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Abstract

A set S of vertices in a graph G is a paired dominating set of G if every vertex of G is
adjacent to some vertex in S and if the subgraph induced by S contains a perfect matching.
The minimum cardinality of a paired dominating set of G is the paired domination number
of G, denoted by 7p:(G). If G does not contain a graph F' as an induced subgraph, then G
is said to be F-free. In particular if F' = K 3 or K4 — e, then we say that G is claw-free or
diamond-free, respectively. Let G be a connected cubic graph of order n. We show that (i) if
G is (K13, K4—e, Cy)-free, then v, (G) < 3n/8; (ii) if G is claw-free and diamond-free, then
Ypr(G) < 2n/5; (iii) if G is claw-free, then vy, (G) < n/2. In all three cases, the extremal
graphs are characterized.
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Résumé

Un ensemble S dominant de sommets d’un graphe G est dit couplé si le sous-graphe induit
par S admet un couplage parfait. Le cardinal minimum d’un ensemble dominant couplé de
G est noté y,,(G). Soit G un graphe connexe cubique d’ordre n. Nous montrons les résultats
suivants : (i) Si G ne contient pas de K3, K4 — €, ni Cy induit alors yp(G) < 3n/8; (ii)
Si G ne contient pas de K13 ni K4 — e induit alors y,(G) < 2n/5; (iii) Si G' ne contient
pas de K73 induit alors v,(G) < n/2. Dans les trois cas nous caractérisons les graphes
extrémaux.
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Informatique (LRI) at the Université de Paris-Sud in July 2002. The second author thanks the LRI for their
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1 Introduction

Domination and its variations in graphs are now well studied. The literature on this subject
has been surveyed and detailed in the two books by Haynes, Hedetniemi, and Slater 7, 8].
In this paper we investigate paired domination in cubic claw-free graphs.

A matching in a graph G is a set of independent edges in G. The cardinality of a maximum
matching in G is denoted by 8'(G). A perfect matching M in G is a matching in G such
that every vertex of G is incident to a vertex of M.

Paired domination was introduced by Haynes and Slater [9]. A paired dominating set,
denoted PDS, of a graph G is a set .S of vertices of G such that every vertex is adjacent to
some vertex in S and the subgraph induced by S contains a perfect matching. Every graph
without isolated vertices has a PDS since the end-vertices of any maximal matching form
such a set.

A total dominating set, denoted TDS, of a graph G with no isolated vertex is a set S
of vertices of G such that every vertex is adjacent to a vertex in S (other than itself).
Every graph without isolated vertices has a TDS, since S = V(@) is such a set. The total
domination number of G, denoted by (@), is the minimum cardinality of a TDS. Clearly,
1(G) < ¥pr(G) for every connected graph of order n > 2. Total domination in graphs was
introduced by Cockayne, Dawes, and Hedetniemi [2].

For notation and graph theory terminology we in general follow [7]. Specifically, let
G = (V,E) be a graph with vertex set V of order n and edge set E. For a set § C V,
the subgraph induced by S is denoted by G[S]. A cycle on n vertices is denoted by Cj,
and a path on n vertices by F,. The minimum degree (resp., maximum degree) among the
vertices of G is denoted by §(G) (resp., A(G)).

We call K 3 a claw and K4 —e a diamond. If G does not contain a graph F as an induced
subgraph, then we say that G is F-free. In particular, we say a graph is claw-free if it is
K 3-free and diamond-free if it is (K4 — e)-free. An excellent survey of claw-free graphs has
been written by Faudree, Flandrin, and Ryjacek [4].

In this paper we show that if G is a connected (Kj3, K4 — e,Cy)-free cubic graph of
order n > 6, then v, (G) < 3n/8, while if G is a connected claw-free and diamond-free
cubic graph of order n > 6, then . (G) < 2n/5. We show that if G is a connected claw-free
cubic graph of order n > 6 that contains k > 1 diamonds, then v,(G) < 2(n + 2k)/5.
Finally, we show that a connected claw-free cubic graph has paired domination number at
most one-half its order. In all cases, the extremal graphs attaining the upper bounds are
characterized.

