PARTITION OF A GRAPH INTO CYCLES AND VERTICES

HU Z / LI H

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud-LRI

12/2002

Rapport de Recherche N° 1342

CNRS – Université de Paris Sud
Centre d'Orsay
LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 650
91405 ORSAY Cedex (France)
Partition of a Graph into Cycles and Vertices

ZHIQUAN HU *

Department of Mathematics
Central China Normal University
Wuhan 430079, P. R. China

and

HAO LI

L.R.I., UMR 8623 du CNRS
Bât. 490, Université de Paris-Sud
91405 Orsay, France

Abstract

Let G be a graph of order n and k a positive integer. A set of subgraphs $\mathcal{H} = \{H_1, H_2, \ldots, H_k\}$ is called a k-weak cycle partition (abbreviated k-WCP) of G if H_1, \ldots, H_k are vertex disjoint subgraphs of G such that $V(G) = \bigcup_{i=1}^{k} V(H_i)$ and for all i, $1 \leq i \leq k$, H_i is a cycle or K_1 or K_2. It has been shown by Enomoto and Li that if $|G| = n \geq k$ and if the degree sum of any pair of nonadjacent vertices is at least

*The work was done while this author was visiting L.R.I. supported by Post-doctorial Grant 350074H of France. Research also supported by Project 02139 of Education Ministry of China.
n - k + 1, then G has a k-WCP. We prove that if G has a k-WCP and if the minimum degree is at least \(\frac{n+2k}{3} \), then G can be partitioned into k subgraphs \(H_i \), 1 \(\leq i \leq k \), where \(H_i \) is a cycle or \(K_1 \).

1 Introduction

In this paper, we only consider finite undirected graphs without loops and multiple edges. For a vertex \(x \) of a graph \(G \), the neighborhood of \(x \) in \(G \) is denoted by \(N_G(x) \), and \(d_G(x) = |N_G(x)| \) is the degree of \(x \) in \(G \). With a slight abuse of notation, for a subgraph \(H \) of \(G \) and a vertex \(x \in V(G) - V(H) \), we also denote \(N_H(x) = N_G(x) \cap V(H) \) and \(d_H(x) = |N_H(x)| \). For a subset \(S \) of \(V(G) \), the subgraph induced by \(S \) is denoted by \(\langle S \rangle \), and \(G - S = \langle V(G) - S \rangle \). For a graph \(G \), \(|V(G)| \) is the order of \(G \), \(\delta(G) \) is the minimum degree of \(G \), and

\[
\sigma_2(G) = \min \{d_G(x) + d_G(y) | x, y \in V(G), x \neq y, xy \notin E(G)\}
\]

is the minimum degree sum of nonadjacent vertices. (When \(G \) is a complete graph, we define \(\sigma_2(G) = \infty \).)

If \(G = c_1c_2 \cdots c_k \) is a cycle, we let \(c_i \overrightarrow{c_j} \), for \(i \leq j \), be the subpath \(c_i c_{i+1} \cdots c_j \), and \(c_i \overleftarrow{c_j} = c_j c_{j-1} \cdots c_i \), where the indices are taken modulo \(p \). For any \(i \) and any \(l \geq 2 \), we put \(c_i^l = c_{i+l} \), \(c_i^{-l} = c_{i-l} \), \(c_i^l \) and \(c_i^{-l} \).

In this paper, “disjoint” means “vertex-disjoint,” since we only deal with partitions of the vertex set.

Suppose \(H_1, \cdots, H_k \) are disjoint subgraphs of \(G \) such that \(V(G) = \bigcup_{i=1}^{k} V(H_i) \) and for all \(i, 1 \leq i \leq k \), \(H_i \) is a cycle or \(K_1 \) or \(K_2 \), then we call \(H = \{H_1, H_2, \ldots, H_k\} \) a k-weak cycle partition (abbreviated k-WCP) of \(G \). If, in addition, for all \(i, 1 \leq i \leq k \), \(H_i \) is a cycle, then the union of these \(H_i \) is a 2-factor of \(G \) with \(k \) components. A sufficient condition for the existence of a 2-factor with a specified number of components was given by Brandt et al. [1].

