DESIGNING TIMED TEST CASES FROM
REGION GRAPHS

PETITIEAN E

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud-LRI

03/2003

Rapport de Recherche N° 1354

CNRS - Université de Paris Sud
Centre d’Orsay
LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Béatiment 650
91405 ORSAY Cedex (France)

HEHOPEEQE S

Designing timed test cases from region graphs.

Eric Petitjean

LRI, CNRS UMR 8623
University of Paris XI, 91450 ORSAY CEDEX, France
email : eric.petitjean@lri.fr

Abstract

Timed automata are a widely studied model for timed systems and is commonly used for
test and verification. Formal methods are often based on their associated translation as region
graphs, with the addition of a new symbol - § - to represent the elapse of time. In this paper,
we study the semantics of this symbol and exhibit its three possible roles as input, output and
internal action. We describe then the consequences of this ambiguous nature on the design
and the execution of timed test cases generated from a region graph. We also study its impact
on methods based on timed test purposes, and define new clock zones for each possible verdict.

Keywords : Timed automata, region graph, conformance testing, controllability, test
design, test purpose, test execution.

1 Introduction

Testing is widely recognized as a crucial step in the life cycle of computer systems, and it alone
weighs approximately half the development cost of any software. With the increasing presence
of time evolving systems, such as multimedia or communication protocols, the automatic
generation of test sequences for these systems has become in the last decade an important
stake for developers. Since their introduction by Alur and Dill in [AD90, AD94], timed
automata are one of the most studied models for real-time systems, both for verification and
testing. They form, along with their classical translation as region graphs, are the underlying
model of several existing verification tools (like KRONOs [DOTY95], UPPAAL [LPY97] and
HyTEcH [HHWT97|) and automatic test generation algorithms [EnDKE98, JSD97, FP01].

This translation as a region graph usually introduces a new symbol, 4, in order to model
the elapse of time and allows to consider any other translation as being instantaneous. This
symbol has already be identified as an ambiguous one, being neither really an input nor an
output symbol. Both functions has been associated uniformally to it in timed test generation
techniques, but it has always raised problems when test sequences were to be executed. In
this paper, we study the possible occurences of § in a region graph and we identify the three
different roles it can play, namely input, ouput and internal action.

This constatation, and mainly the identification of its occurences as an internal action,
implies that almost every region graph is nondeterministic and that test sequences as single
branches are no more relevant, at least not with simple associated verdicts. We therefore
propose a new shape for the elementary components of timed test cases, named timed test
elements, and we introduce the multiple timed output element to take into account all possible
moments of reception of an output action sent by the implementation under test from a given
state. Then, we describe the execution algorithm of this new element and we give a first
outline of a global test execution algorithm in an uncontrollable context.

Finally, we study the impact of the variations in the design of test cases on test genera-
tion methods based on timed test purposes, and we propose new definitions for clock zones
labeled with the verdicts pass, fail, and inconclusive depending on their coherence with the
specification and the test purpose.

2 Inherent uncontrollability of region graphs

2.1 Alur and Dill’s timed automata

Since they have been proposed as a model in [AD90], timed automata have been widely used
to model finite-state real-time systems. The global structure of such automata is the follwing
one : each automaton has a finite set of states and a finite set of clocks which are real-valued
variables ; all clocks proceed at the same rate and measure the amount of time that has
elapsed since they were started or reset ; each transition of the system might reset some of the
clocks, and has an associated enabling condition, which is a constraint on the clock values,
and which the clock values must satisfy to allow the firing of the transition.

Definition 1 Clock constraints and clock guard

A clock constraint over a set C' of clocks is a boolean expression of the form z ~ ¢ where
rel, ~e{<,<,=,>,>}, andceN

A clock guard over C is a conjunction of clock constraints over C.

Definition 2 Timed Automata
A timed automaton A is defined as o tuple (£4, La,1%,Ca, Ea), where :

e Y4 18 a finite alphabet,

o L, is a finite set of states,

o 1% € S is the initial state,

o Ca is a finite set of clocks,

e EACLaxLaxXax29 x®(C4) is the set of transitions.

