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Abstract

We give suflicient Ore type conditions for a balanced bipartite graph to
contain every matching in a hamiltonian cycle or a cycle not necessarily
hamiltonian. Moreover for the hamiltonian case we prove that the condition
is almost best possible.

Résumé

Nous donnous ici deux conditions de degré de type Ore, suffisantes pour
que, dans un graphe biparti équilibré, tout couplage soit contenu dans un
cycle hamiltonien ou dans un cycle quelconque. Nous prouvons de plus que,
dans le cas hamiltonien, la condition est presque la meilleure possible.
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1 Introduction
In 1972, M. Las Vergnas obtained the following results [5]:

Theorem 1 Let G = (B, W, E) be a balanced bipartite graph of order 2n.
If for any x € B, y € W, 2y ¢ E we have d(z) + d(y) = n + 2, then every
perfect matching in G is contained in a hamiltonian cycle.

For the existence of a perfect matching, he gave the sufficient condition:

Theorem 2 Let G = (B,W, E) be a balanced bipartite graph of order 2n
and let g =2 2. If for anyz € B,y € W, zy ¢ E we have d(z)+d(y) = n+q,
then every matching of cardinality q is contained in a perfect matching.

Using these two results he obtained the following Corollary:

Corollary 3 Let G = (B,W, E) be a balanced bipartite graph of order 2n
and let ¢ = 2. If for anyz € B,y e W, zy ¢ F we have d(z) +d(y) > n+gq,
then every maltching of cardinality q is contained in a hamiltonian cycle.

About cycles through matchings in general graphs K.A. Berman proved
in [1] the following result conjectured by R. Haggkvist in [3].

Theorem 4 Let G be graph of order n. If for any z, y € V(G), zy ¢ E we
have d(z) + d(y) = n + 1, then every matching lies in a cycle.

Theorem 4 has been improved by B. Jackson and N.C. Wormald in [4].
R. Haggkvist [3] gave also a sufficient condition for a general graph to contain
any matching in a hamiltonian cycle. We give this theorem below in a slightly
improved version obtained in [6].
Let G,, be the family of graphs G = T{nsﬁ x H, where H is any graph of
order 2"3;3 containing a perfect matching, if 22 is an integer, and G, =
otherwise (* denotes the join of graphs).

Theorem 5 Let G be a graph of order n > 3, such that for every pair of
nonadjacent vertices x and y d(z) + d(y) > 4—”-3:2. Then every matching of G
lies in a hamiltonian cycle, unless G € G,,.

We give sufficient conditions in a balanced bipartite graph for a matching
to be contained in an hamiltonian cycle or a cycle not necessarily hamiltonian.
Moreover, for the hamiltonian case we prove that the condition is almost best
possible. Results are presented in section 3 and will be proved in the sections
4 and 5.



2 Definitions

Let G = (B, W, E) be a balanced bipartite graph and M a matching in G.
A subgraph H of G is said to be a ©-graph compatible with M if H is a
union of two cycles C; and C, satisfying the conditions:

1. The intersection of C; and C, is a path R of length at least one.
2. Every edge of M is an edge of H.
3. Every edge of M incident with a vertex of R lies in R.

4. |V(R)| is even and the end vertices, say = and y, of R are in different
partite sets.

We denote P: zC1\Cy,Q: zC:\Ciyand H=(P,Q,R).
The notion of the ©-graph is based on the paper of K. Berman [1]. On
Figure (1) there is an example of a ©-graph.

A subgraph H of G is said to be a strict ©-graph compatible with M if H
is a ©-graph (P, @, R) such that if we label the vertices of the paths

P amnypaensy
Q : Tq .. qpy
B okenediiryy

then ¢ € V(H)\ V(M), pa € V(H)\V(M), xr, € M, and r,y € M.
On Figure (2) there is an example of a strict ©-graph.

Ifon apathw: z@y...2 of G = (B, W, E) is given an orientation from
z1 to x, w is said to be a BB-path if z; € B,z € B, a WW-pathif z; € W,
z, € W,a BW-pathifz; € B, x, € W and a WB-path if z; € W, z;, € B.

