APPROXIMATE PROBABILISTIC MODEL
CHECKING

HERAULT T / LASSAIGNE R / MAGNIETTE F /
PEYRONNET S

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud-LRI

04/2003

Rapport de Recherche N° 1359

CNRS - Université de Paris Sud
Centre d’Orsay
LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Batiment 650
91405 ORSAY Cedex (France)

Approximate Probabilistic Model Checking

Thomas Hérault!, Richard Lassaigne?, Frédéric Magniette', and Sylvain
Peyronnet!

! University Paris XI
LRI Batiment 490,
F-91405 Orsay Cedex, France
{herault,magniett,syp}@lri.fr
? University Paris VII
2 place Jussieu,

F-75251 Paris, France

lassaign@logique. jussieu.fr

Abstract. Symbolic model checking methods have been extended re-
cently to the verification of probabilistic processes. However, the repre-
sentation of the transition matrix may be expensive for very large systems
and may induce a prohibitive cost for the model checking algorithm. In
this paper, we propose an approximation method to verify quantitative
properties on discrete Markov Chains. We give a randomized algorithm
to approximate the probability that a property expressed by some pos-
itive LTL formula is satisfied with high confidence by a probabilistic
system. Our randomized algorithm requires only a succinct representa-
tion of the system and is based on an execution sampling method. We
also present an implementation and a few classical examples to prove the
effectiveness of our approach.

1 Introduction

In this paper, we address the problem of verifying quantitative properties on
discrete time markov chains (DTMC). We present an efficient procedure to ap-
proximate model checking of positive LTL formulas on probabilistic transition
systems. This procedure decides if the probability of a formula is greater than
a certain threshold by sampling finite execution paths. It allows us to verify
monotone properties on the system with high confidence. For example, we can
verify a property such as : “the probability that the message sent will be re-
ceived without error is greater than 0.99”. This method is an improvement on
the method described in [14]. '

The main advantage of this approach is to allow verification of formulas even
if the transition system is huge, even without any abstraction. Indeed, we do

not have to deal with the state space explosion phenomenon because we verify
the property on only one finite execution path at a time. This approach can be
used in addition to classical probabilistic model checkers when the verification
is intractable.

Our main results are:

— A method that allows the efficient approximation of the satisfaction proba-
bility of monotone properties on probabilistic systems.

— A tool named APMC that implements the method. We use it to verify ex-
tremely large systems such as the Pnueli and Zuck’s 500 dining philosophers.

The paper is organized as follows. In Section 2, we review related work on prob-
abilistic verification of qualitative and quantitative properties. In Section 3, we
consider fully probabilistic systems and classical LTL logic. In Section 4, we recall
the Bounded Model Checking method and explain how to adapt the main idea
to the probabilistic framework. In Section 5, we present a randomized algorithm
for the approximation of the satisfaction probability of monotone properties. In
Section 6, we present our tool and give experimental results and compare them
with the probabilistic model checker PRISM [6].

2 Related work

Several methods have been proposed to verify a probabilistic or a concurrent
probabilistic system against LTL formulas. Vardi [21] developed an automata
theoretic approach for verifying qualitative properties stating that a linear time
formula holds with probability 0 or 1.

Courcoubetis and Yannakakis [4] studied probabilistic verification of quantita-
tive properties expressed in the linear time framework. For the fully probabilistic
case, the time complexity of their method is polynomial in the size of the state
space, and exponential in the size of the formula. For the concurrent case, the
time complexity is linear in the size of the system, and double exponential in
the size of the formula.

Hansson and Jonsson [8] introduced the logic PC'T'L (Probabilistic Computa-
tion Tree Logic) and proposed a model checking algorithm for fully probabilistic
systems. They combined reachability-based computation, as in classical model
checking, and resolution of systems of linear equations to compute the proba-
bility associated with the until operator. For concurrent probabilistic systems,
Bianco and de Alfaro [2] showed that the minimal and maximal probabilities
for the until operator can be computed by solving linear optimization problems.
The time complexity of these algorithms are polynomial in the size of the system
and linear in the size of the formula.

