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The Content-Addressable Network D2B

Pierre Fraigniaud* Philippe Gauron'¥

Abstract

A content-addressable network (CAN) is a distributed lookup table that can be used to
implement peer-to-peer (P2P) systems. A CAN allows the discovery and location of data and/or
resources, identified by keys, in a distributed network (e.g., Internet), in absence of centralized
server or any hierarchical organization. Several networks have been recently described in the
literature, and some of them have led to the development of experimental systems. We present a
new CAN, called D2B. Its main characteristics are: simplicity, provability, and scalability. D2B
allows the number of nodes n to vary between 1 and || where K is the set of keys managed by the
network. In term of performances, any join or leave of a user implies a constant expected number
of link modifications, and, with high probability (w.h.p.), at most O(logn) link modifications.
The latency of a lookup routing is O(logn), w.h.p., in the sense that a key is at most O(logn)
hops away from a consumer. A join involves key redistribution among two nodes (which is
the minimum possible), including the node joining the system. Similarly, a leave involves key
redistribution among at most three nodes. The set of keys is fairly distributed among nodes,
in the sense that every node is responsible for an expected number of |K|/n keys, and, w.h.p.,
O(|K|logn/n) keys. The traffic load incurred by lookup routing is also fairly distributed, and
the expected congestion of a node is O((logn)/n). Finally, a parameter d allows a trade-off
between the degree of the network, which increases linearly with d, and the diameter of the
network, which decreases logarithmically with d. Hence, a large d allows faster lookup routing,
at the price of a slight increase of the latency for joining and leaving the network. We believe
that these properties make D2B currently the most promising network for a practical and efficient

use of CANSs.
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1 Introduction

A content-addressable network (CAN) is a distributed logical network allowing the discovery and
location of data and/or resources identified by keys!, in a physical network (e.g., Internet). A CAN
is described by a pair (K,G) where K is a set of keys, and G = (V, E) is a graph. To every node
v € V of the graph G is assigned a subset of keys K, such that Uycy K, = K. More precisely,
node v stores a lookup table which contains information related to all keys x € K. For instance,
the lookup table of node v contains the IP-address of a node holding the resource of key x, for
every £ € K, (see Table 1(a)). There is a directed edge (u,v) € E from node u to node v in G
if u is “aware of” the physical address (e.g., the IP-address) of node v. In other words, node u
stores a routing table (see Table 1(b)) which contains the IP-address of nodes to which it can set
up a direct connection (e.g., a TCP connection), and transmit messages directly. Finally, there is a
distributed routing protocol R in G' which is in charge of transmitting requests (e.g., for resources)
in the logical network. As opposed to usual networks, routing in a CAN is not performed according
to a destination label, but according to a resource key. More precisely, R is a function that maps
V x K to V, under the restriction that, for any key , and any node u, R(u, ) is either u or an
out-neighbor v of u in G. If v # u, R(u,k) = v is interpreted as: at the current node u, a lookup
for key & is to be forwarded through edge (u,v). If R(u,x) = u then x € K,. Therefore, the
key x should provide enough information to allow routing, from any source, to some node holding
information about the resource of key &, i.e., a node such that x is an entry of its lookup table.

A CAN is an underlying mechanism that can be used to implement peer-to-peer (P2P) systems.
A user of such a system is connected to a node u, and has access to every resource stored in the
system, generally via a connection to a remote node v # wu storing the resource. P2P systems
must perform in absence of any centralized or hierarchical structure, and CANs are good ways
to implement distributed lookup protocols for finding out IP-addresses of nodes storing requested
resources. Here is a possible scenario. Assume that a user connected to node u is looking for some
resource item whose key is & € K. A lookup message is then sent from u. The format of such a
message could be {(lookup, @,, k) where @, is the IP-address of node u. Based on &, the distributed
routing protocol R routes the message in the logical network G, from u to some node w satisfying
& € K. Depending on the implementation, w may or may not store the requested item. In case
w does not store the requested item, it stores a lookup table which, for any key & in K, returns
the IP-address of a node v storing the resource item of key k. Hence, in our scenario, w sends to
u the IP-address @, of node v. Once u receives the IP-address @,, it contacts v to retrieve the
requested item. Alternatively, w can contact v directly, get the item there, and forward it to u.
The advantage of this latter solution is that u does not know who stores the requested item, and
v does not know who requested that item, preserving anonymity.

For instance, let K = [0, M — 1], and G be the ring {ug,...,un—1}, where u; € [0, M — 1], and
ug < %1 < ... < up—1. There is an outgoing edge from u; to %i+1 modn, ¢ = 0,...,n — 1. For
1 > 0, node wu; is responsible for all keys x such that u; 1 < & < wu;, and ug is responsible for keys
# such that 0 < k < wg or up—1 < kK < M — 1. Routing in the ring is easy: a request for a key « is
sent from its source u; t0 4; 1 mod n, then from ;11 mod n t0 %i+2 mod n, and so on until the request
reaches node u; with u;_; < & < uj, or node ug if 0 < K < ug or up—1 <k <M — 1. If the u;’s
are chosen uniformly at random, then every node is responsible for roughly the same amount of
keys. However, this solution suffers from a major drawback: the average length (number of hops)

!This paper does not consider the question of assigning keys to resources, and we refer to [22] for a discussion
about this important aspect of the problem.



Lookup table Routing table

Resource-Key | IP-address
001100...1010 | 172.174.15.2 NodeLabal |5 IP:addtess
: : 110100 132.205.45.1
1101010 147.83.2.4
1101011 134.117.5.8
: : 11011 129.199.96.32
011001...1101 | 123.13.2.1

(a) (b)

Table 1: Lookup and routing tables. In this example, resource-keys are m-bit strings, and node-
labels are binary strings of arbitrary length.

of a route followed by a lookup message is ©(n), where n is the number of nodes currently in the
system, resulting in a latency much too high for a practical use (a P2P system should support
thousands of users).

Another solution consists to connect every u; to u; for all j # i, ie.,, G is the complete graph.
Routing is then trivial, but every node u; must store a routing table with n — 1 entries, one for
every IP-address of the n — 1 other nodes. Such a table would be much too large for any practical
use. Also, a new node joining the system would have to distribute its IP-address to all nodes already
in the network, resulting in Q(n) messages exchanged in the system, and £(n) link modifications,
just for one join.

A third solution consists to organize the nodes as a complete binary tree (where the last level may
be incomplete). In-case of a join or a leave, a small number of messages are sufficient to reorganize
the network. Lookup routing is fast, i.e., at most O(logn) steps. However, the congestion at the
root of the tree is huge: roughly half of the lookups are routed through the root!

None of these three solutions scale, either because the diameter of the network is too large, or
because the degrees of the nodes are too large, or because the connectivity of the network is too
small.

