hild::node]/self::a
4. hild:: a [desendant::node/parent:: b]/hild::c

Once more, we are in presence of a very common class of queries:
for instance, almost all paths in the XMark and XPathMark bench-
marks are strongly specified.

THEOREM4.7 (COMPLETENESS OF PROJECTOR INFERENCE).
Let(X,E) be a∗-guarded, non-recursive, and parent-unambiguous
DTD, and P a strongly-specified path. If({X},{X}) E P : τ, then
there exists t∈ℑ E such that for each Y∈ τ, if π = τ \ ({Y} ∪
AE({Y},descendant)), then

JPKt\ℑπ(RootId(t)) 6= JPKt(RootId(t))

The fact that completeness may not hold for not∗-guarded, non-
recursive, or parent-ambiguousDTDs, is a consequence of the anal-
ogous property of the type system. To see that also strong-specifica-
tion is a necessary condition consider documents valid withrespect
to the followingDTD rooted atX:

{X → a[Y,W], W → c[],Y → b[Z], Z → d[]}.

Query them by the following query which not strongly-specified
since it does not satisfy condition(ii) of Definition 4.6

self :: a[child :: node].

{X,Y} is an optimal projector for this query, but the presence of
the conditionself :: node makes the system to include alsoW
in the inferred projector, thus breaking completeness. Concerning
the presence of backward axes in predicates, consider the query
self :: a[descendant :: node/ancestor :: a] which does not sat-
isfy condition(i). An optimal projector for this query on the same
DTD is {X,Y}. However, since theancestor condition is true
for all descendants ofa nodes,{W,Z} is included in the projec-
tor as well. Finally, it is straightforward to check that thequery
self :: a[child :: b or child :: c], which does not satisfy condi-
tion (iii), is not complete for the sameDTD.

Of course, it is possible to state completeness for other classes
of queries but, once more, this seems an excellent compromise be-
tween simplicity and generality.

THEOREM4.8 (DECIDABILITY). Given a path P, aDTD E,
and an environmentΣ well-formed with respect to E, the inference
of a contextΣ′ and a typeτ such thatΣ ⊢E P : Σ′ andΣ E P : τ is
decidable.

4.3 Adding sibling, preceding and following
axes.

We could deal with the missing XPath axes by adding specific
inference rules. Instead we opt to use an approximation of these
axes in term of the previous ones, since it appears as the bestcom-
promise between simplicity and efficiency.

The approximation is performed by two logical rewriting passes.
In the first pass we rewrite preceding and following axes as speci-
fied in the W3C specifications [4]. Namely, we substitute eachstep
Axis :: Testwith Axis∈ {preceding,following} by the follow-
ing equivalent pathancestor-or-self :: node/(Axis-sibling) ::
node/descendant-or-self :: Test

The second pass is the one which introduces the approximation
since it replaces all steps of the formAxis::Test with
Axis∈ {preeding-sibling,following-sibling} by the pathparent::node/hild::Test.

Clearly, the static analysis of the approximation yields a less pre-
cise projection than the one we could obtain by working directly
on the original query. However, we still achieve good precision of
pruning in practice as we will show in Section 6. For instance, by
applying the above rewriting to XPathMark queries Q9 and Q11,
we were able to prune a document down to 7.5% of its original
size.

5. EXTENSION TO XQUERY
In this section we extend the technique to XQuery. More pre-

cisely to the FLWR core of XQuery described by the following
grammar:

q ::= () | q,q | <tag>q</tag> | Exp
| for x in q return q | let x = q return q
| if q then q else q

where the definition ofExp(given in Section 3.3) is extended with
variables, and with generic XPath expressionsQ of Section 3.3 that
can be rooted at a variable or at/ :

Exp::= x | Q | x/Q | /Q | ExpopExp| f (Exp, .. ,Exp) | AExp

Without loss of generality, we assume that FLWR expressionsdo
not occur inif-conditions nor in predicates (every query can be put

into this form by adding appropriatelet-expressions). Also, we do
not consider either queries which first construct new elements and
then navigate on them (these are rarely used in practice), nor those
containing XQuery clauses likeorder__by, swith__ase, etc.:
our approach can be easily extended to both cases.