2 (K3, K4 — e, Cy)-free cubic graphs

To obtain sharp upper bounds on the paired domination number of (K 3, K4 — e, Cy)-free
cubic graphs, we shall need a result due to Hobbs and Schmeichel [11] who established a



lower bound on the maximum number /(@) of independent edges in a cubic graph having
so-called super-hereditary properties. As a consequence of this result, we have the following
lower bound on §'(G) when G is a cubic graph.

Theorem 1 ([11]) If G is a connected cubic graph of order n, then §'(G) = Tn/16 with
equality if and only if G is the graph shown in Figure 1.

Figure 1: The unique connected cubic graph G with 8'(G) = Tn/16.

Using Theorem 1, we show that the paired domination number of a (K3 3, K4 —e, Cy)-free
cubic graph is at most three-eights its order.

Theorem 2 If G is a connected (K13, K4 — e,Cy)-free cubic graph of order n > 6, then
there exists a PDS of G of cardinality at most 3n/8 that contains at least one vertex from
each triangle of G. Furthermore, vp:(G) = 3n/8 if and only if G is the graph shown in
Figure 2.

Proof. Since G is (Ki3,K4 — e)-free and cubic, every vertex of G belongs to a unique
triangle of G, and so n = 0 (mod3). Let G’ be the graph of order n' = n/3 whose vertices
correspond to the triangles in G and where two vertices of G' are adjacent if and only if the
corresponding triangles in G are joined by at least one edge. Then, since G is connected
and Cy-free, G' is a connected cubic graph. Thus, by Theorem 1, §/(G') > 7n'/16 with
equality if and only if G’ is the graph shown in Figure 1. Let M’ be a maximum matching
in G’ (of cardinality 8'(G")).

We now construct a PDS S of G as follows: For each edge u'v' € M', we select an edge uv
of G that joins a vertex u in the triangle corresponding to u' and a vertex v in the triangle
corresponding to v, and we add the vertices u and v to S, while for each vertex of G' that
is not incident with any edge of M', we add two vertices from the corresponding triangle in
G. Then S is a PDS of G that contains at least one vertex from each triangle of G. Thus,
since |S| = 2|M'| + 2(n' — 2|M'|) = 2(n' — | M),

I ol f_Lﬂ)g_Tf__?ﬂ
(@) S 2 —p(@) <2 (v =T ) = =

Furthermore, if we have equality throughout this inequality chain, then 8(G') = Tn'/16
and G' is the graph shown in Figure 1. But then G must be the graph shown in Figure 2.



Conversely, it can be checked that the graph G of Figure 2 satisfies n = 48 and ~p,,(G) =
18. O

Figure 2: The unique connected cubic (K3, K4 — e, Cy)-free graph G with v, (G) = 3n/8.

3 Claw-free cubic graphs

If we remove the restriction that G is Cy-free in Theorem 2, then we show in this subsection
that the upper bound on the paired domination number of G increases from three-eights its
order to two-fifths its order. For this purpose we first prove the following result, our proof
of which is along similar lines to the proof of Hobbs and Schmeichel in [11].

Theorem 3 If G is a connected graph of order n with §(G) = 2 and A(G) = 3 such
that every vertez of degree 2 belongs to a path with an even number of internal vertices of
degree 2 between two not necessarily distinct end-vertices of degree 3, then ('(G) > 2n/5
with equality if and only if G is the graph shown in Figure 3.

Proof. By a theorem of Berge [1], for any graph G

B(G) =+ (n — max {o(G - 8§) - ISI}) ;

2 SCV(G)

where o(G — S) denotes the number of odd components of G — §. Thus it suffices to show
that for the graph G satisfying the conditions of our theorem,

Sgl%){O(G —8) -8l =& (1)
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Let S be a smallest subset of V(G) on which the maximum in (1) is attained. If S = 0,
then (1) is satisfied. Hence we may assume |S| > 1. Let v € S and let S’ = § — {v}. Then,
by our choice of S, o(G — §') < o(G — S) — 2, implying that v must be adjacent to three
distinct odd components of G — S. Thus every vertex of S is adjacent to three distinct odd
components of G — §. Furthermore, since G is connected and A(G) = 3, every component
of G — § is odd. In particular, we note that no vertex of degree 2 is in S, and so each (odd)
component of G — § contains an odd number of vertices of degree 3 in G, plus possibly an
even number of vertices of degree 2 in G. It follows that there are an odd number of edges
joining S and any component of G — S.