There are a few model checking tools that are designed for the verification of
quantitative specifications. ProbVerus 7] uses PCT L model checking and sym-
bolic techniques to verify PCT L formulas on fully probabilistic systems. PRISM

(6,13] is a probabilistic symbolic model checker that can check PCTL formu-
las on fully or concurrent probabilistic systems. Reachability-based computation
is implemented using BDDs, and numerical analysis may be performed by a
choice between three methods: MTBDD-based representation of matrices, con-
ventional sparse matrices, or a hybrid approach. The Erlangen- Twente Markov
Chain Checker [9] (E + MC?) supports model checking of continuous-time
Markov chains against specifications expressed in continuous-time stochastic
logic (C'SL). Rapture, presented in [5] and [11] uses abstraction and refinement
to check a subset of PCTL over concurrent probabilistic systems.

In [22], Younes and Simmons described a procedure for verifying properties of
discrete event systems based on Monte-Carlo simulation and statistical hypoth-
esis testing. This procedure uses a refinement technique to build statistical tests
for the satisfaction probability of CSL formulas. Their logic framework is more
general than ours, but they cannot predict the sampling size, in contrast with
our approximation method in which this size is exactly known and tractable.
Monniaux [15] defined abstract interpretation for probabilistic programs and
used it to obtain over-approximations for probability measures.

3 Probabilistic Transition Systems

In this section, we introduce the classical concepts for the verification of proba-
bilistic systems.

Definition 1. A transition system (or a Kripke structure) is a structure M =
(S, R,I,L) where S is a set of states, I C S is the set of initial states, R C Sx S
is a transition relation between states and L : S — P(AP) is a function labeling
each state with a set (AP) of atomic propositions.

To handle probabilistic systems, we recall the definition of Markov chains.

Definition 2. A Discrete Time Markov Chain (DTMC) is a pair M = (S, P)
where S is a finite or enumerable set of states and P : S x S — [0,1] is a
transition probability function, i.e. for alls € S, 37, .o P(s,t) = 1. If S is finite,
we can consider P to be a transition matriz.

The notion of DTMC can be extended to the notion of probabilistic transition
system by adding a labeling function.

Definition 3. A probabilistic transition system (PTS) is a structure M = (S, P, 1, L)
where (S,P) is a DTMC, I is the set of initial states and L : S — P(AP) a func-
tion which labels each state with a set of atomic propositions.

Definition 4. A path o is a finite or infinite sequence of states (so, 81, ..,8i,...)
such that P(s;,s;41) > 0 for all i > 0.

We denote by Path(s) the set of paths whose first state is s. We note also o (4)
the (i 4+ 1)-st state of path o and ¢! the path (o(i),0(i + 1),...). The length of
a path o is the number of states in the path and is denoted by |o]|.

Definition 5. For each PTS M and state s, we may define a probability mea-
sure on the set Path(s) such that: for any finite path (sq,81,..-,8a),
Prob({c/o is a path and (so, s1,...,sy) is a prefix of o}) = [[1; P(si—1,8i).

This measure can be extended uniquely to the Borel family of sets generated by
the sets {o /7 is a prefix of o} where 7 is a finite path.

Linear Temporal Logic (LT L) formulas are interpreted over paths of a transition
system M.

Definition 6. The satisfaction of LTL formulas is defined by induction by:

- M,o Eaiff a € L(o(0)).

— Mo =~ if Mo & ¢,

- M,oE=pAY iff Mo = ¢ and M,o | 1.

- M,o EX¢ iff M,0(1) | ¢.

-~ M,o = ¢U iff there exists j > 0 s.t. M,o? | v and for all i < j
M, ot = ¢.

Definition 7. An LTL formula ¢ is universally valid in M, which we write
M = Ao, if and only if for all paths o with o(0) € I, M,0 |= ¢.

An LTL formula ¢ is existentially valid in M, which we write M |= E¢, if and
only if there is a path o with o(0) € I such that M,o |= ¢.

In [21], it is shown that for any LT L formula ¢, probabilistic transition system
M and state s, the set of paths {o/c(0) = s and M, o |= ¢} is measurable. We
denote by Prob[¢] the measure of this set.