Theorem 1 Suppose \(|G| = n \geq 4k \) and \(\sigma_2(G) \geq n \). Then \(G \) can be partitioned into \(k \) cycles, that is, \(G \) contains \(k \) disjoint cycles \(H_1, \cdots, H_k \) satisfying \(V(G) = \bigcup_{i=1}^{k} V(H_i) \).
In order to generalize 2-factors, Enomoto and Li [5] defined \(k \)-WCP by considering single edge and single vertex as degenerated cycles. They showed that weaker conditions than Theorem 1 are sufficient for the existence of \(k \)-WCP.

Theorem 2 Let \(G \) be a graph of order \(n \) and \(k \) any positive integer with \(k \leq n \). If \(\sigma_2(G) \geq n - k + 1 \), then \(G \) has a \(k \)-WCP, except \(G = C_5 \) and \(k = 2 \).

Note that a single vertex can be considered as a cycle of one vertex. Our purpose of this paper is to study the existence of a \(k \)-WCP \(\{H_1, H_2, \ldots, H_k\} \), each of \(H_i \) is either a cycle or a single vertex. Firstly, we show that under a weaker condition on degree sum, there is a \(k \)-WCP containing at most one \(K_2 \). Secondly, we show that under a weaker condition on minimum degree, there is a \(k \)-WCP without \(K_2 \).

Theorem 3 Let \(G \) be a graph of order \(n \geq k + 12 \) that has a \(k \)-WCP. If \(\sigma_2(G) \geq \frac{2n + k - 4}{3} \), then \(G \) has a \(k \)-WCP containing at most one subgraph isomorphic to \(K_2 \).

Theorem 4 Let \(G \) be a \(k \)-WCP graph of order \(n \) that has a \(k \)-WCP. If \(\delta(G) \geq \frac{n + 2k}{3} \), then \(G \) has a \(k \)-WCP without \(K_2 \).

The graphs \(G_t = mK_1 + (m + t)K_2 \), \(t \in \{1, 2\} \), show that both Theorem 3 and Theorem 4 are best possible. By Theorem 2 and Theorem 4, we get

Theorem 5 Suppose \(|G| = n \geq 7k - 3\) and \(\delta(G) \geq \frac{n - k + 1}{2} \). Then \(G \) can be partitioned into \(k \) disjoint subgraphs \(H_i \), \(1 \leq i \leq k \), where \(H_i \) is a cycle or \(K_1 \).

2 Proof of Theorem 3

Let \(\mathcal{H} \) be a \(k \)-WCP such that \(t(\mathcal{H}) \), the number of \(K_2 \)'s in \(\mathcal{H} \), achieves the minimum.
Let us suppose, to the contrary, that Theorem 3 is false. Then, \(t := t(\mathcal{H}) \geq 2 \). Denote \(\mathcal{H} = \{H_1, H_2, \ldots, H_k\} \) so that \(H_i, 1 \leq i \leq t, \) is a \(K_2 \) of \(G \). Suppose \(V(H_i) = \{u_i, v_i\}, 1 \leq i \leq t \). Set
\[
A = \{v \in V(G) : v \text{ is not in any cycle of } \mathcal{H}\},
\]
and
\[
B = \{v \in V(G) : v \text{ is in some cycle of } \mathcal{H}\}.
\]
Then, \(V(G) = A \cup B \). We first have
\[
(2.1) \quad N_A(u_i) \cap N_A(v_i) = \emptyset, \quad 1 \leq i \leq t.
\]
Suppose, to the contrary, that \(x \in N_A(u_i) \cap N_A(v_i) \). Then, \(x \in V(H_j) \) for some \(j \) with \(j \neq i \) and \(|V(H_j)| \leq 2 \). Set \(C^{(1)} = xu_iu_i x \) and
\[
\mathcal{H}^{(1)} = \begin{cases}
(\mathcal{H} \setminus \{H_i, H_j\}) \cup \{C^{(1)}, V(H_j) \setminus \{x\}\}, & \text{if } j \leq t \\
(\mathcal{H} \setminus \{H_i, H_j, H_l\}) \cup \{C^{(1)}, u_i, v_i\}, & \text{if } j > t,
\end{cases}
\]
where \(l \) is any integer in \(\{1, 2, \ldots, t\} \setminus \{i\} \). Then, \(\mathcal{H}^{(1)} \) is a \(k \)-WCP with \(t(\mathcal{H}^{(1)}) < t \), contrary to the choice of \(\mathcal{H} \). Hence (2.1) is true.

(2.2) If \(t \geq 3 \), then \(d_{H_i}(u_j) + d_{H_i}(v_j) \leq 1, \quad 1 \leq i \neq j \leq t \).

