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Abstract

Let G be a graph of order n and k a positive integer. A set of subgraphs
H= {Hy, Hs,..., H} is called a k-degenerated cycle partition (abbreviated k-
DCP) of G'if Hy,- -+, Hy, are vertex disjoint subgraphs of G such that V(G) =
Ule V(H;) and for all ¢, 1 <3 <k, H; is a cycle or K; or K. If, in addition,
for all 4, 1 < ¢ < k, H; is a cycle or Ky, then H is called a k-weak cycle
partition (abbreviated k-WCP) of G. It has been shown by Enomoto and Li
that if |G| = n > k and if the degree sum of any pair of nonadjacent vertices is
at least n — k41, then G has a k-DCP. We prove that if G is a graph of order
n > k+12 that has a k-DCP and if the degree sum of any pair of nonadjacent
vertices is at least %'gk—"‘r’, then either G has a &-WCP or & = 2 and G is
a subgraph of K3 U K,,_» U {e}, where e is an edge connecting V(K3) and
V(K,—2). By using this, we improve Enomoto and Li’s result for n > 10k + 3.

1 Introduction

In this paper, we only consider finite undirected graphs without loops and multiple
edges. For a vertex z of a graph G, the neighborhood of z in G is denoted by Ne(z),
and dg(z) = |Ng(z)| is the degree of & in G. With a slight abuse of notation, for a
subgraph H of G and a vertex z € V((&), we also denote Ny(z) = Ng(z)NV(H) and
di(z) = |Ng(z)|. For a subset S of V(G), the subgraph induced by S is denoted
by (S), and G — S = (V(G) — S). For a graph G, |V(G)| is the order of G, §(G) is

the minimum degree of G, and
03(G) = min{dg(z) + da(y)|z,y € V(G),z # y,zy & B(G)}

is the minimum degree sum of nonadjacent vertices. (When G is a complete graph,
we define 03(G) = 00.)
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If C = ciez- - cpeq 1s a cycle, we let ciacj, for ¢ # j, be the subpath ¢;eiqq -+ ¢,
and c; (acz- = ¢jcj_1 - -+ ¢, where the indices are taken modulo p. For any ¢ and any
[ > 2, we put ¢f = ¢y, ¢ =iy, ci-“ = ¢y and ¢ = ¢y

In this paper, “disjoint” means “vertex-disjoint,” since we only deal with parti-
tions of the vertex set.

Suppose Hi,---, Hy, are disjoint subgraphs of G such that V(G) = UL, V(H;)
and for alli,1 < ¢ <k, H;is acycleor K; or K3, then we call H = {H;, Ha, ..., Hp}
a k-degenerated cycle partition (abbreviated k-DCP) of G. If, in addition, for all
t, 1 <1 <k, H; is a cycle, then the union of these H; is a 2-factor of G with k
components. A sufficient condition for the existence of a 2-factor with a specified
number of components was given by Brandt et al. [1].

Theorem 1 [1] Suppose |G| = n > 4k and 05(G) > n. Then G can be partitioned
into k cycles, that is, G contains k disjoint cycles Hy,---, Hy satisfying V(G) =
Uf:l V(Ht)

In order to generalize 2-factors, Enomoto and Li [5] defined k-DCP by consider-
ing single edge and single vertex as degenerated cycles. They showed that weaker
conditions than Theorem 1 are suflicient for the existence of k-DCP.

Theorem 2 [5] Let G be a graph of order n and k any positive integer with k < n.
If 03(G) > n —k+ 1, then G has a k-DCP, except G = Cs and k = 2.

Note that a single vertex can be considered as a cycle of one vertex. Hu and Li
[6] study the existence of a k-DCP {Hy, Ha, ..., Hi}, each of H; is either a cycle or
a single vertex. They defined such a k-DCP as a k-weak cycle partition (abbreviated
k-WCP) of G. Firstly, they showed that under a weaker condition on degree sum,
there is a k-DCP containing at most one /K3. Secondly, they showed that under a
weaker condition on minimum degree, there is a k~-WCP.

Theorem 3 [6] Let G be a graph of order n > k+12 that has a k-DCP. If 02(G) >
2—’%3, then G has a k-DCP containing at most one subgraph isomorphic to K,.

Theorem 4 [6] Let G be a graph of order n that has a k-DCP. If §(G) > 22
then G has a k-WCP.

The graphs Gy = mK; 4+ (m + t)K,, t € {1,2}, show that both Theorem 3 and
Theorem 4 are best possible. In this paper, we show that under a weaker condition
on degree sum, there is a k--WCP.