Let C be a cycle or path with an arbitrary orientation and z € V(C),
then z~ is the predecessor of x and zt is its successor according to the
orientation of C.

Let A be a subgraph of G, v a vertex of G, then d4(v) is equal to the
number of neighbors of v in A, and for S C V(G), we put e(S, A) = Z da(v).

vES

A path P is an even path if |V(P)| is even and is an odd path if |V (P)]
is odd. )

For notation and terminology not defined above a good reference should
be [2].



3 Result

Theorem 6 Let G = (B, W, E) be a balanced bipartite graph of order 2n.

1. If foranyz € B, ye W, zy ¢ E we have
dn
35

then every matching M in G 1is contained in a hamiltonian cycle.

d(z) + d(y) >

2. If n >4 and for anyxz € B, y € W, zy ¢ E we have
5_n
47

then every matching M in G is contained in a cycle of G.

d(z) +d(y) >

The first part of the theorem is almost best possible in the sense that if
one decreases the sum of degrees of more than % then the theorem is no more
true. K;; denotes the balanced bipartite graph of order 2! with empty edge
set. Let G = fpﬂ,pﬂ * Kopy1,9p41. G is a balanced bipartite graph of order
2n = 2(3p+2). Let M be a perfect matching of Koy 12p41. It is evident that
there is no hamiltonian cycle containing M and that the minimum sum of
degrees of two nonadjacent vertices is “”T"Q

Let now G’ be the graph obtained from G by replacing K141 by Ky
Then G' is a balanced bipartite graph which satisfies the hypothesis of the
part (1) of Theorem 6 and by consequence there is a hamiltonian cycle which
contains M. Notice however that M is not contained in any perfect matching
of G, and the degree constraint in part (2) of Theorem 6 is clearly not suf-
ficient to imply that any matching can be extended into a perfect matching.

4  Proof of the part (1) of the Theorem 6:

Let G = (B, W, E) be a bipartite graph satisfying the conditions of part (1)
of the Theorem 6 and let us suppose that there is a matching M in G such
that there is no hamiltonian cycle through M. Without loss of generality we
may suppose that:

(i) M is maximal, i.e. M is the only matching which contains M.

(ii) G is maximal without a hamiltonian cycle through M (any addition
of an edge wv, u € B, v € W, uv ¢ E creates a hamiltonian cycle
containing M)
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~anan edge of matching M.

A ©-graph compatible with M and containing all the vertices of the graph G.
Figure (1).

So we have a hamiltonian path Py :  up;...ps, 2v containing M. Since
4
wv ¢ E we have d(u) + d(v) > “" and this implies that we have at least two

vertices p;, p;y1 satisfying up; 1, vp; € E. Then the hamiltonian cycle:

ch: UPit1Pid2.-- VPP 1. U

contains all edges of the path Py except p;p;;1. Since there is no hamiltonian
cycle containing M in G we have p;p;y; € M. Now take the cycles: Cj :
UPiy1Pi-1...w and Cy :  UP;P;11Pive...v. The subgraph H = C; U, is a O-
graph compatible with M and containing all the vertices of the graph G. We
can see an example of such ©-graph which in not a strict ©-graph on the

Figure (1).



Following the notations from the Section 2, label the vertices of the paths
P, ) and R as follows:

P i ozpy < Doy
@ i ® s UAY
H - o WY

and dendte P, 4 = Lyoemp, Oy 7 = 1,840 and Ry, =1, .., ng the'paths
obtained respectively from P, @, R by removal of the edges of M. Without
loss of generality we may assume z € B, y € W.

We may assume that H = (P,Q, R) is a ©—graph compatible with M
such that |V (R)| is maximum.