To derive (2.2), we suppose, without loss of generality, that \(d_{H_1}(u_1) + d_{H_2}(v_1) > 1 \). Then, since both \(\langle H_1 \rangle \) and \(\langle H_2 \rangle \) are connected, \(V(H_1) \cup V(H_2) \) contains a cycle \(C^{(2)} \). Define
\[
\mathcal{H}^{(2)} = \begin{cases}
(\mathcal{H} \setminus \{H_1, H_2\}) \cup \{C^{(2)}, (V(H_1) \cup V(H_2)) \setminus V(C^{(2)})\}, & \text{if } |C^{(2)}| = 3 \\
(\mathcal{H} \setminus \{H_1, H_2, H_3\}) \cup \{C^{(2)}, u_3, v_3\}, & \text{if } |C^{(2)}| = 4.
\end{cases}
\]
Then, \(\mathcal{H}^{(2)} \) is a \(k \)-WCP with at most \(t - 2 \) subgraphs isomorphic to \(K_2 \), a contradiction. Hence (2.2) is true.

(2.3) \(d_{H_i}(u_i) = d_{H_i}(v_i) = 0, \quad 2 \leq i \leq t \).

Suppose (2.3) is false, then \(V(H_1) \cup V(H_t) \) contains a path, say \(u_1v_1u_1v_t \), of length 3. By (2.1), we have \(u_1v_1u_1v_t \notin E(G) \). Hence,
\[
d_G(u_1) + d_G(v_1) + d_G(u_t) + d_G(v_t) \geq 2\sigma_2(G).
\]
On the other hand, to avoid a \(k \)-WCP with \(t - 2 \) \(K_2 \)'s, we have for every cycle \(C \) in \(H \) that \(N_C^{++}(u_1), N_C^{++}(v_1), N_C(u_i), N_C(v_i) \) are pairwise disjoint. This implies \(d_C(u_1) + d_C(v_1) + d_C(u_i) + d_C(v_i) \leq |C| \), and hence

\[
d_B(u_1) + d_B(v_1) + d_B(u_i) + d_B(v_i) \leq |B|.
\]

Note that \(\{ H_j : 1 \leq j \leq k, |H_j| \leq 2 \} \) is a \((|A| - t)\)-weak partition of \(\langle A \rangle \). By (2.1) and (2.2), we get

\[
d_A(u_1) + d_A(v_1) + d_A(u_i) + d_A(v_i) \leq \begin{cases} 2|A|, & \text{if } t = 2 \\ 2(|A| - t + 1), & \text{if } t \geq 3. \end{cases}
\]

This together with \(|A| \leq \begin{cases} (k - 1) + t, & \text{if } t \leq 11 \\ k + t, & \text{if } t \geq 12 \end{cases} \) implies

\[
d_A(u_1) + d_A(v_1) + d_A(u_i) + d_A(v_i) \leq |A| + k + 1.
\]

Since \(V(G) = A \cup B \), we have

\[
d_G(u_1) + d_G(v_1) + d_G(u_i) + d_G(v_i) \leq (|A| + k + 1) + |B| = n + k + 1,
\]

which implies \(\frac{4n+2k-8}{3} \leq 2\sigma_2(G) \leq n + k + 1 \), contrary to \(n \geq k + 12 \). Hence, (2.3) is true.

(2.4) \(d_A(u_1) + d_A(v_1) \leq \frac{2|A| + k - 5}{3} \).

Recall that \(\{ H_i : 1 \leq i \leq k, |H_i| \leq 2 \} \) is a \((|A| - t)\)-WCP of \(\langle A \rangle \) with \(t \) subgraphs isomorphic to \(K_2 \) and \(|A| - 2t \) subgraphs isomorphic to \(K_1 \). By (2.1) and (2.3), we have \(d_A(u_1) + d_A(v_1) \leq |A| - 2t + 2 \leq \min \{ |A| - 2, k - t + 2 \} \leq \frac{2(|A| - 2 + k - 2)}{3} \). Hence, (2.4) is true for \(t \geq 3 \). Assume now \(t = 2 \). Then, \(|A| \leq k + 2\) implying that \(B \neq \emptyset \). So, \(|A| \leq (k - 1) + 2\) and the assertion follows from \(d_A(u_1) + d_A(v_1) \leq |A| - 2t + 2 = |A| - 2 \leq k - 1 \). Therefore, (2.4) is true.

(2.5) \(V(G) \neq A \).