For k& > 0, let cox41 denote the number of components H of G — S that are joined to S by
exactly 2k + 1 edges. If k = 0, then since §(G) = 2, H has order at least 3. Furthermore,
|V (H)| = 3 if and only if H is a triangle consisting of two adjacent vertices of degree 2 and
their common neighbor of degree 3 in G. If k > 1, then the sum of the degrees in H of the
vertices of H is at least 2(|V(H)| — 1) since H is connected. On the other hand, this sum
is equal to 3|V (H)| — d2 — (2k + 1) where dz > 0 denotes the number of vertices of H of
degree 2 in G. Consequently, |V(H)| > 2k +dy — 1 > 2k — 1. Hence,

3 iftk=0
Vs

Proceeding now exactly as in the proof of Hobbs and Schmeichel in [11] we obtain (1).
Furthermore, their proof shows that if we have equality in (1), then each component of
G — S that is joined to S by exactly one edge has order exactly 3 (and is therefore a triangle
consisting of two adjacent vertices of degree 2 and their common neighbor of degree 3 in
G) while cpry1 = 0 for £ > 1. Since G is connected, G is therefore the graph shown in
Figure 3. O

Figure 3: A graph G with §'(G) = 2n/5.

Using Theorem 3, we present a sharp upper bound on the paired domination number of
a claw-free cubic graph.

Theorem 4 If G is a connected claw-free cubic graph of order n > 6 that contains k > 0
diamonds, then there exists a PDS of G of cardinality at most 2(n + 2k)/5 that contains at
least one vertez from each triangle of G. Furthermore, vpr(G) = 2(n + 2k)/5 if and only if
G € {Go,G1,G2,G3} where Gy, G1, Go, and G3 are the four graphs shown in Figure 4.



(a) The graph Gy. (b) The graph G;.

(¢) The graph Gs. (d) The graph Gj.

Figure 4: The four connected cubic claw-free graph Gy, 0 < k < 3, with k copies of K4 — e
and with v, (Gy) = 2(n + 2k) /5.

Proof. If n = 6, then G is the prism K3 x K3, k = 0, and there exists a PDS of G
of cardinality 2 < 12/5 that contains one vertex from each triangle of G. Hence we may
assume that n > 8.

Since G is a claw-free and cubic, every vertex of G belongs to a unique triangle or to
a unique diamond of G. Let G’ be the graph of order n' = (n + 2k)/3 whose vertices
correspond to the triangles in G and where two vertices of G’ are adjacent if and only if the
corresponding triangles in GG share a common edge or are joined by at least one edge. Each
triangle of G that belongs to no diamond is joined to three other triangles by one edge each
or to a triangle by one edge and to another one by two edges. Therefore the triangles of G
in no diamond that are joined to only two other triangles can be gathered by pairs forming
a subgraph shown in Figure 5(a) (where v and v are distinct but possibly adjacent). Each



diamond in G corresponds to two adjacent vertices of degree two in G'. Thus, G' is either
an even cycle or satisfies the conditions of Theorem 3 (two vertices of degree 2 in G' belong
to a triangle of G' if they correspond in G either to a subgraph shown in Figure 5(a) with
uv € E(G) or to a subgraph shown in Figure 5(b) with zy € E(G)).

ut—@—cv wo—@—.y
(a) (b)

Figure 5: Two subgraphs of G.

In both cases, 8'(G) > 2n'/5 with equality if and only if G' is the graph shown in Figure 3.
Let M’ be a maximum matching in G’ (of cardinality 8'(G’)) and let S be a PDS of G as
constructed in the proof of Theorem 2. Then S is a PDS of G that contains at least one
vertex from each triangle of G. Thus, since |S| = 2(n’ — |M'|),

2n’) 6n'  2(n+ 2k)
5 5

7r(G) < 2(n’ — F(G")) < 2 (’”' i

Furthermore, if we have equality throughout this inequality chain, then §'(G') = 2n'/5 and
G' is the graph shown in Figure 3. But then ¥ < 3 and G must be one of the four graphs
Gy, shown in Figure 4. Conversely, it can be checked that for k£ € {0,1,2,3} the graph G,
of Figure 4 contains k diamonds and satisfies v, (G) = 2(n + 2k)/5. O

As an immediate consequence of Theorem 4, we have the following result.