VAN

Remark Since M is maximal, for any ¢, j and k& we have 2 < |[V(B)| < 3,

2& [V(Q;]| €3 and 1 < VIR € 3;

From the assumption that every edge of M incident with a vertex of R
lies in R, if one of the edges p,q1, p1gs exists then there is a hamiltonian cycle
in G containing every edge of M, so we may assume poq; € £ and pi1gs ¢ E
and then we have: :

d(p) + (@) + d(pa) + dlas) > 5 (1)

4.1 Neighbors of pi,p,, q1,q93 on ¢ and P.

Claim 1 Ifpyq € E andl > 1 (p; and q are in the same partite set), then
Qi1 € M. Moreover for i = 2,..ng, e(p1,Q:) < 1 and if e(p1,Q:) = 1, then
B(Qﬁ,Qz) =0.

Proof of the Claim 1:

In fact if p1g € F, then H' = (P',Q', R) with P’ :  qp1ps...poy, Q' :
Qqiy1---ggy and R' : quq_1...quxr72...1yy is a ©—graph compatible with M
with |V(R')| > |V(R)| unless qiqi41 € M.

So let us suppose that p1q € F and g1 € M, with ¢ € @Q;,- Then
qi € B for p; € W. The vertex ¢;_; is the only vertex of V(Q;,) in W.

If gaqi—1 € E then the cycle:

C':  Qa@-2...1&TT1..T4YPaPa—1--P1AT 4108011 (2)

is a hamiltonian cycle of G containing M and the Claim 1 is proved.
O



Claim 2 1 < e(p1,@1) < 2 and if e(p1,@Q1) = 1 then e(qs, Q1) < 1. If
e(p1,Q1) = 2 then e(gs, @1) = 0.

Proof of the Claim 2:

Since z € N(p;) N Q1 we have e(p;, @1) = 1. Observe that |V(Qy)| = 2
or [V(Q:1)] = 3. When |V(Q1)| = 2 then gz may be adjacent to g2 and
e(qs, Q1) < 1. If [V(@1)| = 3 and p1go € E then e(gs, Q1) = 0, because
otherwise the cycle C' given by the formula (2) for [ = 2 is a hamiltonian

cycle of G containing M and the Claim 2 is proved.
(]

Claim 3 1. If @y, is a BB—path and Q;, is a WW —path, 2 < 49, jo <
ng, then
[V(Qin)| + V(@)

e({plaQﬁ}a Qiu U Qjo) < 3= 2 ¢ (3)

2. If Qx, 2<k<ng isa BW -path or a WB—path then

| Qx|

e({p1, g5}, Qr) < 1= =~ (4)

3. In any case

e({r1, 45}, Q1) S 2. (5)

Proof of the Claim 3 : :

For any i, since the matching M is maximal we have |Q;| = 3, iff Q;
is a BB—path or a WW —path and |Q;| = 2, iff Q; is a BW —path or a
W B—path. Consider a BB-path Q;, and a WW —path @Q,,, (2 < 40, jo <
ng). From the Claim 1 for 2 < 4g, jo < ng, we have e({p1, g3}, Qi,) < 1 and
e({p1,498},Qj,) < 2. These proves the inequality (3). If |Q;| = 2 from the
Claim 1 we have (4). The inequality (5) is an immediate consequence of the

Claim 2.
O

Let us denote v3(Q) the number of odd paths @; and 1(Q) the number
of even paths Q, 1 < i,k < ng.

As |V(Q)] is even, the number of BB—paths is equal to the number of
WW-paths and so 14(Q) is even i.e. v3(Q) = 2u. Clearly [V(Q)| =+ 2 =

313(Q) +21,(Q) = 6+ 222(Q).



Now we shall estimate e({p1,¢s}, Q). From Claims 1 — 3 we have:

e({pas}, Q) = Y el{pas}, Q)+ Y. e({piap}, Qn)

[V(Qi)|=3 [V(Qr)|=2

2 3,u-|—1/2(Q)+1:§+2. (6)

Similarly we obtain the following three inequalities:

g

e(lgnra}, @) < 5+2, (7)
e({pr,g}, P) < F+2, (8)
e({@,pa}, P) < §+2. (9)

4.2 Neighbors of pi,p,,¢1,93 on R

Observe *hat for any k = 1,...,ng we have 1 < |V(Rg)| < 3. If zr; € M then
Ry ={z} and |V(Ry)| =1. If r,y € M then R, = {z} and |V (R,)| = 1. For
k=2,..,ng —1 we have 2 < |V (Ry)| < 3.