Indeed, if \(V(G) = A \), then by (2.4) we have \(d_G(u_1) + d_G(v_1) \leq \frac{2n+k-8}{3} < \sigma_2(G) \). Similarly, \(d_G(u_2) + d_G(v_2) \leq \sigma_2(G) \). Hence,

\[
d_G(u_1) + d_G(v_1) + d_G(u_2) + d_G(v_2) < 2\sigma_2(G).
\]
This implies \(\{u_1u_2, v_1v_2\} \cap E(G) \neq \emptyset \). Without loss of generality, assume \(u_1u_2 \in E(G) \). By (2.1), we have \(u_1v_2, u_2v_1 \notin E(G) \) and hence

\[
(d_G(u_1) + d_G(v_2)) + (d_G(u_2) + d_G(v_1)) \geq 2\sigma_2(G).
\]

This contradiction completes the proof of (2.5).

It follows from (2.5) that \(\mathcal{H} \) contains at least one cycle. Let \(C \) be any cycle in \(\mathcal{H} \).

(2.6) \(N_C^+(u_1) \cap N_C(v_1) = \emptyset \).

To justify (2.6), we assume, to the contrary, that \(x \in N_C^+(u_1) \cap N_C(v_1) \). Set \(C^{(3)} = x \overline{C} x^{-1} u_1v_1x \) and \(\mathcal{H}^{(3)} = (\mathcal{H} \setminus \{C, H_1, H_2\}) \cup \{C^{(3)}, u_2, v_2\} \). Then, \(\mathcal{H}^{(3)} \) is a \(k \)-WCP with \(t(\mathcal{H}^{(3)}) < t(\mathcal{H}) \). This contradiction proves (2.6).

Similarly, we have

(2.7) \(N_C^{++}(u_1) \cap N_C(v_1) = N_C^{++}(u_1) \cap N_C^+(u_1) = \emptyset \).

It follows from (2.6) and (2.7) that \(2d_G(u_1) + d_G(v_1) \leq |C| \). By symmetry, we also have \(2d_G(v_1) + d_G(u_1) \leq |C| \). Hence

(2.8) \(d_G(u_1) + d_G(v_1) \leq \frac{2|C|}{3} \).

Note that \(\{V(H_i) : 1 \leq i \leq k, H_i \text{ is a cycle}\} \) is a partition of \(B \). By (2.8), we have

\[
d_B(u_1) + d_B(v_1) \leq \frac{2|B|}{3}.
\]

This together with (2.4) implies \(d_G(u_1) + d_G(v_1) \leq \frac{2|A| + k - 5}{3} + \frac{2|B|}{3} = \frac{2n + k - 5}{3} < \sigma_2(G) \). Similarly, we have \(d_G(u_2) + d_G(v_2) < \sigma_2(G) \). On the other hand, by an argument similar to the proof of (2.5), we can get \(d_G(u_1) + d_G(v_1) + d_G(u_2) + d_G(v_2) \geq 2\sigma_2(G) \). This contradiction completes the proof of Theorem 3.
3 Proof of Theorem 4

Note that $\sigma_2(G) \geq 2\delta(G) \geq \frac{2n+4k}{3}$. By an argument similar to that in the proof of Theorem 3, we can derive that G has a k-WCP, which contains at most one subgraph isomorphic to K_2. Among all of these partitions, choose one, say \mathcal{H}, such that $c(\mathcal{H})$, the number of cycles in the partition, achieves the minimum.

Let us suppose, to the contrary, that Theorem 4 is false. Then, \mathcal{H} contains exactly one subgraph isomorphic to K_2. Denote $\mathcal{H} = \{H_1, H_2, \ldots, H_k\}$, where $H_1 = uv$ is a K_2 of \mathcal{H}.

(3.1) $c(\mathcal{H}) \geq 1$.

Indeed, if $c(\mathcal{H}) = 0$, then $|V(G)| = k + 1$ and hence $\delta(G) \geq \frac{n+2k}{3} > n - 1$, a contradiction. Hence, (3.1) is true.

Define A and B the same as those in Section 2. To avoid a desired k-WCP, we have

(3.2) For every cycle C in \mathcal{H}, $N_C^{++}(u) \cap N_C(v) = N_C^{++}(u) \cap N_C^{+}(u) = \emptyset$.

(3.3) There exists a cycle C in \mathcal{H} such that $N_C^+(u) \cap N_C(v) \neq \emptyset$.