An edge (1,10, G} represents a transition from state | to state I' on input or output
symbol a. The subset A C Ca allows some clocks to be reset with this transition, and G is a
clock guard over Ca. ®(Ca) s the set of clock guards over Ca

A classical refinement of these timed automata [Kon94| consists in the usual dinstinction
between input and output actions. It divides the alphabet into two subsets : the first one
contains the input symbols, beginning with a 7, and the second one the output symbols,
beginning with a !. Since our study deals exlusively with these timed input/output automata,
no confusion should be possible and we will in all this paper use the terms timed automaton’
for ’timed input/output automaton’,

It is noticeable that the initial model has indeed proven so popular that multiple other
extensions or derived models has been developed, among which grid automata [JSD97], timed
automata with periodic clock constraints [CG00], updatable timed automata [BDFP00], and
extended timed input/output automata [Lau99].

2.2 Region graphs

In [AD94], Alur and Dill develop an algorithm of translation of a timed automaton into a
labeled transition system whose transitions are free of clock constraints. The underlying idea
is to solve the problem raised by the infinity of values any clock can take by grouping them
in classes, named regions. These regions are granted two essential properties : the notion
of immediate time succesor is a function and in one given region, every clock constraint of
the automaton is either uniformally satisfied or unsatisfied. Originally, the alphabet of the
region graph was identical to the automaton’s one and time could pass while a transition was
crossed. A classical variation of Alur and Dill’s region graphs consists in the addition of a
new symbol, d§, to represent the elapse of time. Thus, any transition labeled with another
symbol is considered to be taken instantaneously, i.e. the clocks which are not reset have the
same value before and after the transition is fired. Our study will concern exclusively this
variation, which is one of the most used where formal methods are to be applied to region
graphs, especially in the fields of test and verification.

Definition 3 Clock valuation

A clock valuation over a set of clocks C is a map v that assigns to each clock z € C' a value
in R (set of nonnegative reals). The set of clock valuation is noted V(C).

A clock valuation v satisfies e clock guard G, denoted v |= G, if and only if G evaluates to

true under v.

Ford € R*, v+d denotes the clock valuation which assigns a value v(z) +d to each clock z.
For X CC, [X w dJv denotes the clock valuation for C which assigns d to each x € X, and
agrees with v over the rest of the clocks.

Definition 4 Clock region

Let A= (Ba,La,l%, Ca,Ea) be o timed automaton.

Va; € Ca, let c; = maz{c| ((x < ¢) V (c < z)) is a constraint over z; }

The equivalence relation ~ is defined over the set V(Ca) ; v~ iff :

vz € Ca, ([o(z)] = [v'(@)]) V ((v(@) 2 c2) A (v/(2) 2 o))

Vo,y € Ca | (0(2) < e2) A (0(y) < 0,), ({(@)} < {o()} & (@)} < {0/ (W)D)

Ve € Ca | vz) < e, ({v(z)} =0 {V(z)} =0)

A clock region for A is an equivalence class of clock valuations induced by ~. Let [v] denote
the clock region to which v belongs.

Definition 5 Region graph
Let A= (X4,La,1%,Ca, E4) be a timed automaton. The (classical) region graph of A is the
Biichi automaton RA = (Sra, Sra, s%a, Era) where:

® Ypa = Xa, where § represents the elapse of time
Sra C{(s,[v]) | s € SanveEV(Ca)

5% 4 = {19, [vo]} where vo(z) =0 for all z € Ca

o R4 has a transition, ¢ —+ra q', from state g = {s,[v]) to state ¢’ = (s, [v']) on action
a, iff either
— a # 8, Ea contains a transition (s,s',a,A,G) and there is d € RY such that (v+
d) E G and v =[A — 0)(v +4d),
— a=4,s=2s and there exists d € R* such that v’ = v + d.

Since these definitions lead often to a partition of the n-dimensional space of clock valua-
tions (where n is the number of clocks) with more elements than necessary, some algorithms
[ACH'92, YL93] have been developed to minimize the obtained region graph and merge
such clock regions as those whose separation did not express any change in the behaviour of
the specified system. These unions of clock regions are called clock zones, and correspond
geometrically speaking to n-dimensional polyhedrons.