1.1 Statement of the problem

The design of a CAN consists to define (1) a set of keys, (2) a distributed assignment of keys to
nodes, (3) a set of dynamic connections between nodes, and (4) a distributed routing mechanism
using these connections. The design is subject to the following constraints:

1. At any time, all nodes currently in the system are mutually reachable;
Any node can leave the system at any time, and any node can join the system at any time;

At any time, keys are evenly distributed among nodes;

w0

Lookups are performed on a key-basis, i.e., the route from the consumer of a resource to a
supplier of information concerning that resource is set up according to the knowledge provided

by the key of the resource only;



5. The lookup latency is small, that is the time to reach a node responsible for any given key
from any given consumer is small, i.e., the lookup path length must be short;

6. The traffic load incurred by lookups routing through the system should be evenly distributed
among nodes;

7. The update time is small, that is the update of the routing tables and of the connection links
due to a leave or a join must be fast;

8. The redistribution of keys due to a leave or a join must be fast.

Constraint 1 is constitutive of a network insuring exhaustive search. Constraint 2 expresses the
dynamism of the network, typical of a peer-to-peer system. The next two constraints are related
to the primal role of CANs, which is to provide the storage of, and the access to a huge amount
of resources. The large lookup table corresponding to these resources must be fairly distributed
among the nodes (Constraint 3), and the access to any resource must be driven by its key only
(Constraint 4). The last four constraints are related to the performances of the network. More
precisely, the user-perception of the quality of a P2P system depends on Constraint 5 because a
consumer wants to be served as quickly as possible. To satisfy this requirement, the length of the
routing paths must be as short as possible, and the local routing tables must be small. Constraint 6
specifies that no server should be a bottleneck on the performances of the service. The congestion of
a node is intended to measure the probability that it is involved in a search for a random key, from a
random source-node. It is defined as the ratio load over total number of pairs (consumer,key), that
is the number of lookups that can pass through the node, divided by n|K|. Constraints 7 and 8
control the “degree of dynamism” supported by the system: complex local updates, or transfer
of large amounts of data between remote nodes in the logical network, limit the reactivity of the
system. To achieve Constraint 7, the number of control messages exchanged between nodes due to
a join or a leave must be small. To achieve Constraint 8, nodes storing “close” sets of keys must

be close in the CAN.

1.2 Our Results

We describe a new content-addressable network, called D2B. The underlying topology of D2B is the
de Bruijn graph [7]. It is known that the static version of the de Bruijn graph allows to construct
large networks of fixed degree and small diameter [4]. We show that one can use the de Bruijn
graph to design dynamic networks as well. The expected performances of D2B are summarized in
Table 2, in comparison with other CANs previously proposed in the literature.

A first remarkable characteristic of D2B is its simplicity (as simple as, e.g., Chord [22]). All
nodes of D2B play roughly the same role in the network, and routing is simple and naturally well
balanced. This is in contrast with, e.g., Viceroy [13], in which the 3-phase routing protocol induces
an underlying hierarchy among the different levels of nodes. D2B is also perfectly scalable, and the
number of nodes can take any value between 1 and 2™ where m is any integer whose value is fixed
a priori (say m = 128 or 256 for a practical use).

The set of keys managed by an n-node D2B is basically the same as for Chord [22], Viceroy [13],
and DMBN [6]: £ = {0,...,2™ — 1}, and 1 < n < |K|. As for each of these three CANs, the
expected number of keys managed by a node of D2B is |K|/n, and is, with high probability?, at

*In this paper, an event £ occurs with high probability (w.h.p.) if Prob(£) > 1 — O(1/n).



| | Update |  Lookup | Congestion |

CAN [19] O(d) O(dn'/) O(dnl/?-1)
Tapestry [24] O(dlogn/logd) | O(logn/logd) O((logn)/n)
Chord [22] O(logn) O(logn) O((logn)/n)
DMBN [6] O(logn) O(logn) O((logn)/n)
Small World [10] O(1) O(log? n) O((log? n)/n)
Viceroy [13] O(1) O(logn) O((logn)/n)
D2B [this paper] 0(1) O(logn) O((logn)/n)
d-dimensional D2B O(d) O(logn/logd) | O((logn)/(nlogd))

Table 2: Comparison of ezpected performance measures of CANs

most O(|K|logn/n).

W.h.p., a lookup initiated from any node reaches the node responsible of the requested key after at
most O(logn) hops. Chord and Tapestry [24] satisfy the same property. The simplified version of
Viceroy has, w.h.p., a lookup latency O(log2 n). An improved version of Viceroy, including a more
sophisticated lookup strategy has, w.h.p., lookup latency O(logn).

The expected degree of D2B is O(1), and there is a constant expected number of control messages
that are exchanged during a join or a leave (all control messages are exchanged between neighboring
nodes in D2B). Hence the expected time of any update is constant. W.h.p., an update takes at
most O(logn) time. Viceroy performs better with this respect since the degree of Viceroy can be
kept constant. However, this requires the use of an involved “bucket mechanism” that complicates

the Viceroy network significantly.

The expected congestion of a node in D2B is O((logn)/n), and the congestion experienced by any
node is, w.h.p., O((log?n)/n). These performances are the same as those of D2B’s predecessors,
including Chord and Viceroy.

Finally, we can define a d-dimensional version of D2B, for d > 2. (The basic version of D2B has
dimension 2.) The d-dimensional version of D2B is build upon the de Bruijn graph of dimension d,
and uses the key space K = {0,...,d™ — 1}. Its expected degree is O(d), for an expected diameter
O(logn/logd). This gives a trade-off between the latency for joining or leaving the network, and
the latency of a lookup. Also, a large d increases the connectivity of the network, and thus its
robustness against processor crashes. This facility is not offered by Viceroy.

To summarize, we claim that D2B is today the most promising candidate for a practical and efficient
use of CANs.

1.3 Related Works

Much attention has been given to the construction of large networks of given maximum degree and
given diameter (see, e.g., [14] and the references therein). This problem is known as the (A, D)-
graph problem. Although solutions for this problem can be practically used for the design of static
networks, they do not fit well with the dynamic setting of P2P systems for optimal solutions with
7 + 1 nodes may differ significantly from the solutions with n nodes.

Graphs augmented with “long range contacts”, as defined in [23], can be used for the design
of CANs. In particular, d-dimensional toruses augmented with long range contacts chosen at



random according to the harmonic distribution yield networks in which routing can be performed
on a key basis in O(log?n) expected number of steps [10]. However, a lower bound of Q(log? n)
expected number of steps was shown in [2], and there is no evidence that using another probabilistic
distribution for the choice of the long range contacts would bring any improvement. Hence, such
networks would yield large latencies for the lookups.

The ad hoc network community has recently focused on the construction and management of
dynamic networks (see [3] and the references therein). However, the proposed solutions are often
very specific of the underlying network technology (e.g., Bluetooth), and routing is not performed
on a key basis.