Theorem 5 Let G be a graph of order n > k + 12 that has a k-DCP. If 05(G) >
3”'"4&, then either G has a k-WCP or k = 2 and G 1is a subgraph of K;UK,_,U{e},
where e is an edge connecting V(K3) and V(K,-2).

Note that o5( Ky U K,_5 U {e}) = n — 2. By Theorem 2 and Theorem 5, we get

Theorem 6 Suppose G is a graph of order n > 10k +3. If 02(G) > n—k+1, then
G has a k-WCP.



2 Proof of Theorem 5

Let G be a graph that satisfies the condition of Theorem 5. Since a 1-DCP is a
hamiltonian cycle, Theorem 5 is true for & = 1. Suppose & > 2. Then, o3(G) >
3—”“‘“46’“—“5 = M'E&:i. By Theorem 3, G has a k-DCP containing at most one subgraph
isomorphic to K;. Among all of these partitions, choose one, say H, such that ¢(H),
the number of cycles in H, achieves the minimum.

Let us suppose, to the contrary, that Theorem 3 is false. Then, H contains
exactly one subgraph isomorphic to K. Denote H = {H;, Hs,...,Hy} so that
Hi =uvisa K, of (G. Set

A={veV(G): v is not in any cycle of H},

and
B ={v € V(G) : v is in some cycle of H}.

Then, V(G) = AU B and
(2.1) |A| = k — e(H) + 1.

Since n > k + 12, by (2.1), B # 0 and hence H contains at least one cycle. Let C
be any cycle in H. We first have

(2.2) NAt(uw) N Ne(v) = 0.
To justify (2.2), we assume, to the contrary, that z € NF*(u) N Ng(v). Set C1) =
2 Cruvz. Then, (X \ {C,H:}) U{C®M) 2~} is a k-WCP of G. Hence, (2.2) is
true.
Similarly, we have
(2.3) For every w € A, Ng(w) N NZ (w) = 0.

We consider the following two cases.

Case 1. min{dg(u),dg(v)} > 0.

Case 1.1. There exists a cycle C' in H such that either NF (u) N Ng(v) or N5 (u)N
N¢(v) is not empty.

By symmetry, we may assume that N (u) N Ng(v) # 0. Let 2 € N¥(u) N Ng(v). If
¢~" =z, then (H\ {C, Hi}) U {uvze~u,zt} is a k-WCP of G. Hence, 27~ # z™.

(24) N*(2) N No(a*) € {o}.



Suppose, to the contrary, that y € (NF*(2) N Ng(z1)) \ {z}. Then, y # z*,ztt.
Set C?) = yﬁw‘u’wy“gsﬁy. Then, (H\{C, H;})U{C®,y~} is a k-WCP of G.
Hence, (2.4) is true.

(2.5) No(zt)n Ng(v) = 0.

Indeed, if y € Ng(zt) N NE(v), then y # 2t. Set C©® = yﬁmvy‘ﬁx"‘y. Then,
(H\{C,H;}) U {C®) u} is a k-WCP of G. Hence, (2.5) is true.

(2.6) N3t (z)n N (v) C {,zt>].

Assume, to the contrary, that y € N3t (z) N NF (v) \ {z*,23}. Then, y~ € Ng(v).
Since z € Ng(v), by (2.3), we have y~ # at. Set C® = y~Cz uvy™ and C®) =
zy~~Tz. Since y~ # z,2t, 2t (H\ {C, Hi}) U {CW,C®} is a k-WCP of G.
Hence, (2.6) is true.

It follows from (2.4)—(2.6) that d¢(z) + de(am) 4 de(v) < |C|+ 3. By symmetry,
we also have dg(z7) + de(277) + de(u) < |C| + 3. Hence

(2.7) de(z77) + do(27) + do(z) + do(zt) + do(u) + do(v) < 2|C| + 6.

In the following, we let C” be any cycle in H \ {C} (if any).

(2.8) Nee(zt) N NE2(v) = 0.

Suppose, to the contrary, that y € Ne/(zt) N NE2(v). Set C1©) = x+ﬁwvy'38'yw+.
Then, (H\ {C,C", Hi}) U{C®), u,y~y~~} is a k-DCP with one K; and with fewer
cycles than H, a contradiction. Hence, (2.8) is true.

(29) NCJ(.'L'+) N Név-r(ﬂ:_) = 0.

To justify (2.9), assume, to the contrary, that y € Ngs(zt) N N(z~). Set C() =
x+ﬁ$“yk5'y:c+. Then, (H\ {C,C'H)U{C®), 2} is a k-DCP with one K5 and with
fewer cycles than H, a contradiction. Hence, (2.9) is true.