4 Probabilistic bounded model checking

In this section, we review the classical framework for bounded model checking
of linear time temporal formulas over transition systems. Then, we show that
we cannot directly extend this approach but we use the main idea of checking
formulas on paths of bounded length to approximate the target satisfaction
probability.

4.1 Bounded model checking

Biere, Cimatti, Clarke and Zhu [3] present a symbolic model checking technique
based on SAT procedures instead of BDDs. They introduce bounded model

checking (BMC), where the bound correspond to the maximal length of a pos-
sible counterexample. First, they give a correspondence between BMC and clas-
sical model checking. Then they show how to reduce BMC to propositional
satisfiability in polynomial time.

The bounded model checking procedure works as follows. Given a transition
system M, an LT L formula ¢ and a bound %k € N, they construct a propositional
formula which is satisfiable if and only if there exists a path of length & which
is a counterexample to the specification expressed by ¢. This procedure is well
adapted to finding a counterexample, if it exists, by successive incrementation of
the bound. If, on the other hand, the transition system satisfies ¢, the value of k
has to be incremented indefinitely and the procedure does not terminate, unless
we know some bound on k. The main advantages of this technique are that
it finds counterexamples very fast and uses much less space than BDD-based
approaches.

Let us review more precisely what BMC is. Given a transition system M, an
LTL formula ¢ and a bound £, if we want to verify M = A¢, we consider an
LTL formula ¢ which is in negative normal form and is equivalent to —¢. The
translation of the formula % to a propositional formula is in two parts: the first
component [M]y requires a sequence (sg, 81,...,8%) to be a path ¢ in M and
the second component [1] forces o to satisfy .

The following theorem summarizes the results of [3] for bounded model checking
of LT L formulas.

Theorem 1. [3] Let ¢ be an LTL formula and M be a transition system. Then
M = Etp if and only if there ezists k € N such that [M]y A[]x has a satisfying
assignment.

To check the initial property ¢, one should look for the existence of a counterex-
ample to the negation % for a given &, i.e. a satisfying assignment of [M], A[¥].
In (3], the following result is also stated: if one does not find such a counterex-
ample for k& < || x 2!%!, then the initial property is true. We cannot hope to find
a polynomial bound on k with respect to the size of S and 7, since the model
checking problem for LTL is PSPACE-complete (see [20]) and such a bound
would yield a polynomial reduction to propositional satisfiability.

4.2 Satisfaction probabilities on bounded execution paths

We try to check Prob[t] > b by considering Probg[1] > b, i.e., on the probabilis-
tic space limited to the Kripke paths of depth k. Following the BMC approach, we
can associate to a formula ¢ and depth & the propositional formula [M];. A [¢]x
in such a way that a path of length % satisfying ¢ corresponds to an assignment
satisfying [AM]x A[¥]x. Thus determining Probg[¢] could be reduced to a count-
ing version of SAT. Unfortunately, not only are no efficient algorithms known for
such counting problems, but they are believed to be strongly intractable (see,
for instance[17]). However, it is not necessary to do such a transformation since

we can evaluate directly the formula on one finite path. In the following, we use
this straightforward evaluation instead of SAT-solving methods.

For many natural formulas, truth at depth %k implies truth in the entire model.
These formulas are the so-called monotone formulas. We consider a subset of
LTL formulas which have this property.

Definition 8. The essentially positive fragment (EPF) of LTL is the set of for-
mulas built from atomic formulas (p), their negations (—p), closed under V, A
and the temporal operators X,U.

These formulas include nested compositions of U but do not allow for negations
in front. Nevertheless, this fragment can express various classical properties of
transition systems such as reachability and liveness properties. Important prop-
erties of protocols like livelock freeness and any convergence property are also
expressible by EPF formulas.

If ¢ is a formula of the EPF fragment, we can use a bounded framework to verify
whether ¢ is true on a path ¢ of depth k.

The monotonicity of the property defined by an EPF formula gives the following
proposition:

Proposition 1. For any fermula of the essentially positive fragment of LTL
and 0 < b < 1, there exists a k such that if Probg|[¢] > b, then Prob[¢] > b.