DNS provides a host name to IP-address mapping [15], but relies on a set of special root servers, and
DNS names are structured to reflect administrative boundaries. File-sharing services like Napster
or Gnutella either use central servers (as Napster), or perform searches by flooding (as Gnutella).
Flooding overloads the network?, and cannot be efficiently used in practice at the Internet scale.
Freenet [5] does not assign responsibility for resources to specific servers, and looking for a resource
takes the form of searches for cached copies of that resource. It provides anonymity, but prevents
from guaranteeing success of a request, and from giving bound on the time it takes for a successful

request.

In [16] is described a dynamic network with constant maximum degree, and O(logn) diameter,
w.h.p., under a specific probabilistic model of join and leave. However, as already observed by [13],
the construction of [16] does not provide a routing scheme, and the intended application is to
disseminate queries rather than to route them. In [8], a CAN with logarithmic diameter and fault-
tolerant to an adversary deleting up to a constant fraction of the nodes is described. However,
the solution is designed for any fixed value of n, and does not provide for the system to adapt
dynamically to a large number of joins or leaves. Moreover, searching generates O(log? n) messages,
and the degree is O(logn). A dynamic version has been presented in [6].

This paper is strongly related to the works in [6, 13, 19, 22, 24]. The CAN described in [19] is based
on the d-dimensional torus topology, and uses the key space K = [0, 1]¢. The expected diameter is
O(dn'/%), and the expected degree is O(d). Tapestry [24] (see also [9, 21]) implements the protocol
proposed in [17]. The degree of the induced topology is O(dlog,n), and its expected diameter
is O(logyn), where d is the base in which the node IDs are encoded. Chord [22] is based on the
hypercube topology, and uses the key set X = {0,...,2™ — 1}. Its expected diameter is O(logn),
and the expected degree is O(logn). Viceroy [13] uses the same key set as Chord, but is based on
the butterfly graph. The simplified version of Viceroy has expected degree O(1), expected diameter
O(logn) (w.h.p., O(log?n)), and expected congestion Q((logn)/n) (w.h.p., O((log?n)/n)). An
improved version of Viceroy, including a more sophisticated lookup strategy, has a diameter O(log n)
with high probability. In addition, a “bucket mechanism” allows to fix the maximum degree of the
nodes, which is only bounded by O(logn), w.h.p., in the simplified version. Viceroy is therefore
the first known constant-degree CAN with logarithmic diameter. However, its construction and
management are relatively complex, and require sophisticated procedures which might be difficult
to implement in a practical setting (more difficult than, e.g., Chord). Finally, DMBN [6] uses the
same set of keys as Chord and Viceroy, and is based on the multi-butterfly graph. It has same
diameter and degree as Chord, but is also fault-tolerant to an adversary deleting up to a constant
fraction of the nodes.

%It was mentioned in [20] that roughly 50% of the traffic generated by Gnutella is due to the control traffic, even
though searches have been limited to within a certain distance from the consumer
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Figure 1: The de Bruijn graph B(2,3)

1.4 Organization of the Paper

In the next section, we describe the content-addressable network D2B. Its main properties are de-
rived in Section 3, including a proof of correctness. Section 4 contains a discussion about variants
of D2B, including its d-dimensional version, and the ability to choose the label of a node more
carefully, in order either to match with the characteristics of the underlying physical network (i.e.,
Internet), or to decrease the maximum load of the nodes. Finally, Section 5 contains some con-
cluding remarks, including a brief discussion about the implementation of D2B in an experimental
global computing platform currently developed at LRI.

2 The Content-Addressable Network D2B

In this section, we describe D2B, including the join and leave procedures. D2B is parametrized by
a parameter d > 2. For the sake of clarity, we describe here the version of D2B for d = 2. The
description of the d-dimensional D2B network for arbitrary d is given in Section 4.1. We begin the
description of D2B by a brief description of the static version of the topology.

2.1 The de Bruijn Graph

The underlying static topology of the d-dimensional D2B, d > 2, is the de Bruijn graph B(d, k),
for k > 1. B(d, k) is defined from [7]. It is the directed graph whose nodes are all strings of length
k on the alphabet {0,...,d — 1}, and there is an edge from any node z1z2...z¢ to the d nodes
To...xpa, for @ = 0,...,d — 1. Figure 1 displays B(2,3). Note that there are loops around all
nodes a...a, a € {0,...,d—1}, and that B(d, k) is not vertex-transitive. Nevertheless, we will see
that this has no impact on the performances of D2B which are uniformly balanced among nodes.
B(d, 1) is the complete graph of d nodes, with loops.

B(d, k) has d* nodes, in-degree and out-degree d, and diameter k. Routing from z; ...z to 41 ... Uk
is achieved by following the route z1 ...z = Z2...TpY1 — T3 ... TpY1Y2 —> .. —> TRY1 .. Yk—1 —
y1...Yk. A shorter route is obtained by looking for the longest sequence that is suffix of z; ...z,
and prefix of y;...yg. If there is such a sequence z;...z = y1...Yk—i+1, then the shortest
path from zy...2x to y1 ...k S 21... 2% = T2...TkYk—it2 — T3 ... ChYk—it2Uk—it3 —> +-0 —
Ti1.- TkYk—it2---Yk—1 — Y1...Yk. De Bruijn graphs are iterated line-graphs. Let us recall
that the line-graph £(G) of a graph G is the graph whose nodes are the edges of G, and there
is an edge from node e to node €' in £(G) if €' is incident to e in G. The iterated line-graph
LF(@), k > 1, is defined as £(G) = L(G), and LKTYG) = L(L¥(G)). One can easily check that
B(d,k) = L(B(d,k — 1)) by labeling z ...z the node of B(d, k) corresponding to the edge from



T1...%5—1 t0 Ty... 7k in B(d,k — 1). Hence B(d, k) = L¥1(K).

2.2 Ovefall Description of D2B

The 2-dimensional D2B uses the set K = {0,...,2™ — 1} as key space, also viewed as the set of
binary strings of length m. Nodes of D2B are given labels that are also binary strings, but of length
at most m. Thus there are at most 2™ nodes in D2B. Note that this is not a limitation for m = 128
(or even 256) in practice, to insure a number of keys much larger than the number of IPv4 addresses
(see [24]). For instance, a system with a million nodes uses node-labels on roughly 20 bits. The

value of a node u labeled z; ...z, z; € {0,1}, is val(u) = 2™ . Z‘Ll Y L

Definition 2.1 A universal prefix set is a set S of binary words such that, for any infinite word
w € {0,1}*, there is a unique word in S which is a prefiz of w. The empty set is also a universal

prefix set.

For instance, {0, 100,1010,1011,11} is a universal prefix set. D2B insures that, at any time, the set
of labels of all nodes currently in the network is a universal prefix set.

