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Abstract

Let G be a graph and S a subset of V(G). Let a(S) denote the maximum
number of pairwise nonadjacent vertices in the subgraph G < § > of G
induced by S. If G < S > is not complete, let x(S) denote the smallest
number of vertices separating two vertices of S and «(.5) = |S| — 1 otherwise.
We prove that if a(S) < x(S) and |S] is large enough (depending on «(S)),
then G is S-pancyclable, that is contains cycles with exactly p vertices of S
for every p, 3 < p < |S|. This is a generalization of the result of Flandrin, Li,
Marczyk, Wozniak and Schiermeyer stating that a graph G of order n that
satisfies the Chvdtal-Erdés condition a(G) < &(G) is pancyclic provided n
is sufficiently large with respect to a(G). -

Résumé

Soit G un graphe et S un sous-ensemble de V(G). Soit «(S) le nombre
maximum de sommets deux a deux non adjacents dans G < S >, sous-
graphe de G induit par S. Si G < S > n’est pas complet, soit «(.5) le plus
petit nombre de sommets séparant deux sommets de S et x(S) = [S]| — 1
sinon. On démontre que si (S) < x(S) et |S| est assez grand (par rapport
a «(5)), alors G est S-pancyclable, c’est & dire possede des cycles contenant
exactement p sommets de S, 3 < p < |S|. C’est une généralisation d’un
résultat de Flandrin, Li, Marczyk, WoZniak et Schiermeyer qui établit qu’un
graphe G d’ordre n satifaisant la condition de Chvétal-Erdés a(G) < &(G)
est pancyclique pourvu qu’il soit d’ordre suffisamment grand par rapport a

a(G).
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1 Introduction

For a graph G we denote by V = V(G) its vertex-set and by F = E(G) its
set of edges. The symbols a = a(G) and xk = k(G) stand for the stability
number and the connectivity of G.

If S is a subset of V, G < S > is the subgraph of G induced by S and
a(S) denotes the maximum number of pairwise nonadjacent vertices in S. If
G < S > is not complete, we define «(S) as the smallest number of vertices
separating two vertices of .S and we put x(S) = |S| — 1 otherwise.

A vertex of S is called an S-vertez and a cycle of G that contains exactly
p S-vertices is said to have S-length p; such a cycle will be denoted by O’f .
The vertex set S is said to be cyclable in G if G contains a cycle through all
the vertices of S and pancyclable in G if contains cycles of every S-length p
with 3 < p < |S].

Notice that putting S = V(G) in the above definitions concerning S we
clearly get back the usual notions of stability number, connectivity, hamil-
tonicity and pancyclicity.

Let us recall the notion of Ramsey numbers R(k,m) that we need to

express our main result.
Given two integers k > 2 and m > 2, the Ramsey number, R(k,m), is the
smallest integer such that each graph of order n > R(k,m) contains a clique
on k vertices or a stable set of cardinality m. The existence of such a number
is guarantee by the famous Ramsey’s theorem (see [9]).

In 1971 Bondy (2] suggested that almost all nontrivial sufficient conditions
for a graph to be hamiltonian also imply that it is pancyclic except for maybe
a simple family of graphs.

This "metaconjecture” of Bondy was at the origin of many results on
hamiltonicity and pancyclicity. Here we will need the well known Chvatal-
Erdds theorem.

Theorem 1 (Chvatal, Erdés [5]) Let G be a graph of order at least 3 sat-
isfying a < k. Then G is hamiltonian.

Note that for Chvatal-Erdés condition o <  the metaconjecture does not
hold because there is a large family of triangle-free graphs (see for example
the survey [4]) that satisfy the Chvdtal-Erdés condition but are clearly not
pancyclic. However, if we add the assumption that the order of G is large
enough with respect to the stability number of the graph, the Chvatal-Erdés



condition happens to be sufficient for pancyclicity. More precisely, in [6], the
authors proved the following.

Theorem 2 (Flandrin, H. Li, Marczyk, Schiermeyer, Wozniak [6])
Let G be k-connected graph with stability number o. If o < k and the order
of G is at least 2R(4a,a + 1), then G is pancyclic.

We now raise the question of the existence of some analogous nontrivial
results when we consider only a subset S of V' and the parameters «(S) and
(S) instead of @ and &, and S-cyclability and S-pancyclability instead of
hamiltonicity and pancyclicity.

Let us recall those concerning cyclability, first by I. Fournier ([8]) and
then improved in [1] and [7].

Theorem 3 (Fournier [8]) Let G be a 2-connected graph and S C V. If
a(S) < &, then S is cyclable in G.

Theorem 4 (Broersma, H. Li, J. Li , Tian, Veldman [1]) Let G be a
graph and S o subset of V(G) with |S| > 3. If a(S) < k(S), then S is
cyclable in G.

Actually, in [1] it is shown that if G is 2-connected and a(S) < x(9),
then the same conclusion holds. However, with the simple modification of
the proof (see [7]) we can easily get the last result.