Indeed, if (3.3) is false, then by (3.2), we have for every cycle C in \mathcal{H} that $2d_C(u) + d_C(v) \leq |C|$, and hence $2d_B(u) + d_B(v) \leq |B|$. Since $|A| = 2 + (k - 1 - c(\mathcal{H})) \leq k$,

$$2d_C(u) + d_C(v) = (2d_A(u) + d_A(v)) + (2d_B(u) + d_B(v)) \leq 3(|A| - 1) + |B| \leq n + 2k - 3,$$

contrary to $\delta(G) \geq \frac{n+2k}{3}$. Hence, (3.3) is true.

By (3.3), there exists a cycle C in \mathcal{H} such that $N_C^+(u) \cap N_C(v) \neq \emptyset$. Let $x \in N_C^+(u) \cap N_C(v)$.

(3.4) $N_C^-(x^{-}) \cap N_C(v) = \emptyset$.

7
Suppose, to the contrary, that \(y \in N_G(x^-) \cap N_G(v) \). Then \(x^-y^- \in E(G) \), which implies \(y \neq x \). Set \(C^{(1)} = y \overarc{C} x^-y^- \overarc{C} xy \). Then \((H \setminus \{C, H_1\}) \cup \{C^{(1)}, u\} \) is a desired \(k \)-WCP. This contradiction completes the proof of (3.4).

(3.5) \(N_G(v) \cap N_G^{++}(u) = \emptyset \).

To derive (3.5), suppose \(y \in N_G(v) \cap N_G^{++}(u) \). Then, \(y^-u \in E(G) \). Note that \(x^-u \in E(G) \). By (3.2), we have \(y \neq x \). Similarly, by \(x, y \in N_G(v) \), we have \(y \neq x^+ \). Set \(C^{(2)} = y \overarc{C} x^-uy^-yx \). Then \((H \setminus \{C, H_1\}) \cup \{C^{(2)}, y^-\} \) is a desired \(k \)-WCP. This contradiction proves (3.5).

(3.6) \(N_G^+(x^-) \cap N_G^{++}(u) \subseteq \{x^-, x^+\} \).

Suppose the contrary: \(y \in N_G^+(x^-) \cap N_G^{++}(u) \subseteq \{x^-, x^+\} \). Then, \(y \neq x \). Set \(C^{(3)} = x^-y^- \overarc{C} x^-y^- \overarc{C} x+y \) and \(C^{(4)} = x \overarc{C} y^+ux \). Since \(y \neq x^-x, x^+ \), \(C^{(3)} \) and \(C^{(4)} \) are disjoint cycles of \(G \). So, \((H \setminus \{C, H_1\}) \cup \{C^{(3)}, C^{(4)}\} \) is a desired \(k \)-WCP. This proves (3.6).

It follows from (3.4)-(3.6) that \(d_G(x^-) + d_G(u) + d_G(v) \leq |C| + 2 \). Similarly, we have \(d_G(x) + d_G(u) + d_G(v) \leq |C| + 2 \). Therefore,

(3.7) \(d_G(x^-) + d_G(x) + 2d_G(u) + 2d_G(v) \leq 2|C| + 4 \).

Note that \(|A| = k + 1 - c(H) \). To avoid a desired \(k \)-WCP, every vertex of \(A \) is not insertable in \(C \). Hence,

(3.8) \(N_A(x^-) \cap N_A(x) = \emptyset \).

(3.9) \(c(H) \geq 2 \).

Indeed, if \(c(H) = 1 \), then by (3.7) we have

\[
d_B(x^-) + d_B(x) + 2d_B(u) + 2d_B(v) \leq 2|B| + 4.
\]

Recall that \(|A| \leq k \). Since \(u, v \in A \), by (3.8),

\[
d_G(x^-) + d_G(x) + 2d_G(u) + 2d_G(v)
\]

8
\[\begin{align*}
&= (d_A(x^-) + d_A(x) + 2d_A(u) + 2d_A(v)) \\
&\quad + (d_B(x^-) + d_B(x) + 2d_B(u) + 2d_B(v)) \\
&\leq (5|A| - 4) + (2|B| + 4) \\
&\leq 2n + 3k,
\end{align*} \]
contrary to \(\delta(G) \geq \frac{n+2k}{3} \). This proves (3.9).

In the following, we let \(C' \) be any cycle in \(\mathcal{H} \setminus \{C\} \). To avoid a desired \(k \)-WCP, we have

(3.10) \(N_{C'}(v) \cap N_{C'}(v) = N_{C'}^{++}(x^-) \cap N_{C'}(v) = \emptyset \).