In order to apply the previous analysis to infer a projector for q,
we first extract a set of XPathℓ expressions fromq, denoting the
data needs forq. This set of paths is extracted from the query by
the extraction functionE, whose definition is given in Figure 3.
The extraction function has the formE(q,Γ,m). The first parame-
ter is the query at issue. The second parameterΓ is an environment
that keeps track of bindings of the form(x; for P) or (x; let P),
whose scopeq is in (see the definition ofΓ′ in the last two lines
of Figure 3, and observe, by a simple induction reasoning, that en-
vironments contain paths already in XPathℓ). Finally, m is a flag
indicating whetherq is a query that serves to materialise a partial
or final result (m= 1), or that just selects a set of nodes whose de-
scendants are not needed (m= 0). Thus, the set of path expressions
(possibly containing qualifiers) extracted from a top-level query q
is E(q,∅,1).

Once the set of paths are extracted from a queryq, we use it to
infer a projector forq according to rules in Section 4.2. Formally,
for eachPi extracted fromq we deduce a projectorπi , and use for
the wholeq the union of these projectors (projectors are closed by
union). Also, note that the extracted path of a closed query will not
contain free variables since possible free variables are persistent
roots that must be solved before the analysis.

Most of the rules in Figure 3 are not difficult to understand, there-
fore only few of them deserve further commentary. The flag is
needed since each path determining the result (m= 1) must be ex-
tended withdesendant-or-self, in order to project on all nodes
needed in the query result. This is done by the lines 6, 8, and 10
of the definition. Expressions are dealt in a way similar to the path
extractorP of Section 3.3; the extractorP itself is used in line 12 to
produce simple paths (where we used the notationor({P1, ...,Pn})
for P1or . . .orPn, and omitted the—straightforward—rules for sin-
gle step paths). Also note that when a result is computed (lines 2
and 5) paths in “for”-environments are added (“let” are added only
if their binding variable is used).

These rules subsume and enhance the whole Marian and Siméon’s
technique [14]. In particular,(i) the technique we use to exclude
useless intermediate paths is simpler and more compact,(ii) we do
not need to distinguish between two kinds of extracted pathsbut,
more simply, we always manage a unique set of path expressions,
and(iii) last but not least, our path extractor can be used even if the
user cannot access an XQuery to XQuery-Core compiler, whichis
necessary for [14].

Before applying the extraction functionE to a queryq we apply
some heuristics that rewriteq so to improve the pruning capability
of the inferred paths. Among these heuristics the most important is
the one that rewritesfor y in Q/desendant-or-self::nodereturn if C(y) then q else ()
intofor y in

Q/desendant-or-self::node[C(self :: node)℄return q

wheneverC(y) is a condition referring only toy and does not use
external functions (C(self :: node) is obtained by replacingself ::
node for all occurrences ofy free inC). If we applyE to the first
query, then a path ending bydesendant-or-self::node is ex-
tracted thus annulling further pruning: the entire forest selected

1. E((),Γ,m) = ∅

2. E(AExp,Γ,1) = {P | (x; for P) ∈ Γ}
3. E(AExp,Γ,0) = ∅

4. E((q1,q2),Γ,m) = E(q1,Γ,m)∪E(q2,Γ,m)
5. E(<tag>q</tag>,Γ,m) = {P | (x; for P) ∈ Γ}∪E(q,Γ,1)
6. E(x,Γ,1) = {P/descendant-or-self :: node | (x; − P) ∈ Γ}
7. E(x,Γ,0) = {P | (x; − P) ∈ Γ}
8. E(/P,Γ,1) = {/P/descendant-or-self :: node}
9. E(/P,Γ,0) = {/P}

10. E(x/P,Γ,1) = {P′/P/descendant-or-self :: node | (x; − P′) ∈ Γ}
11. E(Step/q,Γ,m) = Step/E(q,Γ,m)
12. E(Step[Exp]/q,Γ,m) = Step[or(P(Exp))]/E(q,Γ,m)
13. E(Exp1 op Exp2,Γ,m) = E(Exp1,Γ,m)∪E(Exp2,Γ,m)
14. E(f (Exp1, . . . ,Expn),Γ,m) =