In this article, and particularly in section 4 where test execution is described, we will
consider the region graphs to be minimal.

2.3 ¢ : an ambiguous symbol

Even if the § symbol is useful since it grants the formal region graph model an increased
readability and allows at once to identify the clock zones satisfying a given time constraint in
the time automaton, it nonetheless becomes very confusing when an attempt to automatically
generate test cases is carried out. The main question is to decide whether it should be treated
as an input or an output symbol. Both choices have already been taken in different works
on the subject, which tends to prove that both show some pertinence, but unhappily they
obviously exclude one another.

Actually, é is neither an input or an ouput symbol, or more precisely it is both, and
assumes another additional function, depending on his place in the graph and on the outgoing
transitions of the states it joins.

Let us consider first the case when the timed automaton which the region graph has been
translated from is controllable (or, as it is also defined, deterministic w.r.t. test). In this
case, if a state has an outgoing transition ¢ labeled by an output symbol, it can bear no other
transition whose clock constraints are satisfied when ¢ clock constraints are. This ensures
that the system described in the specification will never have to chose between an input or
an output, or between two output actions.

2.3.1 Input

When a transition labeled with the § symbol links two states which both have an outgoing
transition labeled with the same input symbol, it only means that the global set of clock
valuations in which this symbol can be submitted to the implementation has been divided in
several clock zones because of other clock contraints expressed somewhere else in the specifi-
cation. Since we consider here the controllable case, we are ensured that these two transitions
are the only ones for the two considered states.

From a behavioral point of view, the user, or in our context the tester, is able here to
decide in which state it will submit the input symbol, and consequently decide whether or not
it will execute the J transition to let time evolve until the next clock zone. § can, and must,
be in this case considered as a decision from the tester, the implementation’s only role being
to wait for the input symbol to be submitted. It has therefore, as far as test is concerned, the
same characteristics as an input symbol.

For example, in the region subgraph shown in figure 1, a same input symbol 7A can be
submitted to the system from state 0 in both clock zones z and 2z’ . In this situation, the tester
can choose to submit 74 directly from zone z or to wait until the clock valuation belongs to
#' (i.e. execute the & transition) to perform the very same action. This choice provides, by
itself, some granularity in the testing of the whole period when it is possible to submit 7A.

Figure 1: § as an input symbol

2.3.2 Internal action

When a transition labeled with the § symbol links two states which both have an outgoing
transition labeled with the same output symbol, it only means that the global set of clock
valuations in which this symbol can be sent by the implementation has been divided in several
clock zones because of other clock contraints expressed somewhere else in the specification.

In this case, in comparaison with the previous one (section 2.3.1), the repective roles of the
implementation and the tester are swapped : the tester waits for the reception of the output
symbol, and the implementation chooses autonomously the moment of the sumbmission. Since
we are dealing here with conformance testing, we consider the implementation as a black box,
and we have no more observation power than control power over this choice which is, from an
external point of view, perfectly arbitrary. To sum it up, the firing of the § transition, in this
case, is the consequence of a unilateral decision from the implementation, and is not expressed,
at least immediately, by any element in the control flow : it has all the characteristics of an
internal action.

For example, in the region subgraph shown in figure 2, a same output symbol !B can be
sent by the system from state 0 in both clock zones z and 2'. In this case, the tester’s only
function is to wait for the reception of this symbol and to consider it to be valid (or conform)
in both zones z and 2.

Figure 2: § as an internal action

2.3.3 OQOutput

This last case is probably the one most open to discussion, since it could have been included
in the previous one (section 2.3.2), considering § as an internal action and proceeds indeed
from the same type of transition in the original timed automaton. We will try and explain
why we have chosen to make it a distinct one.