(3.11) \(N_{C'}^{++}(x^-) \cap N_{C'}(v) = \emptyset \).

Suppose, to the contrary, that \(y \in N_{C'}^{++}(x^-) \cap N_{C'}(v) \). Set
\[C'' = x \K_{C'} y \]
and \(\mathcal{H}' = (\mathcal{H} \setminus \{C, C', uv\}) \cup \{C'', y-y, u\} \). Then, \(\mathcal{H}' \) is a \(k \)-WCP of \(G \) containing one \(K_2 \) and \(c(\mathcal{H}') < c(\mathcal{H}) \). This contradiction completes the proof of (3.11).

It follows from (3.10) and (3.11) that \(d_{C'}(x^-) + 2d_{C'}(v) \leq |C'| \). Similarly, we have \(d_{C'}(x) + 2d_{C'}(u) \leq |C'| \), and hence

(3.12) \(d_{C'}(x^-) + d_{C'}(x) + 2d_{C'}(u) + 2d_{C'}(v) \leq 2|C'| \).

By (3.7) and (3.12), we see that
\[d_B(x^-) + d_B(x) + 2d_B(u) + 2d_B(v) \leq 2|B| + 4. \]
By an argument similar to that in the proof of (3.9), we can get a contradiction. This completes the proof of Theorem 4.