S

i=1,n(E(Expi ,Γ,0)/F(f , i))∪{self :: node}
15. E(if q then q1 else q2,Γ,m) = E(q,Γ,0)∪E(q1,Γ,1)∪E(q2,Γ,1)∪{P | (x; − P) ∈ Γ}
16. E(for x in q1 return q2,Γ,m) = E(q1,Γ,0)∪E(q2,Γ∪Γ′,m) (whereΓ′ = {(x; for P) | P∈ E(q1,Γ,0)})
17. E(let x = q1 return q2,Γ,m) = E(q1,Γ,0)∪E(q2,Γ∪Γ′,m) (whereΓ′ = {(x; let P) | P∈ E(q1,Γ,0)})

Figure 3: XQuery path extraction

by Q is loaded in main memory. This also happens with the ap-
proaches of Bressanet al. [9] and of Marian and Siméon [14]. In
our and Marian and Siméon’s approach the query can be rewritten
as above (this is not possible in [9] since their subset of XQuery
does not include predicates). However, Marian and Siméon’spath
based pruning degenerates (no further pruning is performed) also
for the second query, since thedesendant-or-self::node ends
up in the set of pruner paths, thus selecting all nodes. This is be-
cause their approach cannot manage predicates. In our approach
instead predicates are taken into account and therefore only nodes
satisfyingC(y) are kept by the projector, thus yielding a very pre-
cise pruning.

It is important to stress that despite their specific form thefirst
kind of queries is very common in practice since they are generated
from XQuery→XQuery-Core compilation of a non negligible class
of queries (for instance Q13 of the XPathMark) or when rewriting
upward axes into downward ones. This latter observation shows
that the application of rewriting rules rules of [15] to extend Marian
and Siméon’s approach to upward axes is not feasible since the
rewriting may completely compromise pruning.

6. EXPERIMENTS
We have implemented a complete version of the algorithm de-

fined for full XPath. The code (available athttp://www.lri.fr/~kn) is written in OCaml, uses the PXP library for parsing XML
documents, and its correctness was verified for all tests. After the
path extraction of Section 5, it performs the rewriting presented
in Sections 3.3 and 4.3, and the static analysis defined in Sec-
tion 4. The latter is extended to deal with attributes, with the wild-
card testelement(), with {desendant,anestor}-or-self
and {preeding,following}-siblings axes, and with abso-
lute paths. It also uses a couple of heuristics. One heuristic rewrites
the DTD E so that every nameY defined asY → Stringoccurs ex-
actly once in the right hand side of an edge ofE; this enhances
the precision of pruning by reducing the number of conflicts on
the leaves of the tree. The other heuristic keeps track of thedepth
of elements in the paths in order to improve pruning, especially in
presence of recursiveDTDs (this latter heuristics could be embed-
ded in the formal treatment, but we preferred to keep it simpler).
Pruning is then performedin streamingand merely consists of a

one-pass traversal of the document. We also added an optional val-
idation option, that makes it possible to prune the documentwhile
validating it. Programs that use an external validator can therefore
prune their document without any overhead.

We performed our tests on a GNU/Linux desktop, with 3GHz
processor, 512 MB of RAM and a single S-ATA hard-drive, us-
ing DTDs, document generator, and queries of XMark and XPath-
Mark (the latter is interesting because its queries use all the avail-
able axes). Queries were processed by the latest version of Galax
(that is, the 0.5.0). Swap was disabled to test memory limits.

For what concerns the overhead of the optimisation, tests con-
firmed that it is always negligible, both in memory and time con-
sumption: the only noticeable overhead is pruning time, which is
linear in the size of the pruned document, but can be embedded
in document parsing and/or validation (e.g., for 60MB documents
computing the projector took around 0.5s while pruning and sav-
ing the pruned document to disk was always below 10s). These
results were confirmed by further experiments on largeDTDs (e.g.
XHTML) and long XPath expressions (twenty steps or so).