Indeed, the probability of an EPF formula to be true in the bounded model
of depth k is less or equal than the probability of the formula in the bounded
model of depth greater than %.

This proposition can be extended to any monotone formula but we restrict our
scope to make our method fully automatic.

5 Approximate probabilistic model checking

In order to calculate the satisfaction probability of a monotone formula, we
have to verify the inner formula on all paths of depth k. Such a computation is
intractable in general since there are exponentially many paths to check. Thus,
it is natural to ask: can we approximate Proby[¢]? In this section, we propose
an efficient procedure to approximate this probability. The running time of this
computation is polynomial in the length of paths and the size of the formula.

In order to estimate the probabilities of monotone properties with a simple
randomized algorithm, we generate random paths in the probabilistic space un-
derlying the DTMC structure of depth k& and compute a random variable A/N
which estimates Probg[¢]. To verify a statement Probg[i)] > b, we test whether
A/N > b —e. Our decision is correct with confidence (1 —) after a number of
samples polynomial in L and log ;. This result is obtained by using Chernoff-
Hoeffding bounds [10] on the tail of the distribution of a sum of independent

random variables. The main advantage of the method is that we can proceed
with just a succinct representation of the transition graph, that is a succinct
description in an input language, for example Reactive Modules.

Definition 9. A succinct representation, or diagram, of a PTS M = (S, P, I, L)
is an oracle which for any state s, gives the states t such that P(s,t) > 0.

In order to prove our result, we introduce the notion of fully polynomial random-
ized approximation scheme (FPRAS) for probability problems. This notion is
analogous to randomized approximation schemes [12,16] for counting problems.
Our probability problem is defined by giving as input z a succinct representation
of a probabilistic system, a formula and a positive integer k. The succinct repre-
sentation is used to generate a set of execution paths of length k. The solution of
the probability problem is the probability measure p(z) of the formula over the
set of execution paths. The difference with randomized approximation schemes
for counting problems is that for approximating probabilities, which are rational
numbers in the interval [0, 1], we only require approximation with additive error.

Definition 10. A fully polynomial randomized approzimation scheme (FPRAS)

for a probability problem is a randomized algorithm A that takes an input x, two

real numbers 0 < e,§ < 1 and produces a value A(z,e,d) such that:
Prob[|A(z,e,8) — p(z)| <e] > 1-4.

The running time of A is polynomial in |z|, L and log §.

The probability is taken over the random choices of the algorithm. We call
the approzimation ratio and & the confidence ratio. By verifying the formula on
O(Z.log §) paths, we obtain an answer with confidence (1 — §).

Consider the following randomized algorithm designed to approximate Proby[1)],
that is the probability of an LTL formula over bounded DTMC of depth &:

Generic approximation algorithm GAA
Input: diagram,¥,k,e,d
N :=4log(3)/e?
A:=0
Fori=1to N do
1. Generate a random path ¢ of depth k& with the diagram
2. If¢pistrueon o then A : = A+ 1
Return A/N

Theorem 2. The generic approzimation algorithm GAA is a fully randomized
approzimation scheme for the probability p = Proby[V] for an LTL formula v
and p €]0,1].

Proof. The random variable A is the sum of independent random variables with
a Bernouilli distribution. We use the Chernoff-Hoeffding bound [10] to obtain
the result. Let X3, ..., Xn be N independent random variables which take value
1 with probability p and 0 with probability (1 —p), and ¥ = E?Ll Xi/N. Then

52 .
the Chernoff-Hoeffding bound gives Prob[|Y — p| > €] < 2¢~ "5 . In our case, if
N > 4log(3)/e?, then Prob[|A/N —p| < €] > 1 — & where p = Prob[¢)].

The time needed to verify if a given path verify ¢ is polynomial in the size of
the formula. The number N of iterations is polynomial in é and log % So GAA
is a fully polynomial randomized approximation scheme.

This algorithm provides a method to verify quantitative properties expressed by
EPF formulas. To check the property Proby[] > b, we can test if the result of
the approximation algorithm is greater than b — e. If Probg[¢)] > b is true, then
the monotonicity of the property guarantees that Prob[y)] > b is true. Otherwise,
we increment the value of & within a certain bound, for example the diameter
of the system for reachability formulas, to conclude that Prob[i] # b.