References

<table>
<thead>
<tr>
<th>N°</th>
<th>Nom</th>
<th>Titre</th>
<th>Nbre de pages</th>
<th>Date parution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1300</td>
<td>COCKAYNE E J FAVARON O MYNHARDT C M</td>
<td>OPEN IRREDUNDANCE AND MAXIMUM DEGREE IN GRAPHS</td>
<td>15 PAGES</td>
<td>01/2002</td>
</tr>
<tr>
<td>1301</td>
<td>DENISE A</td>
<td>RAPPORT SCIENTIFIQUE PRESENTE POUR L'OBTENTION D'UNE HABILITATION A DIRIGER DES RECHERCHES</td>
<td>81 PAGES</td>
<td>01/2002</td>
</tr>
<tr>
<td>1302</td>
<td>CHEN Y H DATTA A K TIXEUIL S</td>
<td>STABILIZING INTER-DOMAIN ROUTING IN THE INTERNET</td>
<td>31 PAGES</td>
<td>01/2002</td>
</tr>
<tr>
<td>1303</td>
<td>DIKS K FRAIGNAUD P KRANAKIS E PELC A</td>
<td>TREE EXPLORATION WITH LITTLE MEMORY</td>
<td>22 PAGES</td>
<td>01/2002</td>
</tr>
<tr>
<td>1304</td>
<td>KEIICHIROU K MARCHE C URBAIN X</td>
<td>TERMINATION OF ASSOCIATIVE-COMMUTATIVE REWRITING USING DEPENDENCY PAIRS CRITERIA</td>
<td>40 PAGES</td>
<td>02/2002</td>
</tr>
<tr>
<td>1305</td>
<td>SHU J XIANG E WENREN K</td>
<td>THE ALGEBRAIC CONNECTIVITY, VERTEX CONNECTIVITY AND EDGE CONNECTIVITY OF GRAPHS</td>
<td>11 PAGES</td>
<td>03/2002</td>
</tr>
<tr>
<td>1306</td>
<td>LI H SHU J</td>
<td>THE PARTITION OF A STRONG TOURNAMENT</td>
<td>13 PAGES</td>
<td>03/2002</td>
</tr>
<tr>
<td>1307</td>
<td>KESNER D</td>
<td>RAPPORT SCIENTIFIQUE PRESENTE POUR L'OBTENTION D'UNE HABILITATION A DIRIGER DES RECHERCHES</td>
<td>74 PAGES</td>
<td>03/2002</td>
</tr>
<tr>
<td>1308</td>
<td>FAVARON O HENNING M A</td>
<td>UPPER TOTAL DOMINATION IN CLAW-FREE GRAPHS</td>
<td>14 PAGES</td>
<td>04/2002</td>
</tr>
<tr>
<td>1309</td>
<td>BARRIERE L FLOCCHINI P FRAIGNAUD P SANTORO N</td>
<td>DISTRIBUTED MOBILE COMPUTING WITH INCOMPARABLE LABELS</td>
<td>16 PAGES</td>
<td>04/2002</td>
</tr>
<tr>
<td>1310</td>
<td>BARRIERE L FLOCCHINI P FRAIGNAUD P SANTORO N</td>
<td>ELECTING A LEADER AMONG ANONYMOUS MOBILE AGENTS IN ANONYMOUS NETWORKS WITH SENSE-OF-DIRECTION</td>
<td>20 PAGES</td>
<td>04/2002</td>
</tr>
<tr>
<td>1311</td>
<td>BARRIERE L FLOCCHINI P FRAIGNAUD P SANTORO N</td>
<td>CAPTURE OF AN INTRUDER BY MOBILE AGENTS</td>
<td>16 PAGES</td>
<td>04/2002</td>
</tr>
<tr>
<td>1312</td>
<td>ALLARD G AL AGHA K</td>
<td>ANALYSIS OF THE CSSC MECHANISM IN A NON-SYNCHRONOUS TRANSMISSION ENVIRONMENT</td>
<td>12 PAGES</td>
<td>04/2002</td>
</tr>
<tr>
<td>1313</td>
<td>FOREST J</td>
<td>A WEAK CALCULUS WITH EXPLICIT OPERATORS FOR PATTERN MATCHING AND SUBSTITUTION</td>
<td>70 PAGES</td>
<td>05/2002</td>
</tr>
<tr>
<td>1314</td>
<td>COURANT J</td>
<td>STRONG NORMALIZATION WITH SINGLETON TYPES</td>
<td>19 PAGES</td>
<td>05/2002</td>
</tr>
<tr>
<td>1315</td>
<td>COURANT J</td>
<td>EXPLICIT UNIVERSES FOR THE CALCULUS OF CONSTRUCTIONS</td>
<td>21 PAGES</td>
<td>05/2002</td>
</tr>
<tr>
<td>1316</td>
<td>KOUIDER M LONC Z</td>
<td>STABILITY NUMBER AND (a,b)-FACTORS IN GRAPHS</td>
<td>12 PAGES</td>
<td>05/2002</td>
</tr>
<tr>
<td>1317</td>
<td>URBAIN X</td>
<td>MODULAR AND INCREMENTAL PROOFS OF AC-TERMINATION</td>
<td>20 PAGES</td>
<td>05/2002</td>
</tr>
<tr>
<td>N°</td>
<td>Nom</td>
<td>Titre</td>
<td>Nb de pages</td>
<td>Date parution</td>
</tr>
<tr>
<td>------</td>
<td>----------------------</td>
<td>--</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>1318</td>
<td>THION V</td>
<td>A STRATEGY FOR FREE-VARIABLE TABLEAUX FOR VARIANTS OF QUANTIFIED MODAL LOGICS</td>
<td>12</td>
<td>05/2002</td>
</tr>
<tr>
<td>1319</td>
<td>LESTIENNES G GAUDEL M C</td>