Key distribution. Node u labeled ; ...z, is responsible for all keys between val(u) and 2™ %(1+
ELI z;25=%) — 1. More explicitly, the key whose binary representation is & . .. k,, is managed by
node z ...z, currently in the system if and only if z; ...z is a prefix of k1 ... k. Hence, a node
labeled # ...z, is responsible for 2™~* keys. Conversely, a node responsible for 29 keys has a label
on m — q bits. All keys are assigned since, by construction, the node-labels form a universal prefix
set.

Routing connections. At any given time, node labeled z; ... z; has either a unique out-neighbor
of the form zy ... x;, j < k, or (exclusive) several out-neighbors, of the form z3...zgy; ... y; where
1 <2< m—k+ 1. In the latter case, the set of sequences ¥ ...y forms a universal prefix set. In
particular, if ... zgy - . . y¢ is an out-neighbor of x; . . . zk, then none of the labels z5 . . . zxy1 - . . ¥;,
i < £, is currently used in the network. In the remaining part of the paper, an out-neighbor of
a node u is simply called a child of u. The children of a node labeled z; ...z, are displayed
on Figure 2(a). In this example, node z; ...z has five children labeled z3...xz0, z2...z;100,
z9...7,1010, 29...241011, and z2...2511. In the network, there is no node labeled zs...z1,
To...xxl0, or zy...x101.

Symmetrically, at any given time, node labeled z; ...z has in-neighbors, simply called parents, of
the form az;...z;, o € {0,1} and j < k, or of the form Bz;... 24y ...y, where 8 € {0,1} and
1 <£<m—k-1. In the latter case, the set of sequences y; ...y, forms a universal prefix set.
Note that the two forms may coexist simultaneously, but then o # .

Remark. Because of the loops around nodes 0...0, and 1...1, the child and parent-connections
are slightly different for these two nodes. A node u labeled aa...q, a € {0,1}, has children the
nodes labeled cv...ay; ... ye, £ > 1, where y; = @. The set of labels ys . . . ¢4 is a universal prefix set.
The parents of node u are labeled @ae« . .. a with j < k symbols «, or (exclusive) @aa...ay; ...y,
with & symbols a, and £ > 1. In the latter case, the set of sequences ¥ ...y forms a universal
prefix set.

Sibling connections. In addition to the child and parent-connections, children of any node u
are linked together by sibling connections as follows (see Figure 2(a)). If v is a child of u in D2B,
then there is an up-sibling connection from v to w where w is the child of u with the smallest



(a) (b)

Figure 2: Children (plain arrows) and sibling (doted lines) connections

value val(w) larger that val(v). (If v has the largest value among all children of u, then v has no
up-sibling.) Similarly, there is a down-sibling connection from v to w where w is the child of u with
the largest value smaller that val(v). (If v has the smallest value among all children of u, then v
has no down-sibling.) The sibling connections are used for the purpose of key redistribution, and
not for routing.

Routing protocol. Routing in D2B performs roughly the same as in de Bruijn graph. More
precisely, let ...z be the label of a node u in D2B, and let k be any key. Let & ...k be the
binary representation of x. Let S be the longest binary string that is a suffix of z; ...z}, and a prefix
of K1 ...Kpm, possibly S = 0. If S = z1...z, then » holds k. Otherwise, if u has a unique child
v labeled z3. ..z, then the lookup for key & is forwarded to this child. If u has several children,
then the lookup for key & is forwarded to the child v labeled x5 ... 2y ...y such that Sy; ...y,
is a prefix of K1 ... K. By the universal prefix set property, such a children exists, and is uniquely
defined.

Publication of the keys. A node u of the system aiming to publish a resource computes? the
corresponding key k£ € K, and sends a “request-to-publish message” through the network. The
format of such a message is (publish, @,, ), where @, is the IP-address of u. It is routed like a
lookup message, based on the binary representation of . When the node responsible for « receives
the message, it places @, in the entry & of its lookup table.

2.3 The Join Procedure

As for most of the CANs (see, e.g., [19]), we assume that the IP-addresses of some nodes currently in
the network are (at least partially) public. Hence, we assume that a node aiming to join the network
knows some contact nodes already in the network, called entry points. The joining procedure has
mainly three stages:

1. Getting a D2B label;

2. Redistribution of the keys;

1 Again, we focus on the construction of the CAN only, not on the way keys are assigned to resources.



3. Updating the connections (including routing, and sibling connections).

Let u be a node joining the system, and let v be its entry point in D2B, i.e., u knows the IP-address
@, of v.

2.3.1 Getting a D2B label

To join, u contacts v, and gets a temporary label which is an m-bit string s; ... 8, chosen uniformly
at random. A “request-for-join message” is sent from v through the network. The format of such a
message is (join, @, s1 ... Sy, ), where @, is the IP-address of u. This message is routed as a lookup
message, where s ... s;, plays the role of the key. Hence, the join-message eventually reaches a node
w, with label z; ...z, and responsible for the key s1...85. Le., 1...2g is a prefix of s1...5p.
Iftk=m,ie,z...2p = 81...8n, then the join fails, and v must choose another temporary label.
Such a failure occurs with probability at most n/2™, which is virtually null even for one billion
nodes, for m = 128 or 256. Hence, assume k& < m (in practice & is much smaller than m). Node
u gets the label z;...21, and w extends its label to z7...zx0. This operation is called label

extension.
At this point, only w knows about u, and w continues to act as z; ...z until the end of the join
procedure, to preserve consistency.

2.3.2 Key redistribution

The part of the lookup table stored by w that corresponds to keys which have z; ...z;1 as prefix
is transfered from w to u. Actually, only the keys corresponding to IP-addresses of nodes holding
published resources are transfered to u. Hence, the volume of the transfer is much smaller than
2m=k=1 which is the range of keys managed by u. Again, to preserve consistency, node w keeps a
copy of the lookup table corresponding to the transfered keys, until the end of the join procedure.

2.3.3 Updating the connections

a) Child-connections. Node u gets from w the IP-addresses of all children of w. We consider two
cases, depending on whether w has a loop around it, i.e., whether or not w is labeled 00...0 or
11...1.

1. General case: there is a pair of indexes 4, j such that z; # z;. We consider the two exclusive

cases:

(a) If w has a unique child labeled 23 ...z, j < k, then this child becomes the unique child
of u, and remains child of w (see Figure 3(a)).

(b) If w has several children, with labels of the form x5 ... zgy; ... ye, £ > 1 (see Figure 3(b)),
then those satisfying #; = 1 become the children of u. They are informed by w that w
is no more their parent, and must be replaced by u. Children of w with y; = 0 remain

children of w.

2. Specific case: w is labeled av. .. o, @ € {0,1}. Then it has children of the form a... a1 ... ye,
£ > 1, with i, = @. By label-extension, either w or u takes label aw. .. aq, while the other
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Figure 3: Updating the connections after a join

takes label acv...a@. Node labeled aa...aa takes aw...a@ as unique child, while node
ae...od takes all nodes a...ay; ...y = a...0@ys . .. yg as children.

b) Parent-connections. Every parent w' of w is informed by w of the existence of a new node u
labeled #y ...xzg1, of the IP-address @, of u, and of the new label z; ... xx0 of w.