In Table 1 we report part of the results of our tests. For spacerea-
sons just a selection of XMark (QM) and XPathMark (QP) queries
are presented.

Projector efficiency. The fourth line of Table 1 reports the ef-
fect of inferred projectors and it is an indicator of the selectivity of
the query. For several XMark queries the size of the pruned docu-
ment is around 70-80% of the size of the original document. This
is due to the fact that XMark documents contain mixed-content<desription> elements which account for about 70% of the to-
tal size. Thus, queries whose execution requires the whole content
of <desription> elements, preserve a large part of the file. On
the contrary, for very selective queries like QM06, 99.7% ofthe
document is discarded. Finally, for queries that are very little se-
lective, like QP13, the whole document has to be kept. It should be
noted in Table 1, fourth line, that for all XMark queries but QM14
we could prune more than 95% of the original document.

Execution time and memory occupation. The comparison of
performances of the Galax query engine on an original document
and its pruned version is given in Figures 4 and 5, which respec-
tively report the processing times and main memory occupation for
documents of 56MB. They show that time and memory gains are

Q
M

03

Q
M

06

Q
M

07
Q

M
14

Q
M

15
Q

M
19

Q
P

01
Q

P
02

Q
P

03
Q

P
04

Q
P

05
Q

P
06

Q
P

07
Q

P
08

Q
P

09
Q

P
10

Q
P

11
Q

P
12

Q
P

13
Q

P
21

Q
P

23

Original Document Size (MB) 930 2048⋆ 1100 202 2048⋆ 964 112 313 258 291 123 190 168 123 459 123 369 134 79 224 403
Pruned Document Size(MB) 25 5,3 42 139 24 24 89 50 46 50 98 133 123 99 35 98 28 107 78 152 42
Main Memory Usage (MB) 374 90 380 512 245 512 391 399 433 434 418485 467 466 466 483 456 460 504 459 465
Gain in Size (% of original) 2.5 0.3 3.4 69.6 1.15 2.5 80.4 15.717.5 16.8 80.4 69.6 73.2 80.4 7.5 80.4 7.5 80.4 98.2 67.9 10.4

Gain in Speed(× faster) 17.8 110.1 28.2 3.9 62.6 7.5 1.5 3.6 3.7 4.3 1.5 2.9 2.6 1.1 4.9 1.6 4.2 1.6 1.0 3.6 3.6
⋆: biggest file the XMark generator was able to produce.

Table 1: Sizes (in MBytes) of the biggest document processedthanks to pruning, size of its pruned version, and memory used to
process the latter. Percent of the pruned document and speedup of the execution time for a 56MB document.

Q
M
0
3

Q
M
0
6

Q
M
0
7

Q
M
1
4

Q
M
1
5

Q
M
1
9

Q
P
0
1

Q
P
0
2

Q
P
0
3

Q
P
0
4

Q
P
0
5

Q
P
0
6

Q
P
0
7

Q
P
0
8

Q
P
0
9

Q
P
1
0

Q
P
1
1

Q
P
1
2

Q
P
1
3

Q
P
2
1

Q
P
2
3

Query

0

5

10

15

20

25

30

35

40

45

50

55

60

P
r
o
c
e
s
s
i
n
g

T
i
m
e

(
i
n

s
)

Figure 4: Processing time of a query on original (56MB) and
pruned documents

similar.
These gains translate in practice into much faster executions and

the possibility to process much larger documents. The improve-
ment can be measured by looking at the first and last lines of Ta-
ble 1. The first line reports the size of the largest document it was
possible to process thanks to pruning. This must be comparedwith
the fact that, for all queries, the largest document that canbe pro-
cessed without pruning is 68MBytes large. The last line reports
how many times the execution on a pruned document is faster than
the execution on the original document. It is important to note that,
depending on the nature of the query, the gain can be much higher
than the proportion given by the percent of the size of the prun-
ing. For instance, for queries such as QM14, QP6, and QP21 the
size of the pruned document is two-thirds of the size of the original
document, but they can then be processed from three to four times
faster and, as Figure 5 shows, using three times less memory than
when processed on the original. The latter is a huge gain when
one knows that memory usage is one of the main bottlenecks for
real life query processing (e.g., in DOM-based implementations of
XPath or XSLT processors).