It is 2asy to check that if |V(R;)| = 2 then e({p1,pa}, Ri) < 1 and if
|V (R;)| = 3 then e({p1,pa}, R;) < 2.

If |V(£;)] =1 then e({p1,pa}, Rj) = 1.

Denote by v3(R) the number of paths R; with three vertices, by va(R)
the number of paths R; with two vertices and by v (R) the number of paths
R, with one vertex.

Observe that v;(R) +13(R) is even and v+ 2 = 3v3(R) + 2 v2(R) + 11 (R)

We have:

e({p1,pa}, R) = Z e({p1, pa}, B;) + Z e({p1, Pa}, Bi)

‘V(Rj)i::; |V(R:i)|=2
T+ Z e({p1, Pa}s Bi)
[V(Rg)|=1
2v3(R) + 1o(R) + 11 (R)
27+ 4+ 11 (R) — 1n(R)
3

V/AN

2
7; e, (10)

/AN




Similarly we have:

e({a ), B) < L2 a

Now we shall estimate the sum d(p;) + d(pa) + d(q1) + d(gs).
From (6) — (11) we have:

d(p1) + d(pa) + d(q1) + d(gp) =
e({pI:Qﬁ}a Q) En 8({@1,}90},@) 5 6({9’1,;00}, P) T e({plaQB}’P)

+e({p11pa}1 R) ) e({QI;Qﬁ}’R) 5 26({p1, q1, Pas qfﬂ}’ {ﬂ?,y})

4y + 12

3a+30+4
o 3,6 'y+

As o > 2 and B > 2, we obtain the following inequality:

<a+B+8+ —8= 4.

d(pa) + d(ps) + d(a) + d(gp) < HEFOFNTE B0

which contradicts (1) and the proof is finished.

5 Proof of the part (2) of the Theorem 6

Let G = (B, W, E) be a balanced bipartite graph with |B| = [W|=n,n >4
satisfying the conditions of the Theorem 6. "

Observe that since n > 4, we have %”' > n + 2. From the assumptions of
the Theorem 6 we have:

d(x) +d(y) > 7 >n+2, (12)

foranyz € B,ye W, zy &€ F.

Let M be a matching in G. We may assume that M is a maximal match-
ing. If M is a perfect matching then from Theorem 1 it is contained in a
hamiltonian cycle. We can assume that M is not a perfect matching and we
consider a maximal counterexample, i.e. a balanced bipartite graph G and a

maximal matching M such that:



1. There is no cycle in G containing M.

2. For every pair of vertices (p,q),p€ B, qe W, pqg ¢ E, p,q ¢ V(M),
then M is contained in a cycle in G U (pg).

1

Pa—2

Cl qa

Y

raan edge of the rﬁa.tching M.

A strict ©-graph compatible with M.
Figure (2).

Observe that since M is not a perfect matching then we have at least two
vertices p, ¢ such that p,q & V(M).
This implies that we have a path:

D:  qujug..up (13)

containing M and oriented from ¢ to p.
Since gp ¢ E then from (12) there exists ¢ such that 1 < ¢ < 1 -1,
qu;y1 € F and pu; € F.

10



The cycle:

.
' QU1 Uj2.. . WPUU; ... U1G

can not contain the matching M, so w;u; 1, € M.
Consider paths:

T gt UipUy ... UjpoUit1
Q ©o UG . UIQUG

R @ wgy

and observe that H = (P,Q, R) is a strict ©—graph compatible with the
matching M. (For an example of such strict @ —graph compatible with the
matching M see Figure (2).)

Let us, u, € V(D), s < r be such that pu, € E, qu, € F, u,u;41 € M,
up_1u, € M (remark that s = ¢, 7 = i+ 1 satisfies these conditions) and r — s
Is maximum.