6 APMC : an implementation

In this section, we present some experimental results of our approximate model
checking method. These results were obtained with a tool we developed. This
tool, APMC, works in a distributed framework and allows the verification of ex-
tremely large systems such as the 300 dining philosophers problem. We compare
the performance of our method to the performance of PRISM. These results are
promising, showing that large systems can be approximately verified in seconds,
using very little memory.

APMC (Approximate Probabilistic Model Checker) is a GPL (Gnu Public Li-
cense) tool written in C with lex and yacc. It uses a client/server computation
model (described in Subsection 6.2) to distribute path generation and verifica-
tion on a cluster of machines.

APMC is simple to use: the user enters an LTL formula and a description of
a system written in the same variant of Reactive Modules as used by PRISM.
The user enters the target satisfaction probability for the property, the length
of the paths to consider and the approximation and confidence parameters &
and 4. These parameters can be changed through a Graphical User Interface
(GUI), represented in Figure 1. These are the basic parameters, there are ad-
vanced parameters such as the choice of a specific strategy for the speed/space
compromise to use, but one can use a “by default” mode which is sufficiently
efficient in general. After this, the user clicks on “go” and waits for the result.
APMC is a fully automatic verification tool.

el
8

Sumonpbinos FE

EEETS :
e

dpit e [TRE
Fomd pen oy EEITV

L e

- i S
L RS T, B SRR EAL SR B R T E LT A PR 8RR 0T

Figure 1. The Graphical User Interface.

6.1 Standalone use and comparison with PRISM

We first consider a classical problem from the PRISM examples library [19): the
dining philosophers problem. Let us quickly recall the problem: n philosophers
are sitting around a table, each philosopher spends most of its time thinking,
but sometimes gets hungry and wants to eat. To eat, a philosopher needs both
its right and left forks, but there are only n forks shared by all philosophers.
The problem is to find a protocol for the philosophers without livelock. Pnueli
and Zuck [18] give a protocol that is randomized. We ran experiments on a fully
probabilistic version of this protocol (that is, a DTMC version): there are no non-
deterministic transitions and the scheduling between philosophers is randomized.
For this protocol, we checked the following liveness property: “If a philosopher
is hungry, then with probability one, some philosopher will eventually eat”. This
property guarantees that the protocol is livelock free. The following table shows
our results using APMC and those of PRISM (model construction and model
checking time) on one 1.8 GHz Pentium 4 workstation with 512 MB of memory
under the Linux operating system. For this experiment, we let ¢ = 1072 and
d=10"19.

number of phil.[depth|[APMC (time in sec.)[PRISM (time in sec.)|PRISM (states)
3 20 35 0.394 770
5 23 56 0.87 64858
10 30 125 11.774 4.21 x 10°
15 42 242 64.158 2.73 x 107
20 50 387 137.185 1.77 x 10T
25 55 531 2469.56 1.14 x 10
30 65 823 out of mem. out of mem.
50 130 3579 out of mem. out of mem.
100 148 8364 out of mem out of mem.

On this example, we see that we can handle larger systems than PRISM, more
than 30 philosophers for Pnueli and Zuck’s philosophers, without having to con-
struct the entire model which contains 10%* states for 25 philosophers. Note that
during the computation, our tool uses very little memory. This is due to the fact
that the verification process never stores more than one path at a time.

6.2 Cluster use

In the previous subsection, we showed that APMC can be used on a single
machine, but to increase the efficiency of the verification, APMC can distribute
the computation on a cluster of machines using a client/server architecture.

Let us quickly describe the client/server architecture of APMC. The model,
formula and other parameters are entered by the user via the Graphical User
Interface which runs on the server (master). Both the model and formula are
translated into C source code, compiled and sent to clients (the workers) when
they request a job. Regularly, workers send current verification results, getting
an acknowledgment from the master, to know if they have to continue or stop the
computation. Since the workers only need memory to store the generated code
and one path, the verification requires very little memory space. Furthermore,
since each path is verified independently, there is no problem of load balancing.
Figure 4 shows the scalability of the implementation on Pnueli and Zuck’s din-
ing philosophers algorithm for 25 philosophers: computation time is divided by
two when we double the size of the cluster. This is a consequence of very low
communications overhead in the computation.