‘When a transition labeled with the d symbol leads from a state have an outgoing transition
labeled with the output symbol !B to a state where no such transition exists, it means that the
clock guard enabling the emission of !B has seen its evaluation evolve from true to false with
the change of clock zone. Since clock guards are always conjunctions of clock constraints, once
the § transition crossed, the output symbol !B cannot be emitted any more (at least not in the
context of the same transition of the initial timed automaton). This additional information
is the reason for our distinguishing between this case and the previous one. The ¢ transition
stays as uncontrollable as before, but reaching its arrival clock zone implies the non-reception
of the output symbol. Even if to consider it an ouput action is a rather abusive interpretation
of the term, since it traduces more an absence of ouput action, the delta symbol, in this case,
has nonetheless much more to say in a test context than it had in the previous one.

For example, in the region subgraph shown in figure 2, the output symbol !B can be sent
by the system from state 0 in clock zone z, but not in z’. In this case, if the reception of !B is
compulsory for the conformance to the specification, the state (0, z’) must be associated with
a fail verdict.

Figure 3: § as an output symbol

2.3.4 Uncontrollable case

If the initial timmed automaton is uncontrollable, the & transitions of its associated region graph
may, and almost automatically do, assume more than one role among the three described in
section 2.3. It obviously adds to the multiplicity of the functions represented by this symbol,
and compels us to consider all possible cases whenever we have to include such transitions in
test sequences, both in generation and execution.

3 Implications on test cases design

3.1 Timed elements

In [FP01], the authors define the timed test elements as the atomic components of timed test
cases, and identify their three possible nature : timed input elements, timed output elements,
and time elapsing elements. We recall here briefly the corresponding definitions.

Definition 6 Timed input element
A timed input element, or TIE, is a tuple (si, zi, 7a, 85, 25) where si, 85 € Ba, 7a is an input
action, and z;,zf are clock zones.

Definition 7 Timed output element
A timed output element, or TOE, is a tuple (si, 2, b, 57, z5) where s;, 85 € L4, 1b is an output
action, and z;,zy are clock zones.

Definition 8 Time elapsing element
A time elapsing element, or TEE, is a tuple (s:,2i,0,5i,25) where s; € T4, and 2,25 are
clock zomes.

According to these definitions, timed test elements are no more than transitions in the
minimal region graph. We will now exhibit the consequences of the ambigous nature of § on
each of these elements.

3.2 Timed output element

To take into account the uncontrollability of the translation in the region graph of a transition
labeled with an output symbol (see section 2.3.2), any test case must, whenever it contains a
TOE, contain also all the corresponding following TOE - w.r.t. time, not control flow, and
the last TEE. Practically, we obtain from this point no more a test case as a single branch,
but as a test tree taking into account the whole set of clock values in which the output symbol
can be submitted, starting from the current clock zone, as well as the moment from when this
submission becomes invalid. Practically, we obtain a multiple timed output element, which
we define as :

Definition 9 Multiple timed output element

A multiple timed output elements is a set MTOE = (si, 2, b, s§, 2)U(si, i, 8, 8i, z) where ze is
the first time successor of zi such as the state (s;,z.) has no outgoing transition labeled by !B,
and there exists for each clock zone z a clock zone 2’ and a path (si, z:) L (si,2") s (sy,2)
in the minimel region graph.

A multiple timed output element is no more a transition of the minimal region graph,
but one of its subtrees containing, from a given state (s,t,2;), all paths from this state
whose corresponding word matches the expression §#!b, along with a last path only labeled
by some d’s which models the expiration of the clock guard enabling the submission of the
output symbol. This structure models in fact the actual observable global behaviour of the
specification from the state (s, z;) w.r.t the considered output symbol !b.

In figure 4, we compare a region subgraph focused on an output transition and its corre-
sponding MTOE represented as a tree.

(a) A region subgraph (b) MTOE

Figure 4: Specification and observable behaviour

It is noticeable that such a simplification could in no way be performed in the region graph
directly since it supresses states which can be reached by different paths than the MTOE root,
even considering only the control flow.

3.3 Timed input element and time elapsing element

In section 3.2, we have already taken into account two out of the three possible roles that
the é symbol can assume : internal action and output symbol. The only role left is the input
action one, which is actually the only one controllable and consequently testable by itself, and
which will be treated the same way as initial input symbols.