Quite informative, as well, is the data in the second line of Ta-
ble 1 which reports, for each query, the size in MB of the maximum
pruned document. It is interesting to see that, while the maximum
size for an unpruned document is 68MB, we can process documents
for which the projection has a size of 152MB (on disk). This is
due to the fact that projecting a document not only reduces its size
but also itscomplexityby reducing the number of types of nodes.
This simplification of the document reduces the amount of extra-
information the query engine has to keep for each node and, conse-
quently, its memory usage. More precisely, the benefit of pruning

Q
M
0
3

Q
M
0
6

Q
M
0
7

Q
M
1
4

Q
M
1
5

Q
M
1
9

Q
P
0
1

Q
P
0
2

Q
P
0
3

Q
P
0
4

Q
P
0
5

Q
P
0
6

Q
P
0
7

Q
P
0
8

Q
P
0
9

Q
P
1
0

Q
P
1
1

Q
P
1
2

Q
P
1
3

Q
P
2
1

Q
P
2
3

Query

0

50

100

150

200

250

300

350

400

M
e
m
o
r
y

(
i
n

M
B
)

Figure 5: Memory used to process a query on original (56MB)
and pruned documents

out some (types of) nodes is twofold: first, the fan out of the docu-
ment is reduced and this may impact memory usage for engines that
chase sibling pointers and, second, the number of element names is
reduced, which may reduce memory occupation when shredding.

These results are a clear-cut improvement over current technol-
ogy. While we cannot directly compare processing performances
since no implementation of the other pruning approaches is pub-
licly available, we want to stress two points:(i) with one exception
(QM14) the amount of pruning on common experiments is always
equal or better with our approach than the others and(ii) perform-
ing pruning never is a bottleneck in our case thanks to fact that our
solution consists of a single bufferless one pass traversalof the in-
put document (on our 512MB machine we were able to efficiently
prune arbitrary large documents, while in case of [14] pruning can
end up using as much memory as the execution of the query).

7. CONCLUSION AND FUTURE WORK
The benchmarks show the clear advantages of applying our op-

timisation technique to query XML documents, and the charac-
teristics of our solution make it profitable in all application sce-
narios. We discussed several aspects for which our approachim-
proves the state of the art: for performances (better pruning, more
speedup, less memory consumption), for the analysis techniques
(linear pruning time, negligible memory and time consumption),
for its generality (handling of all axes and of predicates),and, last
but not least, for the formal foundation it provides (correctness for-
mally proved, limits of the approach formally stated).

Future work will be pursued in three distinct areas: formal de-
velopments, database integration, and implementation issues.

For what concerns the formal treatment, we have to integrate
in it the heuristics used in the implementation of the staticanaly-
sis and to formally state the soundness and completeness of some
approximations presented in the work. Also, it should be easy to
adapt the approach to work in the absence ofDTDs, by using data-
guides/path-summaries instead. We intend also to adapt outtech-
nique to optimise queries written inCQL [7] the query language
of CDuce [6]: as we said at the end of Section 3, their rich type
system will allow us to assign more precise types to queries (for
instance, it will be possible to capture by types many XPath predi-
cates, since disjunction, conjunctions and negations can be handled
by the corresponding type operators and the value of attributes and
element contents can be expressed by singleton types) and thus to
perform more selective pruning. Finally, we want to modify our
approach so that it can yield efficient pruning also in the presence
of XPath 2.0 predicates that test the XML Schema of nodes. Note
indeed that such predicates are blockers for pruning: we have to
leave the entire subtree intact so that the engine can verifythat it
has the specified schema. But since the projector inference algo-
rithm already statically checks this property, the idea is to make
the inference algorithm also rewrite predicates so as to push the
schema tests down where they are strictly necessary, thus making
further pruning possible.