We used APMC to check properties of several fully probabilistic systems mod-
eled as DTMCs. In Figure 2, we consider Pnueli and Zuck’s Dining Philosophers
algorithm [18] for which we verify the liveness property and in figure 3, we con-
sider a fully probabilistic version of the randomized mutual exclusion of Pnueli
and Zuck [18]. All the experiments were done with a cluster of 20 workers (all
are ATHLON XP1800+ under Linux) with ¢ = 1072 and § = 10~19,

[phil.[depth|[time (sec.)|max. memory (KBytes)]

15 | 38 11 324
25 | 55 25 340
50 | 130 104 388
100 | 145 418 484
200 | 230 1399 676
300 | 295 4071 1012

Figure 2. Dining philosophers: run-time and memory for 20 workers.

We are able to verify very large systems using a reasonable cluster of workers
and very little memory for each of them. In a extra experiment, with an hetero-

10

[proc.|depth|[[time (sec.)|max. memory (KBytes)|

3 | 120 13 316
5 | 250 35 328
10 | 520 146 408
15 | 1000 882 548
20 | 1400 1499 660

Figure 3. Mutual exclusion: run-time and memory for 20 workers.

geneous cluster of 32 machines, we were able to verify the Pnueli and Zuck’s 500
philosophers in about four hours.

450 T
400
350 | 2
300 - .
250 | -
200 T
150 | =
100 .
50 -

0 | 1 1 |
0 5 10 15 20 25

workers

' phil2s —— |

time (sec.)

Figure 4. Scalability of the implementation: time vs workers for 25 dining philosophers.

7 Conclusion

To our knowledge, this work is the first to apply randomized approximation
schemes to probabilistic model checking. We estimate the probability with a
randomized algorithm and conclude that satisfaction probabilities of EPF for-
mulas can be approximated. This fragment is sufficient to express reachability
and liveness properties. Our implementation was used to investigate the effec-
tiveness of this method. Our experiments point to an essential advantage of the
method: the use of very little memory. In practice, this means that we are able to
verify very large fully probabilistic models, such as the dining philosopher’s prob-
lem with 500 philosophers. This method seems to be very useful when classical
verification is intractable.

11

Acknowledgments

We would like to thank Sophie Laplante for many helpful discussions and sug-
gestions. The second author would like to thank Marta Kwiatkowska and her
group for their advices on PRISM.

References

1. APMC homepage. http://www.Iri.fr/"syp/APMC

2. A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic
systems. Proc. FSTETCS, Lectures Notes in Computer Science, 1026:499-513, 1995.

3. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDD's. Proc. of 5th TACAS , Lectures Notes in Computer Science, 1573:193-207,
1999.

4. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification.
Journal of the ACM, 42(4):857-907, 1995.

5. P. D'Argenio, B. Jeannet, H. Jensen and K. Larsen. Reachability analysis of prob-
abilistic systems by successive refinements. Proc. of the joint PAPM/PROBMIV,
2001.

6. L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker, and R. Segala. Symbolic
model checking of concurrent probabilistic processes using MTBDDs and the kro-
necker representation. In Proc. of 6th TACAS, Lectures Notes in Computer Science,
1785, 2000.

7. V. Hartonas-Garmhausen, S. Campos, and E. Clarke. Probverus: Probabilistic sym-
bolic model checking. In 4th Internationel AMAST Workshop, ARTS 99, May 1999,
Lecture Notes in Computer Science 1601, 1999.

8. H.Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6:512-535, 1994.

9. H. Hermanns, J.-P. Katoen, J. Meyer-Kayser and M. Siegle. A Markov chain model
checker. Proc. of 6th TACAS, Lectures Notes in Computer Science, 1785:347-362,
2000.

10. W. Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58:13-30, 1963.

11. B. Jeannet, P. R. D'Argenio and K. G. Larsen RAPTURE: A tool for verifying
Markov Decision Processes. In Proc. of the CONCUR'02. 2002.