This class of elements can, and must, be treated individually in the test generation, and
their definition remains unchanged, although we will from now restrict the notion of time
elapsing element to the occurences of the ¢ symbol in the minimal region graph where it
assumes at least the function of an input symbol.

begin
do
read clock valuation v
while (v ¢ 2z, and b is not received)
if IB is received
read clock valuation v
current state = (sy, [v])
continue
else
current state = (8, z)
continue
endif
end

Figure 5: Execution algorithm of a MTOE

4 Test execution

4.1 Test architecture

A specific architecture for timed testing has been proposed in [PF99]. In this architecture,
the tester is divided in two parts : the clock part, which contains the clocks appearing in the
specification (modeled as a timed input/output automaton), and the behaviour part, whose
function is to communicate with the implementation through the PCOs, i.e. to send inputs
to the IUT and receive outputs from it. These two parts communicate with one another in
the following way : the control part can, at any moment, ask the clock part for the value of
any clock and it receives immediately the answer.

This architecture keeps the implementation as a black box, but prevents the tester from
detecting some faults at the exact place where they occur, mainly when clock resets are
concerned.

4.2 Controllable case

4.2.1 Time elapsing element

This element is undoubtedly the easiest one to execute : it consists only in waiting for the
clock values to evolve from some clock zone to another one. The corresponding algorithm is
obvious.

4.2,2 Multiple output timed element

The execution algorithm translates the parallel execution of the tester and the MTOE. From
state (0, z), the tester is idle and waits for one of the two following events to occur : reception
of the output symbol !b or entrance in the clock zone z.. These events concerns two different
kinds of observation : the first one is received through the PCO associated with the symbol
(or action) & while the second one is detected thanks to a repeated check of the values of
clocks in the clock part of the tester. It is given in figure exete.

4.2.3 Timed input element

The division of the whole set of clocks in which the input symbol can be submitted is not only
compulsory to keep coherent with the specification, it also provides a useful granularity for
testing the infinite clock zones. Several methods have been proposed to treat and/or increase
this granularity : test of a single random clock value in each zone, test of predeterminate
values uniformally dispersed on a grid with a step equal to 1/k where k € N [EnDKE98], test
of the extreme reachable clock values in each visited zone (value of arrival in the state from
wich the input symbol is to be submitted and furthest value in the same zone reachable by

single elapse of time) [FPS00]. Each of these methods lead to their own associated execution
algorithm and lead to an individual test coverage (which is always, mathematically speaking,
null, since we are in an infinite space).

4.3 Uncontrollable case

If the initial timed automaton modeling the system is already uncontrollable, we may have,
from any state, several outgoing transitions executable simultaneously, one of which at least
is labeled by an output symbol. In the process of test execution, any output transition thus
coupled with a timed element in our test case must be taken into account, and its execution
must lead to a final state associated with the inconclusive verdict. In fact, our considerations
rejoin here with those already explored for the nondeterminist cases. And, as it is classically
assumed, we consider that a sufficiently large number of executions will cover exhaustively all
the possible paths in our test cases.

In order to reduce the number of these executions, some tactical considerations may be
taken into account, which may prove also sound for the controllable case, when computing
the preambles for our test cases. Since the additional uncontrollability in the translation in a
region graph is exclusively due to the transitions labeled with output symbols, it would seem
reasonable to choose preambles with as few TOE as possible, in order to achieve an optimal
probability to actually reach the expected state at the expected time.

5 Derivation of timed test purposes

Apart from the methods consisting in testing the conformance of the implementation of a
global system with its formal specification w.r.t. a specific conformance relation, a large
amount of effort has been dedicated to the derivation of test sequences from test purposes.
These latter works, focusing on some explicitly expressed characteristics of the system rather
than seeing it as a whole, lead to a generally lesser cost and are therefore more welcome in
the industrial world.

The generation of test sequences from test purposes is often performed through a syn-
chronous product of the test purpose and the specification. Since the test purposes are but
parts of the global specification, they do not cover all possible paths from any given state, and
the execution of the associated test sequences lead to the three usual verdicts - pass, inconclu-
sive and fail - depending on the result being conform to both test purpose and specification,
only the specification, or none of them. Introducing in this problematics the time element, the
authors of [SPF01] define a timed synchronous product and associate these verdicts not only
to behavioral state but also to set of clock values computed from the test zones appearing in
the minimal region graphs of the test purpose and of the specification.