The graph H = (P,Q, R) :

P oauptigtyy e epi Uy
Q Uy g ... UIQUr
R .o,

is a strict © —graph compatible with the matching M such that |V (R)]| is

maximum.
Since there is no cycle containing M we have E(P)NM # 0, E(Q)NM # ()

and since H is a strict ©-graph |V(P)|, [V(Q)| = 6.
We label the vertices of H as follows:

P askepriad pay
Q@ : zq1 .. QY
R 20 v Tl

We assume that € B,ye W, q=q € W,a=q, € B, p=p, € B and
b=ps_1 €W

Let G'ar be the subgraph of G induced by V(G) \ V(M) and let Z be
the subgraph of G induced by V(G)\ V(D). G and Z are independent i.e.

11



Since V(G) = V(P - {yHuV(Q — {z}) UV(R— {z,y}) UV (Z) and the
sets V(P — {y}), V(Q — {z}), V(R — {z,y}) and V(Z) are vertex-disjoint
for every vertex v € V(G), we have:

d(v) = dp_y3(v) + do—{23(v) + dr—{2,4) (V) + dz(v). (14)

Let |[M| = m, |V(M)| = 2m, |V(D\M)| = 26 and |V(Z)| = 2¢, then
n=m+4d+t.

Remark: Asp, ¢ V(M), ¢ € V(M), |V(P)| and |V(Q)| are even, then
d > 2. (There are at least two vertices of V(G)\V (M) on P and on Q.)

Denote P; i = 1,...,np, @4, 1 =1,....,ng and R, k = 1,...,ng the paths
obtained respectively from P, @ and R\ {z,y} by removal of the edges of M.

Take an i € {1,...,np}. Observe that since M is maximal then if P is
an odd path then |V( )| = 3 and if P; is an even path then |V(B)| = 2.
Moreover if |V (P;)| = 3 then P; is a BB-path or a WW-path. If |V(P)| =
2 then P; is a BW-path or WB-path. As |V(P)| is even, the number of
BB—paths is equal to the number of WW-paths. Let v3(P) be the number
of odd paths P;, vSY(P) the number of BW-paths P, v3"?(P) the number
of W B-paths P; and 1,(P) = vfW(P) + 1,V 2(P) the number of even paths
Fe

The paths @; i = 1,...,ng.and R;. ¢ = 1,...,ng. have the same properties
as the paths P; and in the same way as above, we define vPW, vBW v, =

W 4+ vPW and vs for paths @Q and R (in which the number of BB— paths

is also equal to the number of WW-paths).

From the maximality of G and M the graph induced by V(D)\ V(M) is
independent. Thus since bp,y is a W W -path we have: :

np = v3(P) + v5(P) = |M N E(P)| + 1. (15)

Similarly since zq,a is a BB-path we have:

ng = v3(Q) + 1(Q) = |M N E(Q)| + 1. (16)

Observe that on the path R\ {z,y} we have:
nr = v3(R) + n(R) = |M N E(R)| — 1. (17)

12



From (15) — (17) we have:

3

Z (ui(P) + v(Q) + v5(R)) = m + 1. (18)

=2

In every path odd F;, there is one vertex of V(D)\ V(M) and since |V (R)|
is even we have:

v3(P) = [V(P\ M)|. (19)

Similarly we have:
vs(Q) = V(Q\ M)|. (20)
w(R) = [V(R\ M)|. (21)

From (19) — (21) we have:

va(P) + 5(Q) + 5(R) = 25. (22)

5.1 Lower bound of the sums of degrees

If one of the edges ab, paq1, P1gp exists, we have a cycle in G containing every
edge of M. For example if p1gg € F then the cycle:

C: p1gsgp-1---qQ1TT1...T4YPg----P1

is containing M.
We may assume ab ¢ E, poq1 ¢ E, p1gs ¢ F and then:

5 5n

d(a) +d0) > 7, (23)
d(ap) +d(p) > 7, (24)
d(pa) + () > - (25)