<td>TESTING PROCESSES FROM FORMAL SPECIFICATIONS WITH INPUTS, OUTPUTS AND DATA TYPES</td>
<td>16</td>
<td>05/2002</td>
</tr>
<tr>
<td>1320</td>
<td>PENT C SPYRATOS N</td>
<td>UTILISATION DES CONTEXTES EN RECHERCHE D'INFORMATIONS</td>
<td>46</td>
<td>05/2002</td>
</tr>
<tr>
<td>1321</td>
<td>DELORME C SHU J</td>
<td>UPPER BOUNDS ON THE LENGTH OF THE LONGEST INDUCED CYCLE IN GRAPHS</td>
<td>20</td>
<td>05/2002</td>
</tr>
<tr>
<td>1322</td>
<td>FLANDRIN E LI H MARCZYK A WOZNIAK M</td>
<td>A NOTE ON A GENERALISATION OF ORES CONDITION</td>
<td>8</td>
<td>05/2002</td>
</tr>
<tr>
<td>1323</td>
<td>BACSO G FAVARON O</td>
<td>INDEPENDENCE, IRREDUNDANCE, DEGREES AND CHROMATIC NUMBER IN GRAPHS</td>
<td>8</td>
<td>05/2002</td>
</tr>
<tr>
<td>1324</td>
<td>DATTA A K GRADINARIU M KENITZKI A B TIXEUIL S</td>
<td>SELF-STABILIZING WORMHOLE ROUTING ON RING NETWORKS</td>
<td>20</td>
<td>06/2002</td>
</tr>
<tr>
<td>1325</td>
<td>DELAET S HERAULT T JOHNEN C TIXEUIL S</td>
<td>ACTES DE LA JOURNÉE RESEAUX ET ALGORITHMES REPARTIS, 20 JUIN 2002</td>
<td>52</td>
<td>06/2002</td>
</tr>
<tr>
<td>1326</td>
<td>URBAIN X</td>
<td>MODULAR AND INCREMENTAL AUTOMATED TERMINATION PROOFS</td>
<td>32</td>
<td>06/2002</td>
</tr>
<tr>
<td>1327</td>
<td>BEAUQUIER J JOHNEN C</td>
<td>ANALYZE OF RANDOMIZED SELF-STABILIZING ALGORITHMS UNDER NON-DETERMINISTIC SCHEDULER CLASSES</td>
<td>18</td>
<td>06/2002</td>
</tr>
<tr>
<td>1328</td>
<td>LI H SHU J</td>
<td>PARTITIONING A STRONG TOURNAMENT INTO k CYCLES</td>
<td>14</td>
<td>07/2002</td>
</tr>
<tr>
<td>1329</td>
<td>BOUCHERON S</td>
<td>RAPPORT SCIENTIFIQUE PRÉSENTÉ POUR L'OBTENTION D'UNE HABILITATION A DIRIGER DES RECHERCHES</td>
<td>97</td>
<td>08/2002</td>
</tr>
<tr>
<td>1330</td>
<td>JOHNEN C</td>
<td>OPTIMIZATION OF SERVICE TIME AND MEMORY SPACE IN A SELF-STABILIZING TOKEN CIRCULATION PROTOCOL ON ANONYMOUS UNIDIRECTIONAL RINGS</td>
<td>21</td>
<td>09/2002</td>
</tr>
<tr>
<td>1331</td>
<td>LI H SHU J</td>
<td>CYCLIC PARTITION OF STRONG TOURNAMENTS</td>
<td>15</td>
<td>09/2002</td>
</tr>
<tr>
<td>1332</td>
<td>TZITZIKAS Y SPYRATOS N</td>
<td>RESULT FUSION BY MEDIATORS USING VOTING AND UTILITY FUNCTIONS</td>
<td>30</td>
<td>09/2002</td>
</tr>
<tr>
<td>1333</td>
<td>AL AGHA K</td>
<td>RAPPORT SCIENTIFIQUE PRÉSENTÉ POUR L'OBTENTION D'UNE HABILITATION A DIRIGER DES RECHERCHES</td>
<td>63</td>
<td>10/2002</td>
</tr>
<tr>
<td>1334</td>
<td>ALVAREZ-HAMELIN J FRAIGNIAUD P</td>
<td>REDUCING PACKET-LOSS BY TAKING LONG RANGE DEPENDENCES INTO ACCOUNT</td>
<td>20</td>
<td>10/2002</td>
</tr>
<tr>
<td>N°</td>
<td>Nom</td>
<td>Titre</td>
<td>Nbre de pages</td>
<td>Date parution</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>1335</td>
<td>EGAWA Y
ENOMOTO H
FAUDREE R J
LI H
SCHIERMEYER I</td>
<td>TWO-FACTORS EACH COMPONENT OF WHICH CONTAINS A SPECIFIED VERTEX</td>
<td>16 PAGES</td>
<td>10/2002</td>
</tr>
<tr>
<td>1336</td>
<td>LI H
WOZNIAK M</td>
<td>A NOTE ON GRAPHS CONTAINING ALL TREES OF GIVEN SIZE</td>
<td>10 PAGES</td>
<td>10/2002</td>
</tr>
<tr>
<td>1337</td>
<td>ENOMOTO H
LI H</td>
<td>PARTITION OF A GRAPH INTO CYCLES AND DEGENERATED CYCLES</td>
<td>10 PAGES</td>
<td>10/2002</td>
</tr>
<tr>
<td>1338</td>
<td>BALISTER P N
KOSTOCHKA A V
LI H
SCHelp R H</td>
<td>BALANCED EDGE COLORINGS</td>
<td>20 PAGES</td>
<td>10/2002</td>
</tr>
<tr>
<td>1339</td>
<td>HAGGKVIST R
LI H</td>
<td>LONG CYCLES IN GRAPHS WITH SOME LARGE DEGREE VERTICES</td>
<td>16 PAGES</td>
<td>10/2002</td>
</tr>
</tbody>
</table>