(2.10) N&(z7) N N2 (v) = 0.

Suppose, to the contrary, that y € N (z~) N NF2(v). Set C®) = acﬁﬂ:—y_ay_%:c.
Then, (H\ {C,C", H;}) U{C® vy} is a k-WCP of G. Hence, (2.10) is true.

It follows from (2.8)—(2.10) that
dor(e™) + dor(o) + dor(&™) <O
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By symmetry, we also have
do(2) + dor(u) + dor(277) < |C7).
Hence,
(2.11) der(277) + der(27) + dor(z) + dor(2F) + dee(u) + doi(v) < 2|C7).
By (2.7) and (2.11), we get
(2.12) dp(e~")+dp(z™) + dp(z) + de(z™) + dg(u) + dg(v) < 2|B| + 6.

Recall that |[A| = k—c(H)+1. To avoid a k-WCP, we have Na(z7)NNy(z™7) =
Na(z) N Ng(zt) = 0. This together with u,v € A implies

da(z™") +da(z™) +da(z) + da(zt) + da(u) + da(v) < 2|A] +2(]A] = 1).
Combining this with (2.12), we get

do(277) +do(27) + da(2) + do(a™) + da(u) + da(v)
< (4|A] = 2) + (2|B] 4 6)

= on 4 2|A|+ 4.
This together with (2.1) and o2(G) > 22485=5 implies
(2.13) de(z™") + da(z™) + da(z) + de(a™) + da(u) + de(v) < 302(G).
Recall that z € N#(u) N Ng(v). By (2.3), we have zu,z"v ¢ E(G). Hence,
de(z™) + dg(z) 4+ de(u) + da(v) > 205(G). Combining this with (2.13), we get
da(z77) + dg(a™) < 02(G). Hence, 27"zt € E(G).
(2.14) O] = 4.

Suppose, to the contrary, that |C| > 5. Set C©®) = et Cz=~2* and 19 = wvezu.
Then, (H\{C, H;})U{C®,C (19} is a k-WCP of G. This contradiction proves (2.14).

It follows from (2.14) that |V(C) U V(H;)| = 6. To avoid a k-WCP, (V(C) U
V(H,)) contains no cycle of length 5. Hence, 2™ "u, ztv, 27"z, at2~, 27 v, zu ¢
E(G). This implies

2fda(z™) + da(z™) + da(@) + do(a?) + do(u) + do(v)] 2 652(G),
contrary to (2.13). This contradiction completes the proof of Case 1.1.

Case 1.2. For every cycle C in H, NZ& (u) N Ne(v) = Ng (u) N Ne(v) = 0.
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Let C be any cyclein H. By (2.2), (2.3) and the assumption of this case, we see that
Nt (w), N} (u), No(v) are pairwise disjoint sets of V(C'). Hence, 2d¢(u) + do(v) <
|C]. By symmetry, we also have 2dg(v) + de(u) < |C|. Therefore, d¢(u) + de(v) <
@. This together with the definition of B implies

dp(u) + dp(v) < E%Bj
On the other hand, by u,v € A and (2.1), we have
dafw) + daw) <2041~ 1) < 2Ly
and hence
da(u) + da(v) < (@Jr % ~9) 2'5‘ . 2n+gk—6_

By o2(G) > w, we get
(215) dg(u) + dg(’f)) < JQ(G).
(2.16) N43(u) N No(o) = 0.

Assume, to the contrary, that w € NF®(u) N Ne(v). Then, by (2.3), we have
uw~ ", vw” ¢ E(G), and hence

dg(u) + dg(w__) + dg(v) + dg(w_) > 20‘2(G).

Set €01 = wCw 3uvw and H' = (H\{C,Hi}) U {CU) w~w™"}. Then, H'is a
k-DCP of G containing only one K3 and ¢(H') = ¢(H). So, H' and w™w™" play a
similar role as H and uv. Note that w™ € Nguy(w™ ") and w € Noay(w™). By
an argument similar to that in the proof of Case 1.1 and (2.15), we can derive that
da(w™") + dg(w™) < 02(G). This together with (2.15) implies

dg(u) + dg(w__) + d(;(v) + dg(w_) < 20‘2(G),

a contradiction. Therefore, (2.16) is true.