13



5.2 Upper bound of sum of degrees

5.2.1 Neighbors of a, b, p,, q1, 43, pr on R\ {z,y}

1. Consider a WB—path R; : vuon R,ue€ B,ve W,v=u", uv ¢

no

M. Since there is no cycle containing every edge of M, the following
inequalities are satisfied: e({pa,p1}, Ri) < 1, e({aq1,95}, R:) < 1 and
6({(1, b}s Rz) < 1. ‘

Suppose that e({a,b}, R;) = 2, then av, bu € E and the cycle C given
by the formula:

C: avv ..rzp...pa2bun’..ryygs...a

contains M, a contradiction.
Now suppose that e({p1,pa}, RB;) = 2. In this case pju, p,v € E(G)
and the cycle C given by the formula:

C':  pavuT . 1L eyt UL D2 Pa

contains M, a contradiction.
The case e({g1,q5}, R:) = 2 is the same as e({p1;pa}, R:) = 2 and so

we have:

6({0‘,, b}phpasQI’ Qﬁ}:Ri) g 3. 7 (26)

Consider a BW—path R;: wvon R,ue B,ve W,v=u", uv ¢ M.
The following inequalities holds: e({p1,pa}, Ri) < 1, e({q1,q5}, Ri) <
1, e({a,b}, R;) < 2.

Since a, v € B and b, v € W it is clear that e({a, b}, R;) < 2.

Suppose that e({p1,pa}, Ri) = 2., then pyu, vp, € E and the cycle C
given by the formula:

C: pavv+...T7yqﬂ...qlxr1....upl...pa

contains M, a contradiction.
The case e({q1,qs}, R:) = 2 is the same as e({p1, pa}, Ri) = 2. Thus:

e({aibaplapa)(.?h qﬁ}aRz) g.. 4. (27)

14



3. Consider a WW —path R; : viuvy, u € B, vy, v, € W, u € V(D \ M),
w=v] =v,. As q ¢ V(M), u & V(M) and M is maximal, we have
qu ¢ E. Since there is no cycle containing M, the following inequalities
holds: e({p1,p.}, Ri) < 2, e({a,qs}, R)) < 2.

We will start by computing the e({p1, pa }, R;)-
If pyu ¢ E then e({p1,pa}, ) < 2

Suppose now that p;u € E and e(pa,R) £ 0 e(Pa, Ri) # 0 implies
that p,v; € F or pav; € E.

If pov; € E, then the cycle C given by the formula:
O PtV ST1EGL S GRY Ty UDY DY
contains M, a contradiction.
If pavs € E, then the cycle C given by the formula:
C:  Pavavy ...TyYqg. . QLET1 .. UPI ... Pa

contains M, a contradiction. So if pyu € E we have e({p1, pa}, R:) = 1
Thus in any case we have e({p1,pa}, Ri) < 2

Now we shall compute the e({a,gs}, R;). Observe that a and gz can
not be adjacent to two different vertices on R;i Since a, u, gg € B and
v1, v2 € W, we shall consider the existence of four edges: avy, ggvy, avy
and ggvs.

Suppose that avy, ggvs € F, then the cycle C glven by the formula:
o avlvf...rlmpl....payr,y...;(ygqﬁ...a

contains M, a contradiction.

If avy, ggv1 € E, then the cycle C given by the formula:
" avzvz 'r,,ypa LPLETL.. VA

contains M, a contradiction.

So we have e({a, gg}, R;) < 2 and since it may happen that bu € E, we
have:

e({a,b,p1, Pa; 1,95}, Bi) < 5. (28)

15



4. Consider a BB—path R; : wjvug, uy, ug € B,v € W, v € V(D \ M),
v=ul =u,. Asp, ¢ V(M), v ¢ V(M) and M is maximal, we have
pav € K. Using the same arguments as in the case 3, since there is no
cycle containing M, the following inequalities holds: e({q1,qs}, R:i) < 2,
e({b,p1}, R;) < 2 and since it may happen that av € E, we have:

2({a, b, p1,Pa; g1, 98}, Ri) < 5. (29)

By summing over all the paths R; from (26) — (29) we have:

e({a,b,pas @1, 43,11}, 2 — {z,y}) < 3u(R) + 13" (R) + 5v3(R). (30)