In this paper we give an extension of Theorem 2 and prove that the above
condition also implies that S is pancyclable in G provided the cardinality of
S is large enough with respect to a(S).’

Theorem 5 Let G be a graph and S C V. If a(S) < k(S) and |S| >
2R(4a(S), a(S) + 1), then S is pancyclable in G.

2 Notations

We use Bondy and Murty’s book [3] for terminology and notation not defined
here and consider only finite, undirected and simple graphs.

For a graph G, a vertex z in V' and: a subgraph H in G, Ny(z) denotes
the set of the neighbors of z in H and the degree, dy(z), of  with respect
to H is equal to |Ng(z)|. When H = G, the subscript H will be omitted.
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Let € be a cycle in G with an arbitrary orientation and z and y two
vertices of C. The segment C[z,y] is the subpath of C from z to y according
to the orientation (z and y included). We define in a similar way the segment
P[z,y| of a path P with a given orientation.

We also use the notations ™ and z~ for the successor and the predecessor
of z on C. If considering a subset S of V(G) and two S-vertices s; and s, on
C, sq is said to be the S-vertex following s; on C if C[sy, s3] NS = {1, s2}.
We say that s; and s, are S-consecutive on C.

3 Proof of Theorem 5

Suppose that G is a graph, S a subset of V(G) such that a(S) and &(S)
satisfy a(S) < x(S) and |S| > 2R(4a(S),a(S) + 1) > 8. Notice that if
a(S) = 1, then S is a clique and we are done, therefore we can assume
2 < o(8) < &(9).

The proof will be divided into two parts, depending on the S-length of
the cycles we want to obtain.

CASE 1 : G contains a C'Jf for each p > Lgi —1.

Observe that, by Theorem 4 and a result of Flandrin et al. [7], this
statement is evident for p = | S| and suppose that G contains a cycle C3 with

p> ng We shall prove that G also contains a C ;.

Let ay,az, ... ,a, be the vertices of C5 NS appearing in that order on CJ,
where the indices are considered modulo p. Since p > I%I > R(4a(S),a(S) +
1), and the graph induced by C; NS has no stable set of cardinality a(S) +
1, it follows from the Ramsey’s theorem that it contains a clique, say K,
having 4a(S) S-vertices. Assume that among the cycles of S-length p passing
through {a;,as,...,q,}, C’If is chosen such that it contains as many edges of
K as possible and fix an arbitrary orientation of C;f :

Suppose now that G does not contain any cycle with p — 1 S-vertices.
Clearly a; cannot be adjacent to a;. o for 1 < i < p and, consequently, if a;
belongs to K, a;,» is not in K.

Let d;,dy, ..., d, be the vertices of X, appearing in that order on Cj, such
that for 1 <4 < r, the S-vertex following d; on C} is not in K.



;From the above remark, there are at least 2a(S) such vertices d;, and
we shall denote by b; the S-vertex following d; on le, JE g <ip sy =096(19).
Since 2a(S) > a(S), there are necessarily two vertices b;, and b;, that are
adjacent.

Using the edges b; b;, and d;,d;,, we easily obtain a cycle with exactly the
same S-vertices than CJ and that contains more edges of K than CJ, and
we get a contradiction with the choice of C’g . This implies the existence of a

cycle of S-length p — 1 as soon as p > |2£| Hence, by induction, G contains
cycles Cy for each p > J% — 1.

CASE 2 : G contains a CJ for each p < Bl _1.

Since |S| > 2R(4a(S),a(S) + 1) and S has no stable set of cardinality
a(S) + 1, it follows from Ramsey theorem that S contains a clique on 4(.S)
vertices. Thus, our statement is is evident for 3 < p < 4a(S). Suppose G

has a C’I‘f for some p satisfying p < Ig—‘ +1—40(S). We claim that it contains
also a cycle with exactly p + 4a(S) — 2 S-vertices.

Since p = |C’§' F1S | % |2ﬂ, the graph G — CpS contains at least @ >

R(4a(S),«(S) + 1) S-vertices, whence also contains a clique, say K, on
4a(S) vertices. ‘

By Menger’s theorem there are at least min(x(S), p, 4a(S)) vertex-disjoint
paths between the vertices of K and the vertices of C’;f N S. Consequently,
using the assumptions a(S) < x(S5), there exist r =min(a(S),p) vertex-
disjoint paths, that join Cj with K. Fix an arbitrary orientation of C;, and

denote by z; and y;, i = 1,2,...,r the end-vertices of those paths belonging
to V(CPS) and V(K), resp. We assume that the vertices z;, z, ..., z, appear
on the cycle C}‘f in the order of their indices. Let P; (i = 1,2,...,7) be the
path of end vertices z; and y;. Notice that z; does not belong necessarily to
S. We will assume that every path P; has minimum S-length, whence, from
the definition of a(S), |V(F;) N S| < 2a(S) for every P;, 1 < i < 7. Set
L= |(V(P) = {=:}) N 8| £ 2a(8); "4 ="1,2;403 1

Claim 1 Assume that if for some i, 1 < i < r, we have C}[z;,z;11] NS C
{zi,2i11}. Then G contains a CJ\4y5) 2

Proof. Suppose first that {; + ;11 < 4a(S) — 2. Delete the interior
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vertices and the edges of the segment Cf[:n,-, x;41] and add the paths P;, P4
and @;, where @; is a path from y; to ;1 in K with 4a(S)—2—16;—1;11 >0
interior vertices. In this way we obtain cycle with p + 4a(S) — 2 vertices of
S.