It follows from (2.2), (2.3), (2.16) and the assumption of Case 1.2 that NZ™(u),
NZF3(u), No(v) and NF(v) are pairwise disjoint subsets of V/(C'). Hence, 2dc-( )+
2dc(v) < |C| implying that 2dg(u) + 2dg(v) < |B|. Since V(G) = AU B, by (2.1),

we get
(2.17) da(u) + da(v) < 2(|A] - 1) 4 1Bl = mi3k=3H)=1,

It follows from the assumption of Case 1 that there exists a cycle C' in H so
that Ng(u) # (0. Similarly, there exists a cycle C’ in H so that Nei(v) # 0. Let
¢ € Ng(u) and y € Ngi(v). By (2.3), we have
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(2.18) 27w, ytv ¢ E(G).
We consider the following two subcases.
Case 1.2.1. C=C".
It follows from the assumpation of Case 1.2 that z # y*. Note that wﬁyvum is
a cycle in (V(C) U V(H,)). To avoid a k-WCP, we have 2~ # y* and (y"‘ﬁaﬁ_)

contains no hamiltonian cycle. By standard arguments on hamiltonian graph theory,
we can derive that

219)d 4 (27)+d = () <|y*Terl

(2.20) For every cycle C" in H \ {C}, dov(z™) + deu(yt) < |C”].

Indeed, if (2.20) is false, then there is a vertex z € V(C") so that z~27,yT2t €
E(G). Set C(13) = mﬁyvu&: and C14) = y"’ﬁx"z‘@z"‘y"’. Then, (H\{H,,C,C"})U
{€13) ¢4 2} is a k-WCP of G. Hence, (2.20) is true.

By replacing C" with C'"® in the proof of (2.20), we get
(2.21) dpgs (27) + dous (y1) < |CO3).

It follows from (2.19) and (2.21) that doum,(¢7) + doum, (y*) < |C| + 2. This
together with (2.20) and the definition of B implies that dpum, (z7) + dum, (y1) <
|B| +2. Since dA\V(Hl)(m—‘)+dA\V(H1)(y+) < 2(|AI —2) = |A| -[—k—c(’H) — 3, we have
da(z™) +da(yt) < (|A|+k—c(H)—3)+(|B|+2) = n+k—c(H)—1. This together
with (2.17) implies dg(u) + da(v) + da(a™) + de(yt) < ZHE=2CN=8  95,(@).
Hence, {z"u,ytv} N E(G) # 0, contrary to (2.18). This contradiction completes
the proof of Case 1.2.1.

Case 1.2.2. C #C".

In this case, we have ¢(H) > 2. Set P = w"bmuvyﬁ’y*. Then, P is a hamiltonian
path of (V(C)U V(C’) U V(Hy)). To avoid a k-WCP, (V(C)U V(C") U V(H,))
contains no cycle of length |V (P)| — 2, and so Np(z~) N Np*(y+) = 0. This implies
(2.22) dp(27) + (dp(y*) — 2) < [V(P)].

(2.23) If C" is a cycle of H\{C, C'} with length at least 4, then dew(2™)+den(y™) <
|C"].

Indeed, if (2.23) is false, then there is a vertex z € V(C"”) so that ¢~ 27—, ytztt €

7



E(G). Set C1®) = x‘ﬁy+z++—’\'z“:c‘. Then, (#\{Hi, G 0"y NUHCW), 7= m,21}
is a k-WCP of G. Hence, (2.23) is true.

Note that for every cycle C" of length 3, dew(z™) + den(y™) < |C"| + 3. By (2.22)
and (2.23), we have

dpuv(m)(27) + dpuvim)(y™) < (|BUV(H)| +2) + 3(c(H) - 2).
Ox the other hand, by |4\ V(Hy)| = k — ¢{H) = 1, we have
da(m)(@7) + dawen)(y*) < [A\V(H)| + (k- c(H) - 1).
Hence, dg(z™) + da(y*) < n+ k4 2¢(H) — 5. This together with (2.17) implies

3n+ 5k 4+ c(H) — 11
2

dg(u) + dg(v) + de(z™) + da(y™) < < 204(G).

Hence, {z7u,ytv} N E(G) # 0, contrary to (2.18). This contradiction completes
the proof of Case 1.2.2. The proof of Case 1 is completed.

Case 2. min{dp(u),ds(v)} =0.

We may assume, without loss of generality, that dg(v) = 0. Then, dg(v) = da(v) <
|A| —1 < k — 1. By the degree sum condition, we have

(2.24) For every z € B, dg(z) > 02(G) — dg(v) > %'
(2.25) c(H) = 1.