5.2.2 Neighbors of a, b, pa, @1, g3, p1 on Q\ {z}.
1. Consider the vertices {g1,a}. Since there is no cycle containing M we
have e({p1,qs}, {a1,~}) < 1, aq € E, paqr, ab ¢ E and thus:
6’5‘{@,5,?1,?&,(]1,6];3},{qha}) \<-. 3. (31)

2. Consider a BW-pah Q; : wv, u € B,v € W,v = u*, wv ¢ M.
Since there is no cy-le containing M we have e({p1,pa},@:) < 1 and
8({&,1)}, Qz) < L
Suppose that e({p1, 7o}, @:) = 2, then piu, p,v € E and the cycle C
given by the formule:

C:  UU e U7 TRY B UPaPa—1-+--P1

contains M, a contr:iction.

If e({a,b},Q;) = 2. then bu, av € E and the cycle C given by the
formula:
C: buu...avv’...ggyry..r12p1...b

contains M, a contr:diction.
Observe that e({q1, 12}, @:) < 2 and thus:

'{'.({a’ibiplapa)q1JQﬁ}aQi) < 4. (32)
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3. Consider a W B-path Q; : vu, u € B, v € W, v = v+, vu & M. Since
there is no cycle containing M, using similar arguments as in the case
2, for the vertices a, b, we have e({q1,pa},@:) < 1, e({p1,q5};, @) < 1
and thus:

6({0’} brpl}pou QI)Q,B}:QTJ) *~<\ 4. : (33)

4. Consider a WW-path Q; : vjuve, v2 Yy, u € B, vy, va € W, u = v =
Uy . '
As ¢ ¢ V(M), u ¢ V(M) and M is maximal, we have ¢u ¢ E and
from this: e({q1, ¢z}, Qi) < 2.

Since v, # y and as R is maximal p,vy € E. Suppose that p,vs € E
then the graph H' = (P',Q, R') with:

P oiapiies povs
QL Amg Hies
B imrie ma g iy

is a strict ©-graph compatible with M with |V (R')| > |V(R)|.

Since there is no cycle containing M, using similar arguments as in the
case 21 we have 8({p11pa}5{ylau}) < 13 6({(1’5‘1)}){”7@2}) < 1. From
this e({p1,pa}, Qi) < 1 and since it is possible that av; € E we have

e({a, b}, Qi) ~..<\ 2.

From these inequalities we have:

e({aabaplapcx:QIsQ'ﬁ}a Qz) \<\ i A (34)

9. In the case 4 we have assumed that v, # y. If v; = y, then ¢ = Ng and
the path Qn, is a WW-path Qn, : gs_1gsy. In fact it is the same case
as the case 4, but since p,y € F, we have:

6({asbaP13quh q,ﬂ}1 Qz) g. 6 (35)

6. Consider a BB-path Q; : ujvug, uy, ug € B,v € W, v = uf = uy .

Observe that since p,, v ¢ V(M) and since M is maximal we have
Pav ¢ B.
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Since there is no cycle containing M we have e({a,b}, {us,v}) < 1,

e({p1, g}, {v,u2}) < 1.

Suppose that e({a, b}, {u1,v}) = 2, then av, bu; € E and the cycle C
given by the formula:

G v buguy ™ dgrilrimn.b

contains M, a contradiction.

Suppose that e({p1, g5}, {v,u2}) = 2, then pyus, ggv € E and the cycle
C given by the formula:

C: p1u2u;....qﬁfu Ao I 35T U Py PA

contains M, a contradiction.

Observe that pju; ¢ FE, because f pyu; € E, then the graph H' =
(P',Q, R") with: :

Py uip e Dl
Q' : wvuy .. gy
R owguy i e ey

is a strict ©-graph compatible wit « M with |V(R’)| > |V(R)|, a con-
tradiction.