1. General case: there is a pair of indexes 4, j such that x; # ;. We consider the two following
sub-cases:

(a) If w'is labeled az; ... z; with j < k (see Figure 3(c)), then w' takes u as one of its child,
and modifies the label of w in its routing table. Hence w’' has one more child, and its
degree increases by one.

(b) If w' is labeled Bz; ... zxy1 ... ye with £ > 1 (see Figure 3(d)), then w' keeps w as child
if y1 = 0, or replaces w by u if y; = 1.

2. Specific case: w is labeled «. .., a € {0,1}. Again, by label-extension, either w or u takes
label «...aq, while the other takes label «... a@. There are two exclusive sub-cases:

(a) w has a parent of the form @«. ..« with j < k o’s. Then node labeled «...aa takes
this node as its parents, while node labeled «... aa takes both «... @ and @w... o as
parents.

(b) w has parents of the form @a...ay; ...y, with £ o’s and £ > 1. Then node labeled
«...aq takes those with y; = «a as parents, while «...a@ takes those with y; = @,
together with node ... aq, as parents.

c) Sibling connections. Node u gets from w the IP-addresses of its up-sibling, which is just the
former up-sibling of w. This node is informed that its down sibling is no more w but u. The new

up-sibling of w is simply «:, and the down-sibling of « is w.

10



2.4 The Leave Procedure

The leave procedure performs in three stages:

1. Finding a substitute for the leaving node;
2. Redistribution of the keys;

3. Updating the connections.

Obviously, if a node crashes, the leaving procedure may not be entirely executed, possibly it would
not be executed at all. The case of a crash is in fact very different from the case of a leave, and
thus will be considerer later in the text (cf. Section 4.2.1). In the current setting, we consider a
node u labeled z; ...z leaving properly the system.

2.4.1 Node substitution

If a node v labeled z;...z;_1Zf is in the network, then the lookup tables managed by « and v
are merged and stored entirely by v, which is relabeled in zy...z5_1. If ;... 25— 1% is not a
valid label in the network, then the node-substitution procedure is slightly more complex. For
instance, ... z_1%f may have been extended in ;... z5_1Tx0 and 1 ... zg_1Tx1. Possibly, one
of these two latter labels (possibly both) has then been extended, and so on. Such label-extensions
create a virtual binary tree rooted at z; ...xzp_1Zg, whose leaves are nodes currently in the system
(see Figure 2(b)). In this tree, the children of an internal vertex z; ...z,_1Zgy1 ... Yp are vertices
T1...Tp—1TkY1 ... Yp0 and z1 ... Tp_1TgYy; ... Ypl. Since the depth of this virtual binary tree is finite
(it is at most m — k), there is at least one pair of leaves whose labels differ only at the rightmost
bit-position. Let us call critical pair such a pair of leaves. In Figure 2(b), there is a critical pair
{:171 o Tp1ZT 1010, 2 ... ﬂ:k_lﬁloll}.

The sibling connections allow to find a critical pair for every node u labeled z; ...z} leaving the
system, as follows. If #;, = 0 a critical-pair message is sent to the up-sibling u' of u. This message
has format (leave,@,). If v’ has label z;...z;_11, then {u,u'} is a critical pair. Otherwise, v’
forwards the message to its up-sibling »”. If the labels of «' and u" differ only at the rightmost
bit-position, then {u',u"} is a critical pair. And so on. Since the sibling chain is bounded, a critical
pair will eventually be found. In case zy = 1, one proceeds the same using down-sibling connections
instead of up-sibling connections.

Informally, one node of the critical pair will be the substitute for u, and the other will be the
substitute for the two nodes of the critical pair. This is detailed in the next section.

2.4.2 Updating the network

There are two cases depending whether the leaving node u belongs to the identified critical pair
{v,v'}.

If w € {v,v'}, then node v’ labeled z;...z,_1Z; belongs to {v,v'} as well, and becomes the
substitute for v and /. Hence, v’ receives from u all information about the keys managed by u. It

also receives from wu all the information about the sibling, parents, and children connections of u.
Node «' is relabeled in z; ... zy_;. (This operation is called label-contraction.) Then v’ informs its

11
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Figure 4: An example of the behavior of D2B

parents that its label was contracted, and u informs its parents that it leaves the network. Node u
can then leave the network. Node v’ stores in its routing tables the IP-addresses and labels of the
former children of u, which now become children of «'. Finally, v’ informs the former parents of «

that it is now their child, with label zy ... zg_1.

If u ¢ {v,v'}, then assume, w.lLo.g., that v is labeled z...zx_1Txy1 ... yp0 and v’ is labeled
T1...TE_1TkY1 - .. Ypl. Node v’ is the substitute for v and »’, while node v is the substitute for u.
Hence v’ perform the same procedure for v and v’ as ' performed for u and %' in the previous case.
In particular, the label of v’ is contracted into zj ...Zk_1ZkY1 - .. Yp- Node v takes the label of u,
and retrieves from u its lookup and routing tables. As soon as v has retrieved all information from

4, node u leaves the system.

2.5 Example

An example of the behavior of D2B is presented on Figure 4. The first node entering the network
(see (a)) takes the empty string @& as label. When a second node joins (see (b)), this label is
extended to 0 while the new node takes label 1. Then a new node joins (see (c)). Assuming that it
chooses a temporary label 1-- -, node labeled 1 extends its label to 10 while the new node takes label
11. A fourth node joins (see (d)). Assuming that it chooses a temporary label 0- - -, node 0 extends
its label to 00 while the new node takes label 01. The resulting network is the graph B(2,2). In (e),
a new node joins with temporary label 01---. In (f), a new node joins with temporary label 011 - - -

In (g), a new node joins with temporary label 11---. And in (h), a new node joins with temporary
label 00---. Note the degree 5 of node 10 in (h). In (i), a new node joins with temporary label
10---. Node 100 and 101 have roughly half the degree of node 10 in (h). Finally, in (j), the node
with label 0110 leaves the network, and thus node 0111 contracts its label to 011. The resulting

12



network is the graph B(2,3), already depicted on Figure 1. The fact that steps (d) and (j) result
in de Bruijn graphs is a coincidence, and in general the D2B topology is different from the topology
of de Bruijn graphs. However, the “expected topology” of D2B is close to a de Bruijn graph for
values of n that are close to powers of 2.

3 Main properties of D2B

This section is entirely dedicated to the proof of the following result. We prove correctness under
the assumption that joins and leaves do not overlap. Nevertheless, on can relax this restrictive
assumption by using the techniques presented in [11, 12].