Suppose, to the contrary, that (2.25) is false, then ¢(H) > 2. Let C be a cycle
in ‘H with minimum length and let @ € V(C). Note that |A| = k — ¢(H) + 1.
To avoid a k-WCP, we have for every cycle C' in H \ {C} that (V(C) U V(C"))
contains no hamiltonian cycle. This implies N&(z7) N Neo(z) = @, and hence
dei(z™) + de(z) < |C']. Since de(z7) + de(z) < 2(|C| —1) = |C| + (|C] — 2), by
the definition of B, we have

3|B|—4
do(a”) +da(e) < B+ |o] -2 < ABL=2

This together with da(z7) + da(z) < 2|A| implies

3|B|—4
dole) +dete) < 2141+ 22
3n + |A| — 4
2
3n+k—cH) -3
Gl 2 3




contrary to (2.24). Hence, (2.25) is true.

It follows from (2.1) and (2.25) that |A| = k. In the following, we let C' be the
only cycle in H. Clearly, V(C) = B. Since u,v € A, we have the following two
subcases.

Case 2.1. |A| > 3.

Let w € A\ {w, v}, then there exists an integer 7, 2 < 1 < k, so that V( Ji=dw}.
By (2.3), N¢(w) N NF(w) = @ and hence

Cl n+k-2
o) = da(w) + do(w) < (4] - 1) 4 A - 0HEZ2
This together with dg(v) = da(v) < k — 1 implies
3k —4
i) & Bl 2 PE AL T =5 <oi(G).

Hence
(2.26) vw € E(G).
(2.27) uw ¢ E(G).

To justify (2.27), we assume to the contrary that uw € E(G). Then, C1® = yvwu
is a cycle of G. Note that |A| = k —¢(H)+1 =k Byn > k+ 12, we have
|C| = |B| = 12. Let z be any vertex in C. By (2.3), we have Na(z) N N4(z~) = 0.
Hence, d4(z) + da(z~) < |A| = k. This together with (2.24) implies

de(z) +do(z™) = (da(z)+da(27)) — (da(z) + da(z7))

> 3n+§k—1_k'

Hence, NZ*(z7) N Ng(z) # 0. Let y € Ni*(z™) N Ng(z). Define C17 =
:cﬁy":c"gy:ﬂ. Then, (H\ {H1, H;,C}H)U{CU8) CUM 4=} is a k-WCP of G. This
contradiction completes the proof of (2.27).

(2.28) NX3(u) N No(w) = 0.

Suppose, to the contrary, that y € NF*(u) N Ng(w). Set CU8) = ya\y*uva.
Then, (H\ {H,, H;,C})U{CU® y= 4=~} is a k-WCP of G. Hence, (2.28) is true.

(2.29) NZ*(u) N Neo(w) = 0.

To justify (2.29), we assume by contradiction that y € NF*(u) N Ng(w). Set C19) =
yﬁy"‘*uva and H' = (H\{H;, H;, CHU{C1) y=y== y=3}. Then, H'is a k-DCP
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with ¢(H') = 1 and with one subgraph isomorphic to K. Clearly, Ny (y~) # 0.
On the other hand, by (2.24), we have de(y™~) = da(y™ ") —da(y™") > %—k B
423 This together with [V(C)\ V(CU)| = 3 implies Nyas (y~~) # 0. Hence, the
pair (H',y"y~~) plays a similar role as (H,uv) in Case 1. By an argument similar
to that in the proof of Case 1, we can get a contradiction. Hence, (2.29) is true.

It follows from (2.3), (2.28) and (2.29) that N}?(u), NZ*(u) and Ng(w) are
pairwise disjoint subsets of V(C'). Hence, 2d¢(u) + de(w) < |C|. By symmetry, we
also have 2d¢(w) + de(u) < |C|. Hence, do(u) + do(w) < % This together with

|C| = n — |A| = n — k implies

dofu) +do(w) = (dalu) +da(w)) + (dofu) + do(w))
< 2(14]-2)+ 2

2n + 4k — 12

2 B 12

Hence, dg(u) 4+ dg(w) < o2(G), contrary to (2.27). This contradiction completes
the proof of Case 2.1.

Case 2.2. |A|=2.

In this case, we have k = 2, A = {u,v} and dg(v) = 0. To prove the Theorem, it
suffices to show that dg(u) < 1. Assume, to the contrary, that de(u) > 2. Let
and y be two distinct neighbors of v in C. By (2.24) and (2.25), we have for every
z € V(C)

3n + 2k — 1 o +3k+7 _|C
do(2) = da(z) — da(z) > %_1 e %

Hence, (V(C)) is hamiltonian connected. In particular, there is a hamiltonian (z,y)-
path P in (V(C)). Let C(1®) = mﬁyum. Then, {C(9, v} is a 2-WCP of G. This
contradiction completes the proof of Case 2.2 and hence Theorem 5 is proved. 0O
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