The timed test purposes are classically defined as acyclic timed automata, whose states
are also states of the timed automaton of the specification, but whose clocks are not necesarily
the same. However, in order to remain coherent with the notion of conformance testing, all
clock guards in the test purpose must be more restrictive than the corresponding ones in the
specification.

If the assignation of verdicts to sets of clock values do not have to be modified when
the considered transition is labeld by an input symbol or by § as an input symbol, we have
already observed in section 3 than every output symbol lead, in the test cases, to a tree
modeling all possible moments for the execution of the transition. In this case, the sets
pass, fail, and inconclusive must have their definition adapted. For a given initial state s;
and an output symbol !b, let MTOE; = (si,z,!b,55,2s) U (3i, 2i, 8, i, ze,) and MTOE, =
(i, 2,0, 85, 2p) U (8, 2,8, 81, ze,) be the respective multiple timed output elements of the
specification and of the timed test purpose. We define then the zones as follows :

® Zpass =z Nz
e Zinconer =Jz\ Uz
o Zparr =R™"\|Jzs

These definitions are sound since the clock guards in the test purpose are stronger than
in the specification, and therefore | J z, C |Jz;. We give in figure 6 a simple example of what
these zones could be.

Figure 6: Zones and associated verdicts

6 Conclusion and perspectives

We have presented in this paper a theoretical basis for designing and executing timed test
cases generated from a specification modeled as a region graph. The § symbol, which is at
the very center of our study, has been proven to assume different roles in this graph, namely
input, output, and internal action. We have from this observation defined a new shape for test
cases through the introduction of the multiple timed output event which takes into account
not only one output transition in the region graphs, but all the possible paths leading from the
same head state with the same output symbol, the § symbol not being in this case considered
as part of the control flow. We have then proposed an execution algorithm for this timed test
element, along with an outline of a global execution algorithm when the timed automaton is
uncontrollable. Finally, we have described the consequences of the ambiguous nature of § on
methods based on timed test purposes, especially when associating verdicts with sets of clock
values comes into consideration.

As a future work, we intend to study the impact of this study on other test sequences
generation methods, such as state characterization (is it still feasible ?) and methods based
on the joco and conf conformance relations. Whenever the adaptation is possible, we will try
and develop new generation algorithms coherent with the test elements we have defined.

References

[ACH*92] R. Alur, C. Courcoubetis, N. Halbwachs, D. Dill, and H. Wong-Toi. Minimization
of timed transition systems. In R. Cleaveland, editor, Proceedings CONCUR 92,
Stony Brook, NY, USA, volume 630 of Lecture Notes in Computer Science, pages
340-354. Springer-Verlag, 1992.

[AD90] R. Alur and D. Dill. Automata for modeling real-time systems. In M. Pater-
son, editor, Proceedings 17" ICALP, Warwick, volume 443 of Lecture Notes in
Computer Science, pages 322-335. Springer-Verlag, July 1990.

[AD94] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183-235, 1994,

[BDFP00] P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Expressiveness of Updatable
Timed Automata. Lecture Notes in Computer Science, 1893:232-242, August
2000.

[CGO00] C. Choffrut and M. Goldwurm. Timed Automata with Periodic Clock Con-
straints. Journal of Automata, Language and Combinatorics, 5(4):371-404, 2000.

[DOTY95] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool Kronos. In R. Alur,
T.A. Henzinger, and E.D. Sontag, editors, Hybrid Systems III, volume 1066 of
Lecture Notes in Computer Science, pages 208-219. Springer-Verlag, 1995.

[EnDKE98] A. En-nouaary, R. Dssouli, F. Khendek, and A. Elqortobi. Timed test case
generation based on state characterization techniques. In Proceedings of the 19th
IEEE Real Time Systems Symposium, RTSS’98 (Meadrid, Spain), 1998.

[FP01] H. Fouchal and E. Petitjean. Test Case Derivation for Timed Systems. In Pro-
ceedings of the International Conference On Principles Of Distrbuted Systems,
OPODIS01 (Manzanillo, Mezice), December 2001.