Theorem 5 If G is a connected claw-free and diamond-free cubic graph of order n = 6,
then there ezists a PDS of G of cardinality at most 2n/5 that contains at least one vertex
from each triangle of G. Furthermore, vp:(G) = 2n/5 if and only if G = Gy where Gy is
the graph shown in Figure {(a).

Haynes and Slater [9] showed that the paired-dominating set problem if NP-complete. We
remark that since the constructions of the graph G' from G and of a maximum matching
M' of G' in the proof of Theorems 2 and 4 are polynomial, the proof of Theorems 2 and 4
provides a polynomial algorithm to construct a PDS (and therefore a TDS) of G of order
at most 3n/8 or 2n/5 or 2(n + 2k)/5 in the considered classes.

As a further consequence of Theorem 4, we show that the paired domination of a claw-free
cubic graph is at most one-half its order and we characterize the extremal graphs. For this
purpose, we say that a diamond in a claw-free cubic graph is of type-1 if the two vertices
not in the diamond that are neighbors of the degree two vertices of the diamond are not
adjacent, and of type-2 otherwise. Hence the diamond shown in Figure 5 is of type-1 if
zy ¢ E(G) and of type-2 if zy € E(G).

Let Fy, Fy and F3 be the three cubic claw-free graphs shown in Figure 6.
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(a) The graph Fy. ) The graph Fs.

(¢) The graph Fj.

Figure 6: Three connected cubic claw-free graphs.

Theorem 6 If G is a connected claw-free cubic graph of order n, then v (G) < n/2 with
equality if and only if G € {K4,F\, Fy, F5,G3} where Fy, Fy and F3 are the graphs shown
in Figure 6 and G3 ts the graph shown in Figure {(c).

Proof. We proceed by induction on the order n of a connected claw-free cubic graph. If
n = 4, then G = K4 and 7v,,(G) = 2 = n/2, while if n = 6, then G = K3 x K, and
Yor(G) = 2 < n/2. This establishes the bases cases. Suppose then that n > 8 is even
and that for every connected claw-free cubic graph G’ of order n’ < n, y,(G') < n'/2 with
equality if and only if G’ € {K4, Fy, F,, F3,G3}. Let G be a connected claw-free cubic graph
of order n.

If G is diamond-free, then by Theorem 4, v,:(G) < 2n/5. Hence we may assume that G
contains at least one diamond. Let F' be the subgraph of G shown in Figure 7 where z and
y are distinct but possibly adjacent.

Claim 1 If G has a diamond of type-1, then y5:(G) < n/2 with equality if and only if
G e {F]_,F2,F3}.
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Figure 7: A subgraph F

Proof. We may assume that the diamond G[{u,v,w,z}] is of type-1, and so zy ¢ E(G).
Let G' be the connected claw-free cubic graph of order n’ = n — 4 obtained from G by
deleting the vertices u,v,w,z (and their incident edges) and adding the edge zy. By the
inductive hypothesis, ypr(G') < n//2. Let S’ be a minimum PDS of G'. If {z,y} C &', let
S = §'"U{u,w} if the edge zy belongs to a perfect matching in G'[S'], and let S = S"U{u, v}
otherwise. If z ¢ §', let § = S'U{u,v}. fz € S andy ¢ 5, let S = 5" U {v,w}. In
all cases, S is a PDS of G, and so y,:(G) < |S| < n/2. Furthermore, if vpr(G) = n/2,
then v, (G’) = n'/2 and so, by the inductive hypothesis, G' € {K4, F1, F, F3,G3}. Unless
G' = K4, the edge zy does not belong to a triangle of G' for otherwise G would contain
a claw. If G' € {F»,F3}, then v, (G) < n/2 (irrespective of the choice of the edge zy),
a contradiction. Hence either G = Ky, in which case G = Fy, or G' = F in which case
G = Fy, or G' = G4, in which case G = F3. O

Claim 2 If every diamond of G is of type-2, then v (G) < n/2 with equality if and only if
G = Gs.