From the above we have: e({p1,cs}, Qi) < ({a b}, Qz) 2 and
since e({q:}, @;) < 2 we have

e({a”b:plvpa, -‘llyqﬁ}a Qz) < 9. (36)

By summing over all the paths @; fr .m (31) — (36) we have:

6({a,b,p1,pa, a1, qﬁ}:Q \ {:C} < 4V2(Q) + 5V3(Q) ~1. (37)

5.2.3 Neighbors of a,b, p,,q1,9s, 71 on P\ {y}

Using the similar arguments as in Secticn (5.2.2) we have

e({a,b, p1,Pa, @1, 98}, P\ {y}) < 4v5(P) + 5v3(P) — 1. (38)
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5.2.4 Neighbors of a,b,p,,q1,q5,p1 in Z

Since G and Z are independent we have:

dz(pa) = dz(q1) =0

and thus:

e({a,b,p1,pas 1,9}, Z) < 4t (39)

5.2.5 Neighbors of p, and ¢ on RUQU P

Using similar method as those in sections (5.2.1) — (5.2.3) we get the fol-
lowing inequalities:

e({pa, a1}, B\ {z,y}) < 1" (R) +20)"P(R) + 2v3(R). (40)

e({pa; 1}, @ \ {z}) < 12(Q) +2(15(Q) — 1) + 1 = 1.(Q) + 215(Q) — 1(-41)

e({Pay @1}, P\ {y}) < 12(P) + 2(5(P) — 1) + 1 = 1p(P) + 2u3(P) — 1(.42)

Now we shall estimate the sum of degrees. From (40) — (42) we have

d(pa) +d(g) <2V (R)+m+20— 1= B(R)+n—t+5—1. (43)

5.2.6 Conclusion

From (30), (37), (38) and (39) we have

d(a) +d(b) + d(p1) + d(pa) + d(q) + d(gp) <
4(Z(Vi(P)+Vi(Q)+Vi(R))) _ (44)

+v3(P) + 13(Q) + v3(R) — 2 + 4t — vy B(R).



From (18), (22) and (44) we deduce:

d(a) + d(b) + d(p1) + d(pa) + d(q1) + d(gp) < :
~2+4(m+1) + 26 + 4t — vy B(R). (45)

Since n = m + § + ¢, from (45) we have:

d(a) + d(b) + d(p1) + d(pa) + d(q1) + d(gs) < |
dn + 3 — vV B(R) — 24 (46)

From (43) and (46) we can deduce that:

d(a) + d(b) + d(qg) + d(p1) + 2d(pa) + 2d(q1) < 5n—t — 6+ 1. (47)

Observe that § > 2 and from (47) we have:

d(a) +d(b) + d(gp) + d(p1) + 2d(pa) + 2d(q:) < 5n — 1. (48)

Now we shall give the lower bound of the sum of degrees. From (23) —
(25) we have

420 < dlgs) +dlpn) + d(a) + ) + 2(pa) + 2(@)  (49)

Assuming that there does not exist a cycle which contains every edge of
the matching M, we have obtained (48) and (49) and this implies that
bn < bn —1,

a contradiction. The part (2) of the Theorem 6 is proved.

5.3 Conjecture

Conjecture: Let G = (B, W, E) be a balanced bipartite graph of order 2n.
If for any z € B, y € W, zy ¢ E we have

d(z) +d(y) > n+2,
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then every matching M in G is contained in a cycle of G.’

Remark: If [M|=n—1and for any z € B,y € W, zy ¢ E d(z) + d(y) >
n + 2, then M is contained in a hamiltonian cycle. ;

Suppose that G is not a complete graph (if G' is complete then Remark
_is true.) Let M U (pq), with p € B, ¢ € W, pg ¢ E be a perfect matching
containing M. From the Theorem 1 it is contained in a hamiltonian cycle
C. Let D : qujus...uyp be a hamiltonian path in G deduced from C by
deleting the edge pg. The edges ujug, ... Upip1Uzita, ... Ug_1Uy are edges of
the matching M. Since d(p) + d(g) > n + 2 then there exists a k, such that
qur41 € B and puy € E. Observe that p € B, g € W, u, € W and then k is
even. The edge ugugq is not in M. The cycle C':  quq, ... urpuli_1...Ug41q
is a hamiltonian cycle of G which contains M.
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