From a database perspective we want to study the integration
of our optimisation technique with classical database ones. Our
technique must be viewed as a preliminary step that can be further
combined with more traditional database optimisations. More pre-
cisely, as our technique is able to take into account the workload,
in the line of [8], it could help the database administrator to deduce
relevant clustering strategies of XML data on disk and to define
well-adapted indexes and/or materialised views. Second, our prun-
ing technique can also be used for pruning indexes. For example, if
indexes over element tags are present before query processing (like
in the TIMBER system), the index can be pruned as well. In TIM-
BER, for a 472 MB document, such an index can reach a 241MB
size [16], thus it is worth being pruned, in order to improve buffer
management and concurrent query evaluations.

Finally, implementation-wise, the natural extension of our work
is to interface our pruning system with a query processing engine.
This would bring several advantages:(i) the pruning overhead would
be diluted in the parsing/validation phase and(ii) an interaction
between the query engine and the loading module would provide
a way not only to prune the document but to start answering the
query in streaming, when possible.

Acknowledgements. We would like to thank Haiming Chen for
pointing us an error in the two typing systems of a preliminary ver-
sion of this work. This work benefitted from several discussions
with and suggestions from Ioana Manolescu and Carlo Sartiani.
Two of the three VLDB anonymous referees provided very use-
ful feedback. This work was partially funded by the French ACI
project “Transformation Langages for XML: Logics and Appli-
cations” (TraLaLA) and the French ACI young researcher project
“WebStand”.

8. REFERENCES
[1] Galax.http://www.galaxquery.org.
[2] XML Path Language (XPath) 2.0.http://www.w3.org/TR/xpath20.
[3] XML Query Use Cases.http://www.w3.org/TR/xquery-use-ases/.
[4] XQuery 1.0 and XPath 2.0 Formal Semantics.http://www.w3.org/TR/xquery-semantis.

[5] XQuery 1.0 and XPath 2.0 Functions and Operators.http://www.w3.org/xquery-operators.
[6] V. Benzaken, G. Castagna, and A. Frisch. CDuce: an

XML-centric general-purpose language. InICFP ’03, 8th
ACM Int. Conf. on Functional Programming, pages 51–63,
2003.

[7] V. Benzaken, G. Castagna, and C. Miachon. A full
pattern-based paradigm for XML query processing. InPADL
’05, the 7th Int. Symp. on Practical Aspects of Declarative
Languages, number 3350 in LNCS. Springer, 2005.

[8] V. Benzaken, C. Delobel, and G. Harrus. Clustering
strategies in O2: an overview. InBuilding an
Object-Oriented Database System: the Story of O2. Morgan
Kaufman, 1992.

[9] S. Bressan, B. Catania, Z. Lacroix, Y-G Li, and
A. Maddalena. Accelerating queries by pruning XML
documents.Data Knowl. Eng., 54(2):211–240, 2005.

[10] D. Colazzo.Path Correctness for XML Queries:
Characterization and Static Type Checking. PhD thesis, Dip.
di Informatica, Università di Pisa, 2004.

[11] D. Colazzo, G. Ghelli, P. Manghi, and C. Sartiani. Typesfor
Path Correctness for XML Queries. InICFP ’04, 9th ACM
Int. Conf. on Functional Programming, 2004.

[12] M. Franceschet. XPathMark - An XPath benchmark for
XMark generated data. InXSym 2005, 3rd Int. XML
Database Symposium, LNCS n. 3671, 2005.

[13] D. Lee, M. Mani, and M. Murata. Reasoning about XML
Schema Languages using Formal Language Theory.
Technical report, IBM Almaden Research, 2000.

[14] A. Marian and J. Siméon. Projecting XML documents. In
VLDB ’03, pages 213–224, 2003.

[15] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath:
Looking forward. InProc. EDBT Workshop (XMLDM),
volume 2490 ofLNCS, pages 109–127. Springer, 2002.

[16] S. Paparizos and H.V. Jagadish. Pattern tree algebras:Sets or
sequences? InVLDB, 2005.

[17] A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey,
I. Manolescu, and R. Busse. XMark: A benchmark for XML
data management. InVLDB ’02, pages 974–985, 2002.