Theorem 3.1 The D2B network of key-set K = {m-bit strings} is provably correct, and satisfies
the following:

o The expected number of keys managed by a node of an n-node D2B network is |K|/n, and is,
w.h.p., at most O(|K|logn/n).

o A lookup for a key s initiated from any node labeled xy ... xy is routed correctly, and, w.h.p.,
reaches the node responsible for the key k in at most O(logn) hops. With probebility 1 —o(1),
the longest route followed by a lookup message is at most O(logn) hops.

o At each intermediate node, the routing decision takes O(loglogn) comparisons of words on
O(logn) bits. The expected congestion of any server is O((logn)/n), which is optimal among
all networks of constant degree. W.h.p., the congestion of a server is at most O((log® n)/n).

o During a join or a leave, the key redistribution involves only two nodes for a join, and at
most three nodes for a leave. The expected number of link modifications due to a join or a
leave is O(1), and is, w.h.p., at most O(logn).

The fact that, during a join or a leave, the key-redistribution involves only two nodes for a join,
and at most three nodes for a leave, is straightforward by construction. All the other properties
are consequences of the following lemmas.

Lemma 3.1 At any given time, we have :

1. For any k € {0,1}™, there is a unigue node in the D2B network whose label is a prefiz of k.

2. Let u be a node of D2B labeled z ...z, with at least two children. If there are 1,7 such
that ©; # xj, then the children of u are of the form zy...zgyi...yp, £ > 1, and the set of
sequences y1 ...y of all the children of u is a universal prefiz set. If x1 = ... =z = «, then
the children of u are of the form za...xpy1...ye, £ > 2, y1 = @, and the set of sequences
ya2 ... ye of all the children of u is a universal prefix set.

Proof. Initially, there is a unique node in the network, labeled by the empty string @. This label
is the prefix of any string in {0,1}*. Thus Property 1 holds initially. Node with label @ has no
parent, nor child. So Property 2 holds as well. We show that these two properties are preserved
after a join or a leave.

13



— The case of a join.

Assume that the network currently satisfies properties 1, and 2, and that a new node u joins the
network. Let sj ... s, be the temporary label of u, and let z; ...z be the label of node v currently
responsible for key s; ... ;. The joining node w is given label z; . .. z;1, while v extends its label to
z1 ... z,0. The key-redistribution protocol described in Section 2.3.2 clearly insures that property 1
is satisfied after the join since all keys with prefix z; ... z;1 are moved from v to u. For Property 2,
we consider separately the children- and parent-connections.

If node v had at least two children before the join, then, by property 2, these children have labels
of the form z5...zy; ... ye. By construction (cf. the update of the connections in Section 2.3.3),
if there are two indexes i # j such that z; # x;, then children with labels z3 ... zx 1y, ...y, become
children of u, while children with labels of the form z5...z0ys...yp remain children of v. Since
the initial set of sequences ¥; ...y, is a universal prefix set, the same holds for the two sets of
sequences ¥s ...y corresponding to u and v. (Note that these sequences may be empty, but an
empty string is a universal prefix set, and anyway the lemma considers only nodes with at least
two children.) Therefore, property 2 remains satisfied for both  and v. If z; = ... = 2 = @, then
node z ...z has a unique child, and node z ... z@ has children all the initial children of v. By
property 2, these children were labeled «...ay; ...y with y; =@, £ > 2, and the set of sequences
Y2 ... ye is a universal prefix set. Therefore, Property 2 remains satisfied for « and v.

If node v had a parent with label of the form @z ...z; before the join, then, after the join, this
parent has replaced its child z; ...z by two children labeled z; ... z;0 and z; ... z;1, and therefore
property 2 holds. If node » had parents with label of the form Bz ...zgyi ... y¢ before the join,
then, after the join, parents of the form Sz ...z;0ys...ye have z;...z;0 as unique child, and
those of the form Bz ...zxlys...ye have z1... 2,1 as unique child. Therefore property 2 holds
after the join.

— The case of a leave.

Assume now that the network satisfies properties 1, and 2, and that node u labeled z; ...z leaves
the network. From the description of the procedure in Section 2.4.2, we assume first, for the sake of
simplicity, that « belongs to the critical pair, i.e., there is a node v labeled z; ... zx_;Tf currently
in the network. By construction, node v relabels itself in ...z, and takes care of all keys
previously managed by u. Hence, property 1 remains satisfied after the leave.

If £y ...z had a unique child @3 ...x;, j <k, before the leave, then z; ...z, 17x had also z2... z;
as unique child. After the leave, node z2...z; becomes the unique child of z;...xz;_;. Hence,
property 2 remains satisfied after the leave. If zy ...z had a unique child zs ...z, before the
leave, and x ...xz,_1T) had children with labels of the form x5 ...z,_1Z%y1 . .. ye before the leave,
where the sequences y; ...y, form a universal prefix set, then, after the leave, =1 ...x_1 has chil-
dren zy ...z and all the @o... 2, 1Tk . .. ye. Hence, property 2 remains satisfied after the leave
since {zx} U{Zgyi ... y¢} is a universal prefix set. Finally, if node x; ...z had children with labels
Ty ...TEY1 - .. Yp before the leave, while z; ... z_17x had children with labels zg ... 21Tz . .. 2,
then, after the leave node labeled ...z has children nodes labeled za...zxy; ...y, and
Ty ...Tp_1TEZ1 ... 2. Property 2 remains satisfied after the leave since both the y;...y,’s and
the z1 ... z,’s are universal prefix sets.

Parents of z;...z; and z;...z,_1Tf of the form az;...zpy1...yp and Bz ...z 1Tk21 ... 2,
respectively, have z1...7,_1; as unique child after the leave. Hence property 2 is satisfied. A
parent of z1 ...z and ;... zE_1Tk with label of the form oy ...z;, 7 <k, has child =y ...z 4
after the leaves. Therefore, if az; ...z; satisfied property 2 before the leaves, it satisfies it after
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the leaves as well. u

Lemma 3.2 A lookup initiated by any node labeled x1 ...z reaches its destination in at most k
hops. '

Proof. Let us consider a node u labeled z; ...z looking for key kK = Kj ... k. The lookup is
performed by routing ... Kk, toward the node v responsible for that key.

Claim. The label of any node w # v along the route from u to v is of the form w;...z;S where
j > 1, S is a binary string, possibly empty, and the length of the longest binary string that is a
suffix of z;...2;S and a prefix of « is of length at least |S|.

Atu,i=1, j =k, and S = @, so the claim holds for the first node of the route. Let z;...z;s1... 54
be the label of the current node w # v, and assume that the length of the longest binary string
T that is a suffix of z;...z;s1...5, and a prefix of & is of length at least 0. Assume first that w
is not labeled aa...a. If w has more than one child, then from Lemma 3.1, there is a child w’
labeled L = z;y1...2;81...84Yy1 ...y such that Ty, ...y, is a binary string that is a suffix of L
and a prefix of k. From the choice of y; ...y; in the routing protocol, the next node on the route
from u to v is the node w' labeled L. This label is of the form zy ... 2;S" and satisfies the property
of the claim. If w has a unique child, then it is either of the form z;y; ...z wherei +1 < <9,
or of the form z;...z;s1... s, where 1 < ¢’ < o. In both cases, the label of the child satisfies the
hypothesis of the claim. The case where w is labeled aw...a (which can actually occur only for
w = u) is treated similarly, again by application of Lemma 3.1. This completes the proof of the
claim.