[FPS00]

[HHWT97]

[JSD97]
[Kon94]
[Lau99]
[LPY97]

[PF99]

[SPFO1]

[YL93]

H. Fouchal, E. Petitjean, and S. Salva. Testing Timed Systems with Timed
Purposes. In IEEE Computer Society Press, editor, Proceedings of the 7th
International Conference on Real-Time Computing Systems and Applications,
RTCSA’00 (Cheju, South Korea), pages 166-171, December 2000.

T.A. Henziger, P.-H. Ho, and H. Wong-Toi. HyTech : A Model Checker for
Hybrid Systems. Journal of Seftware Tools for Technology Transfer, 1(1-2):110-
112, 1997.

F.W. Vaandrager J. Springintveld and P.R. D’Argenio. Timed testing automata.
Report CS-R9712, CWI, Amsterdam, August 1997.

O. Kone. Interconnezion de systémes ouverts : Test d’Interopérabilité, Test avec
contraintes de Temps Physique. PhD thesis, Univ. of Bordeaux I, 1994.

P. Laurengot. Intégration du temps dans les tests de protocoles de communication.
PhD thesis, Univ. of Bordeaux I, January 1999.

K.G. Larsen, P. Petterson, and W. Yi. Uppaal in a nutshell. Journal of Software
Tools for Technology Transfer, 1(1-2):134-152, 1997.

E. Petitjean and H. Fouchal. A Realistic Architecture for Timed Testing. In
Proceedings of the 5th IEEE International Conference of Engineering of Com-
plex Computer Systems, ICECCS’99 (Las Vegas, Nevada), pages 109-118. IEEE
Computer Society, October 1999.

S. Salva, E. Petitjean, and H. Fouchal. A Simple Approach to Testing Timed
Systems. In Proceedings of the Workshop on Formal Approaches to Testing of
Software, FATES’01 ((Aalborg, Denmark), pages 93-107, August 2001.

M. Yannakakis and D. Lee. An efficient algorithm for minimizing real-time transi-
tion systems (Extended abstract). In C. Courcoubetis, editor, Proceedings of the
oth International Conference on Computer Aided Verification, Elounda, Greece,
volume 697 of Lecture Notes in Computer Science, pages 210-224. Springer-
Verlag, 1993.

10

RAPPORTS INTERNES AU LRI - ANNEE 2003

N° Nom Titre " Nbre de Date parution"
pages ‘
1345 FLANDRIN E A SUFFICIENT CONDITION FOR 16 PAGES 01/2003
LI H PANCYCLABILITY OF GRAPHS
WEI B
1346 BARTH D SOME EULERIAN PARAMETERS ABOUT 30 PAGES 01/2003
BERTHOME P PERFORMANCES OF A CONVERGENCE
LAFOREST C ROUTING IN A 2D-MESH NETWORK
VIAL S
1347 FLANDRIN E A CHVATAL-ERDOS TYPE CONDITION FOR 12 PAGES 01/2003
LI H PANCYCLABILITY
MARCZYK A
WOZNIAK M
1348 AMAR D BIPARTITE GRAPHS WITH EVERY MATCHING 26 PAGES 01/2003
FLANDRIN E INACYCLE
GANCARZEWICZ G
WOJDA A P
1349 FRAIGNIAUD P THE CONTENT-ADDRESSABLE NETWORK D2B 26 PAGES 01/2003
GAURON P
1350 FAIK T SOME b-CONTINUQUS CLASSES OF GRAPH 14 PAGES 01/2003
SACLE J F
1351 FAVARON O TOTAL DOMINATION IN CLAW-FREE GRAPHS 14 PAGES 01/2003
HENNING M A WITH MINIMUM DEGREE TWO
1352 HU Z WEAK CYCLE PARTITION INVOLVING DEGREE 14 PAGES 02/2003
LI H SUM CONDITIONS
1353 JOHNEN C ROUTE PRESERVING STABILIZATION 28 PAGES 03/2003
TIXEUIL S

I S | || _— | = |

e e B e e Ao e A i