Proof. Note that zy € E(G). Let a be the common neighbor of = and y, and let b be
the remaining neighbor of a. Let N(b) = {a,c,d}. Since G is claw-free, G[{b,c,d}] = K3.
Let ¢’ and d' be the neighbors of ¢ and d, respectively, that do not belong to the triangle
G[{b,c,d}]. If ¢ = d’, then G contains a diamond of type-1, contrary to assumption.
Hence, ¢’ # d'. If ¢’ and d' belong to a common diamond, then n = 14 and 7, (G) = 6.
Hence we may assume that N(c/) N N(d') = 0. Thus the triangle containing ¢’ is vertex-
disjoint from that containing d'. Furthermore, these two triangles are not contained in a
diamond (for otherwise such a diamond would be of type-1). It follows that the only vertices
within distance 3 from b that belong to a diamond are u and w. Hence we can uniquely
associate the eight vertices of the set V/(F)U{a,b} with the diamond induced by {u,v,w, z}.
Therefore if G has k diamonds, k < n/8. Thus, by Theorem 4, v,:(G) < 2(n+2k)/5 < n/2.
Furthermore, it follows that in this case v, (G) = n/2 if and only if G = G3. O

The desired result of Theorem 6 now follows from Claims 1 and 2. O

We show next that the upper bound on the paired domination number of a claw-free
cubic graph presented in Theorem 4 can be improved if we add the restriction that the
graph is 2-connected.

Theorem 7 If G is a 2-connected claw-free cubic graph of order n > 6 that contains k > 0
diamonds, then v, (G) < (n + 2k)/3.



Proof. If n = 6, then G = K3 x Ky, k = 0, and s0 y,:(G) = 2 = (n+2k)/3. Hence we may
assume that n > 8. Let G' be the graph of order n' = (n + 2k)/3 constructed in the proof
of Theorem 4. Then, G' is either an even cycle or satisfies the conditions of Theorem 3.
Since G is 2-connected, so too is G'.

We show that G’ has a perfect matching M'. If G' is an even cycle, this is immediate.
Assume then that A(G') = 3 and that every vertex of degree 2 belongs to a path with
an even number of internal vertices of degree 2 between two not necessarily distinct end-
vertices of degree 3 in G'. Hence the subgraph of G’ induced by its vertices of degree two
contains a perfect matching M*. We now transform G’ into a 2-connected cubic graph G"
by replacing each edge zy € M* in G' with a K4 —e (and so z and y are not adjacent in the
resulting K4 — e). Let 2’ and y’ denote the two new vertices of the resulting K4 — e. Since
every 2-connected cubic graph has a perfect matching, G" has a perfect matching M". We
now construct a perfect matching M’ of G’ from the matching M" as follows. For each edge
zy € M*, if z'y’ € M", then we remove z'y’ from the matching, while if {zz',yy'} C M’
(resp., {zy', 'y} C M'), then we replace the edges zz' and yy’ (resp., zy' and 2'y) with the
edge zy. Hence, 8'(G') = n'/2.

Let S be a PDS of G as constructed from M' as in the proof of Theorem 2. Then,
(@) < S| = 2[M| = 0! = (n+ 2)/3. O

As an immediate consequence of Theorem 7, we have the following result.

Theorem 8 If G is a 2-connected clow-free and diamond-free cubic graph of order n > 6,
then vp:(G) < n/3.

4 Total Domination

Since v,(G) < (@) for all graphs G, and since v(G) = v (G) for the graph G of Figure 2
and for the graph G = Gy of Figure 4(a), we remark that the results of both Theorem 2
and Theorem 5 are still valid for total domination (i.e., in the statement of these theorems
we can replace “PDS” by “T'DS” and “y,:(G)” by “y(G)”). However if G € {Fy, F3,G3}
where F, and Fj are the graphs shown in Figure 6 and G is the graph shown in Figure 4(c),
then v;(G) < 7p:(G). Hence we have the following immediate consequence of Theorem 6.

Theorem 9 If G is a connected claw-free cubic graph of order n, then v(G) < n/2 with
equalily if and only if G = K4 or G = Fy where F| is the graph shoun in Figure 6.

The inequality of Theorem 9 was established in [3] but the graphs achieving equality were
not characterized. We also remark that the conjecture in [6] that every connected graph
with minimum degree at least three has total domination number at most one-half its order
is completely proved in several manuscripts. We show in [5] that if G is a connected claw-free
cubic graph of order at least ten, then the upper bound of Theorem 9 can be improved.
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