From the claim, if z;...z;S is the label of the current node along the route from u to v, then the
label of next node is of the form x;;;...2;5’, where S and S’ satisfy the hypotheses of the claim.
Therefore, either, after i — 1 hops from node labeled z; ... 2, one reaches a node labeled z; ... z;S
where z;...z;S is a prefix of &, or, after i — 1 hops, one reaches a node labeled ;S where S is
a prefix of x. In the former case, we are done. In the latter, the next node of the route is the
destination. Thus, in both cases, one reaches the node v responsible for the key &, and the number
of hops along the route from u to v is at most (: — 1) +1 < k. |

Lemma 3.3 Assume that nodes joins and leaves at random. Then, w.h.p., the label z, ...z of
any node of an n-node D2B network satisfies logn — loglogn — O(1) < k < O(logn). Also, with
probability 1 — o(1), the longest label z, ...z}, satisfies k = O(logn).

Proof. Let us consider a node u with label z;...z; in D2B. Since nodes independently join and
leave at random, the set of labels in an n-node D2B network are those that would be obtained by
choosing n integers independently and uniformly at random in [0,2™). Let I be an interval of [0,2™)
starting at val(z), and containing ¢2™ logn/n integers, for any constant ¢ > 3. The probability
that an integer is chosen in [ is clogn/n. Let X be the random variable counting the number of
integers chosen in I. From Chernoff bound®, Prob(|X — clogn| > v/3clogn) < 2/n. Therefore,
w.h.p., at least one integer is chosen in I, and thus u is responsible for less than ¢2™ log n/n keys.
Hence, since a node responsible for at most 27 keys has a label on at least m — g bits, we have

k > logn — loglogn — log c. Also, w.h.p., no more than O(logn) integers are chosen in I, and thus

u is responsible for at least 20(’1[0{; o = Tjgg"({gggg keys. Hence, k < O(logn).

Recall that the so-called Chernoff bound says that, given N pairwise independent Bernouilli variables X1,..., Xn
of same parameter p > 0, Prob(| >, Xi — Np| > k) < 26_’“2/3N1’, for any positive k < Np.
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Let us split [0,2™) into ©(n/logn) intervals of size 2™ log n/n, and consider n integers indepen-
dently and uniformly chosen at random in [0,2™). We apply the following result by Raab and
Steger [18], on the “balls into bins” game. Assume that we throw n balls independently and uni-
formly at random into b bins, where n = ¢ blog b for some constant ¢. Let X be the random variable
counting the maximum number of balls in any bin. Then Prob(X > dlogn) = o(1) where d is a
constant depending on ¢. Applying directly this result to our setting yields that the probability
that the maximum number of integers chosen in any interval exceeds O(logn) is o(1). Therefore,
with probability 1 — o(1), the minimum number of keys managed by any node of a D2B network is
at least 2™ log n/'n,20(l°g ") and thus the maximum length of all labels is at most O(logn). B

The following is a direct consequence of Lemma 3.3.

Corollary 3.1 The number of keys managed by a node of an n-node D2B network is, w.h.p., at
most O(2™ logn/n).

The following is a direct consequence of Lemmas 3.2 and 3.3.

Corollary 3.2 The number of hops experienced by a lookup to reach its destination in an n-node
D2B network is, w.h.p., at most O(logn).

Lemma 3.4 The expected number of link-modifications due to a join or a leave is constant, and
is, w.h.p., at most O(logn).

Proof. Let z; ...z be the label of a node u. If u has more than a single child, then these children
are labeled with string of the form z5...z3y; ... yr where £ > 1. The range of keys covered by the
children of u goes from x5 ...zx0...0 with m — k + 1 zeros, to z3...z;1...1 with m — K+ 1 ones.
From Lemma 3.3, w.h.p., k > logn — loglogn — O(1). Therefore the number of keys managed by
all children of u together is at most 2m-logn+loglogntO(1) — (27 log n/n). From Chernoff bound,
this range of keys is, w.h.p., covered by at most O(logn) nodes. Therefore, the out-degree of w is,
w.h.p., O(logn). The same argument applies for the in-degree of node u by considering separately
parents of the form 0z ... 241 ...y, and those of the form 1z ... 2y ... ye. Hence the degree of

w is, w.h.p., O(logn). [ |
Lemma 3.5 The expected congestion of a server is O((logn)/n), and is, w.h.p., O((log?n)/n).

Proof. Let u be any node currently in D2B, and let z;...z; be its label. We compute an
upper bound on the load of u, i.e., on the number of lookups that pass through u, or ends at
u. The expected size of the lookup table stored by u is O(2™/n). Therefore, since there are
n — 1 possible sources, the expected load induced by lookups for keys stored at w is O(2™). The
lookups which traverse u have a specific format. For a source labeled y;...ypz1... 25 ¢ > 1,
the requested keys must be of the form z;...zgk1 ... Km—g4j—1 Where j < 4+ 1. The expected
number of nodes with a label terminated by the sequence z; ...x; is n/2*. The number of keys of
the form ;... xpk1 ... Kp_pyj—1 with § < ¢+ 1 is at most om—k+i and thus in average at most
2™+ /n. Therefore, for a given i, the expected contribution to the load is at most 2™. Since there
are O(logn) possible values for 7, the expected total load is O(2™ logn), and thus the expected

congestion is at most O(logn/n).
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Now, from Lemma 3.3, w.h.p., k& > logn — loglogn — O(1). Therefore, the size of the lookup table
stored by u is, w.h.p., at most O(2™ logn/n). Let ig = logn — loglogn, and let i < 4y. Applying
Chernoff bound, the number of nodes whose labels are terminated by the sequence z;...z; is at
most O(n/2¢) with probability at least 1 — O(=-%—). Therefore, the contribution of such nodes

’ L nlogn
to the load of u is at most O(2™ **in/2%) < O(2™logn) with probability at least 1 — O(;yor7)-
Therefore, nodes with label containing a sequence z ... z; as suffix for some i < iy contribute of
O(2™ log? n) to the load of u, with high probability.

Let ¢ > 49, and let us compute the contribution to the load of nodes with labels containing a
sequence zp ... x; as suffix. By Chernoff bound, there are, w.h.p., at most O(logn) nodes with labels
terminated by the sequence z;_;, ... z;, and therefore at most O(logn) nodes with labels terminated
by the sequence ; . ..z;. The contribution of these nodes to the load is at most O((logn)2m%+%),
Summing up these contributions for all i’s, 49 < 7 < k, the resulting contribution to the load is
O(2™ logn).