Suppose now that 4x(S) — 1 < Il; + l;;1 < 4a(S) and consider the case
li = 20(8S) and l;;; = 2a(S) — 1. Let 81,8,...,52¢(s5) = ¥ be the 5-
vertices of the directed path Pj|z;,y;] appearing on P;[z;, 1] in the order
of their indices. Obviously, s; ¢ V(C;). Because of the choice of P;, the
set g, 84, 86, - - -, S24(s) 15 stable. Denote now by z the last S-vertex on C’pS
(according to the orientation of C’;f ) before z;. From the definition of a(S),
z must be adjacent to a vertex s,; for some j < a(S). Delete the interior
vertices and the edges of the segment Cj [z, %;11] and add the edge zsy; and
the paths P;[ss;, 4], Piy1 and @y, where @; is a path from y; to y;4q in K
with 4a(S) — 2 — (2a(S) — 2j + 1) — (2a(S) — 1) > 0 interior vertices. In this
way we get a cycle having p+ 4a(S) — 2 S-vertices as required. Considering,
if necessary, the first S-vertex on Cl'f after x;,1, we proceed in the similar

way in other subcases of the case 4a(S) — 1 < [; + l;11 < 4e(S).
|

Consequently, we assume that ahy two vertices z; and z;,, are separated
by at least one S-vertex on Cf . There are two possibilities, depending on
the relative value of p with respect to «(S).

Case 2.1: «a(S)<p

We have r = «(S). For 1 < i < a(S), let v; be the S-vertex following
x; on Cg, which is, from our hypothesis, interior to the segment Cg[:c,;, Tit1)-
Let z be any vertex of & \ {y1,¥2,...,4}. Then A = {v1,va,...,va(s), z} is
a subset of S with a(S) -+ 1 vertices and so the subgraph G’ < A > contains
at least one edge. Suppose first that zv; € FE for some ¢. Then we apply
Claim 1, where the patk P,y; is replaced by he path z,v; and we obtain a
cycle having p + 4a(S) -- 2 vertices of S.

So we may assume now that such an edge joins two vertices of the cycle
C3, say v; and v; (see ¥ig. 1). Suppose that l; +{; < 4a(S) — 2. Delete
the interior vertices and the edges of the segments C]f[a:i,v,-], C’ﬂmj,vj] and
add the paths P;, P; and @;;, where @;; is a path from y; to y; in K with
4a(S) — 2 — I; — I; > 0 interior vertices. In this way we obtain cycle with
p + 4a(S) — 2 vertices o7 S. It remains the case when 4a(S) —1 <[;+1; <
40(S). Suppose I; = 2a(5) and {; = 2a(S) — 1 and let 51, 53,...,52a(5) = Ui



Figure 1:

be the S-vertices of the directed path P;[z;,y;| appearing on P;[z;, y;| in the
order of their indices. Clearly, s; ¢ V(C;). Denote now by z the last S-vertex
on CF (according to the orientation of C5) before z;. We can show as in the
proof of Claim 1 that z must be adjacent to a vertex s, for some m < «a(S).
Delete the interior vertices and the edges of the segments C3 [z, vi], C; x5, v;]
and add the edge zss, and the paths P;[som, 3], P; and Q;;, where Q; is a
path from y; to y; in K with 4a(S) —2— (2a(S) —2m+1) — (2a(S)—1) > 0
interior vertices. Thus, we get a cycle having p + 4a(S) — 2 vertices of S
as required. We proceed in the similar way in other subcases of the case
Case 2.2 : p < a(9)

We have r = p. If one of the segments Clz;,z;41] has no in-
terior vertex in S then, by Claim 1, we are done. Otherwise, there
is exactly one vertex of S interior to the segment C[z;,z;44) for 1 <
it < p. I+ Ly < 4a(S) — 1, for some i, then the cycle
mi_:xi;H[mi;yi]:Qi[yiay,ij—l]-;Pt'+1[yi+1,$i+1]:$i+1:m;|-1:---:331'_ i has S-length
p+4a(S) — 2, where Q; is a path from y; to y;11 in K with 4a(S) —2 —1; —
liv1 +1 > 0 interior vertices. If I; + l;;1 = 4a(S) we proceed as in the proof



of Claim 1.

;From the existence of Cj for 3 < p < 4a(S) and the fact that for
every cycle of S-length p, p < J% + 1 — 4a(S), we obtain a cycle of S-length

p+4a(S)—2, we deduce by induction that G contains C for 3 < p < \%I -1
This achieves the study of Case 2.

Putting together the results in Case 1 and Case 2, we finally complete
the proof of Theorem 5.
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