12. R.M. Karp, M. Luby and N. Madras. Monte-Carlo algorithms for enumeration and
reliability problems. Journal of Algorithms, 10:429-448, 1989.

13. M. Kwiatkowska, G. Norman and D. Parker. Probabilistic symbolic model checking
with PRISM: a hybrid approach. In Proc. of 8th TACAS, Lecture Notes in Computer
Science 2280, 2002.

14. R. Lassaigne and S. Peyronnet. Approximate Verification of Probabilistic Systems.
In Proc. of the 2nd joint PAPM-PROBMIV, Lecture Notes in Computer Science
2399, 213-214, 2002.

15. D. Monniaux Analyse de programmes probabilistes par interprétation abstraite.
PhD thests, Université Paris IX. 2001.

16. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

17. C.H. Papadimitriou. Computational Complezity. Addison Wesley, 1994.

12

18. A. Pnueli and L. Zuck. Verification of multiprocess probabilistic protocols. Dis-
tributed Computing, pages 1:53-72, 1986.

19. PRISM homepage. http://www.cs.bham.ac.uk/ dxp/prism/.

20. A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal
logics. Journal of the ACM, 32(3):733-749, 1985.

21. MY. Vardi. Automatic verification of probabilistic concurrent finite-state pro-
grams. Proc. £6th Annual Symposium on Foundations of Computer Science, pages
327-338, 1985,

22. H. L. S. Younes and R. G. Simmons. Probabilistic Verication of Discrete Event
Systems using Acceptance Sampling. In Proc. of the 14th International Conference
on Computer Aided Verification, Lecture Notes in Computer Science 2404, 223-235.
2002.

13

e

1345

1346
1347

1348

RAPPORTS INTERNES AU LRI - ANNEE 2003

Nom

~ FLANDRIN E
LI H
WEI B

BARTH D
BERTHOME P
LAFOREST C

VIAL S

FLANDRIN E
LI H
MARCZYK A
WOZNIAK M

AMAR D
FLANDRIN E
GANCARZEWICZ G
WOJDA A P

FRAIGNIAUD P
GAURON P

FAIK T
SACLE J F

FAVARON O
HENNING M A

HU Z
LI H

JOHNEN C
TIXEUIL S

PETITJEAN E

BERTHOME P
DIALLO M
FERREIRA A

FAVARON O
HENNING M A

JOHNEN C
PETIT F
TIXEUIL S

Titre

* ASUFFICIENT CONDITION FOR

. PANCYCLABILITY OF GRAPHS

|

| SOME EULERIAN PARAMETERS ABOUT
PERFORMANCES OF A CONVERGENCE

 ROUTING IN A 2D-MESH NETWORK

'ACHVATAL-ERDOS TYPE CONDITION FOR
PANCYCLABILITY

|

|

| BIPARTITE GRAPHS WITH EVERY MATCHING
INA CYCLE

| THE CONTENT-ADDRESSABLE NETWORK D2B w

SOME b-CONTINUOUS CLASSES OF GRAPH |

TOTAL DOMINATION IN CLAW-FREE GRAPHS
WITH MINIMUM DEGREE TWO

WEAK CYCLE PARTITION INVOLVING DEGREE
SUM CONDITIONS

ROUTE PRESERVING STABILIZATION

DESIGNING TIMED TEST CASES FROM REGION
GRAPHS

GENERALIZED PARAMETRIC
MULTI-TERMINAL FLOW PROBLEM

PAIRED DOMINATION IN CLAW-FREE CUBIC
GRAPHS

AUTO-STABILISATION ET PROTOCOLES
RESEAU

Nbre de

. BRUss
16 PAGES

30 PAGES

12 PAGES

26 PAGES

26 PAGES

14 PAGES

14 PAGES

14 PAGES

28 PAGES

14 PAGES

18 PAGES

16 PAGES

26 PAGES

- -Da-te paruti';nn- '

01/2003

01/2003

01/20083

01/2003

01/2003

01/2003

01/2003

02/2003

03/2003

03/20083

03/2003

03/2003

03/2003