Therefore, the total load of u is, w.h.p., O(2™ log? n). Thus its congestion is, w.h.p., O((log®n)/n).
|

Remark. An expected congestion of O((logn)/n) is optimal for an n-node network of constant
degree with |K|/n keys per node. Indeed, let us consider a directed graph with maximum in- and
out-degree A. The number of nodes at distance < d from any node u is at most Ef:(} A, Therefore,
there are at most O(y/n/A) nodes at distance < £ loga n, and thus there are ©(n) nodes at distance
Q(logn). Therefore, each node contributes of Q(]K|logn) to the load, resulting in a global load
of Q(n|K|logn). To have n — o(n) nodes with load O(|KX|logn), the global load must be balanced
among nodes. Thus n — o(n) nodes have load 2(|]K|logn), and thus a congestion 2((logn)/n).

4 Variants of the Construction

In this section, we present several variants of D2B, including the d-dimensional version of the
network, an attempt to match the logical network to the physical one, a discussion about the
robustness of D2B, and a simple strategy to decrease the degree of the nodes.

4.1 The d-dimensional D2B network

The d-dimensional D2B, d > 2, uses the set of keys K = {0,...,d™}, i.e., the set of words of length m
on an alphabet of d letters 0,1,...,d—1. The underlying topology of D2B is B(d, k). More precisely,
a node of the d-dimensional D2B is labeled by a pair {(z; ...z, [a,b]) where z; € {0,...,d—1}, and
0<a<b<d-—1.

Node labeled (z; ...z, [a,b]) is responsible for the key x € {0,...,d — 1} if and only if z; ...z
is a prefix of k for some « € [a,b]. A universal prefix property, defined similarly to the case d = 2,
insures that all keys are assigned. During a join, if the temporary label of a node u is managed
by node w of label (z; ...z, [a,b]), then v extends its label in the following way. If a < b, then v
changes its label to (z ...z, [a,a+ [ 25%]]) while u takes label (z; ... zk, [a+ [ 252]+1,8]). Ifa = b,
then v changes its label to (z; ...za, [0, [4—5—1—]]) while u takes label (z; ... za, [[%J +1,d-1]).

The children of node (z; ...z, [a,b]) are either of the form (x5 ...z, [0, B]), j <K, or of the form
(T2 ...zRY1 - .y, [, B]), £ > 1. Routing performs as in the 2-dimensional case, by looking for the
longest prefix of the requested key among the suffixes of the labels of the children. The sibling
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connections are defined in a way similar to the 2-dimensional case, and the leave procedure also
performs the same by looking for a critical pair among the sibling nodes.

One can easily check that the expected length k of a label (z; ...z, [a,b]) is O(log,n), yielding an
expected degree of O(d) and a diameter O(log;n). Hence, the d-dimensional D2B allows a trade-off
between the lookup latency, and the time required to update the connections after a join or a leave.
It also provides a network more robust against processor crash, as discussed in the next section.

4.2 Improving the performances of D2B
4.2.1 Robustness

A peer-to-peer system must be able to support a certain number of processor crashes, and the
brute disconnection of users not respecting the leave procedure. As in most of the CANs proposed
in the literature, nodes of D2B must control each other by periodical exchanges of pings between
neighbors. When the failure of a node is detected, its neighbors act as for a leave of this node.
The local lookup table of the faulty node is however lost. Nodes republish their keys periodically
so that lost lookup tables can be reconstructed (see [9] for more detail). If a node loses all its
neighbors, i.e., if all neighbors of a node quit brutally the network (without executing the leave
procedure), then this node must recontact an entry point (one of those nodes in the network whose
addre~ses are public), and simulate the leave procedure executed by its neighbors. To avoid an
excessive use of the entry points, it is desirable that the disconnection of nodes be unlikely. Hence,
it is desirable that the degree of a node be sufficiently large. The d-dimensional D2B has expected
degree ©(d). Hence, one can take d large enough so that a node has little chance to lose all its
neighbors simultaneously. If one prefers to use the 2-dimensional D2B (say, for a sake of simplicity),
an appropriate solution consists to systematically connect every node z ...z to at least logn
descendants of the form z;...zgy; ...y, for ¢ > 1. As a side effect, this solution provides shorter
routes to the lookup messages.

4.2.2 Optimized choice of node label

The maximum degree of D2B is determined by a “balls into bins” game. Given an interval I of
[0,2™) of length 2™ logn/n, we have seen that the Chernoff bound insures that at most O(logn)
nodes have values in I, w.h.p., and hence the degree of any given node is O(logn), w.h.p. Using the
result in [18], we have seen that the maximum, taken over all intervals I, of the number of nodes
having values in I, is O(logn), with probability 1 — o(1). This follows from the fact that throwing
n balls at random into b bins, with n ~ blog b, results in a maximum number of balls in any bin of
O(log n) with probability 1 — o(1).

Now, in their seminal paper, Azar et al. [1] considered the following process: balls are thrown one
by one; d bins are selected at random for each ball; the ball chooses the bin containing currently
the least number of balls among the d selected bins. It is shown in [1] that, as n goes to infinity,
the number of balls in the fullest box is ©(n/b+ Inlnn/Ind), with probability 1 — o(1). Hence the
deviation to the mean is exponentially less than if no choice is given to the balls, even for d = 2.
This suggests to give a choice among d > 2 different labels for each node that joins the network.
Each joining node u chooses d temporary labels. For each temporary label L, v computes how
many keys would be assigned to it if choosing L as label. Node u chooses the label that maximizes
the number f keys that will be under its responsibility. In this way, one expects the keys to be
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better balanced among nodes.

4.2.3 Matching with the physical network

A CAN is a logical network. In particular, connections between neighbors may not respect the
locality constraints of the physical network (geographical, technological, etc.). Tapestry and some
other CANs offer several alternative routes between any two nodes, and routing aims to select
the best one (whose quality is often estimated as the round-trip time of a ping). However, the
setting of the network itself is not optimized, and the routes are computed a posteriori. If a joining
node selects several temporary labels, it may select the “best” labels among them. The selection
could be performed according to the IP-address of the neighbors, giving a preference to the label
with neighbors that are close physically in Internet. An alternative choice could be based, as for
Tapestry, on pings addressed to the neighbors.

5 Concluding Remarks and Future Works

We have presented D2B, a new content-addressable network for peer-to-peer systems. Beside its
simplicity (comparable to the one of, say, Chord), and its scalability, the main characteristics of
D2B are: constant expected update time (O(logn), w.h.p.), any lookup reaches its destination
in O(logn) hops, w.h.p., and the expected congestion of a node is O((logn)/n) (O((log?n)/n),
w.h.p.). These nice features suggest that D2B is a very promising candidate for the construction of
distributed lookup tables. A project recently starts at LRI, aiming to merge the concepts of global
computing and peer-to-peer systems (see [25]). The integration of D2B as a basic support for the
global and P2P computing platform developed within this project is currently under discussion.
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