

A NOTE ON ORE CONDITION AND CYCLE STRUCTURE

HUZ/LIH

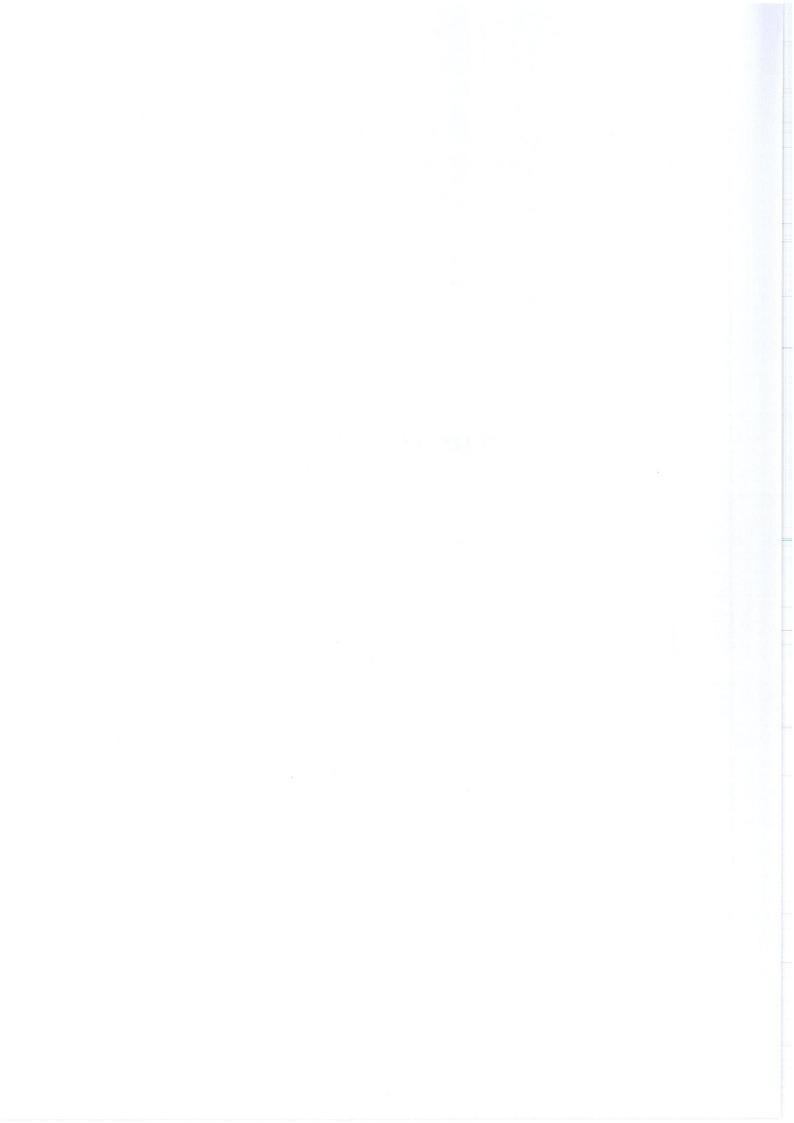
Unité Mixte de Recherche 8623 CNRS-Université Paris Sud-LRI

04/2003

Rapport de Recherche N° 1360

CNRS - Université de Paris Sud

Centre d'Orsay
LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 650
91405 ORSAY Cedex (France)



A note on Ore condition and cycle structure

ZHIQUAN HU *

Department of Mathematics
Central China Normal University
Wuhan 430079, P. R. China

HAO LI

L.R.I., UMR 8623 du CNRS-UPS Bât. 490, Universite de Paris-sud 91405-Orsay, France

Abstract

For a graph G, let $\sigma_2(G)$ denote the minimum degree sum of two nonadjacent vertices (when G is complete, we let $\sigma_2(G) = \infty$). In this paper, we show the following two results: (i) Let G be a graph of order $n \geq 4k+3$ with $\sigma_2(G) \geq n$ and let F be a set of k independent edges of G such that G - F is 2-connected, then G - F is hamiltonian or $G \cong K_2 + (K_2 \cup K_{n-4})$ or $G \cong \overline{K_2} + (K_2 \cup K_{n-4})$; (ii) Let G be a graph of order $n \geq 16k+1$ with $\sigma_2(G) \geq n$ and let F be a set of k edges of G such that G - F is hamiltonian, then either G - F is pancyclic or G - F is bipartite. Examples show the first result is best possible.

1 Introduction

In this paper, we only consider finite undirected graphs without loops and multiple edges. For a vertex x of a graph G, the neighborhood of x in G is denoted by $N_G(x)$, and $d_G(x) = |N_G(x)|$ is the degree of x in G. For a subset D of V(G), the subgraph induced by D is denoted by G[D]. For a subset F of E(G), the subgraph with vertex set V(G) and edge set $E(G) \setminus F$ is denoted by G - F. For a graph G, |V(G)| is the order of G, $\delta(G)$ is the minimum degree of G, and

$$\sigma_2(G) = \min\{d_G(x) + d_G(y) | x, y \in V(G), x \neq y, xy \notin E(G)\}$$

is the minimum degree sum of nonadjacent vertices. (When G is a complete graph, we define $\sigma_2(G) = \infty$.)

One goal of this paper is to study the graph G which is still hamiltonian after a given set F of edges is deleted. Clearly, if G is such a graph, then G - F must be 2-connected. Working on Ore's classic condition for hamiltonian graphs, we will prove the following result.

^{*}Supported by Project 02139 of Education Ministry of China and by Post-doctorial Grant 350074H of France, the work was done during his visiting in L.R.I.

Theorem 1 Let G be a graph of order $n \geq 4k + 3$ with $\sigma_2(G) \geq n$ and let F be a set of k independent edges of G. If G - F is 2-connected, then G - F is hamiltonian or $G \cong K_2 + (K_2 \cup K_{n-4})$ or $G \cong \overline{K_2} + (K_2 \cup K_{n-4})$.

Going a step further towards the cycle structure, a graph of order n is said to be pancyclic if it contains cycles of every length ℓ , $3 \le \ell \le n$. In [1], Bondy suggested the metaconjecture that almost any nontrival condition on graphs which implies that the graph is hamiltonian also implies that the graph is pancyclic (except maybe for a special family of graphs). Many results have been obtained in this problem. Here we will prove the following result.

Theorem 2 Let G be a graph of order $n \ge 16k + 1$ with $\sigma_2(G) \ge n$ and let F be a set of k edges of G such that G - F is hamiltonian, then either G - F is pancyclic or G - F is bipartite.

As a consequence of Theorems 1 and 2, we get

Theorem 3 Let G be a graph of order $n \ge 16k + 1$ with $\sigma_2(G) \ge n$ and let F be a set of k independent edges of G. If G - F is 2-connected, then G - F is pancyclic or G - F is bipartite or $G \cong K_2 + (K_2 \cup K_{n-4})$ or $G \cong \overline{K_2} + (K_2 \cup K_{n-4})$.

The proofs of Theorems 1 and 2 will be placed to sections 2 and 3, respectively. Here we show some examples that demonstrate the sharpness of Theorem 1.

Example (a) Let $G := K_{2k} + M$, where M is the graph consisting of k + 1 independent edges. Then, $\sigma_2(G) = 4k + 2 = n$. For each $F \subset E(M)$ with |F| = k, G - F is a 2k-connected non-hamiltonian graph. Hence, the low bound $n \ge 4k + 3$ in Theorem 1 is best possible even if G has very large connectivity.

(b) Let t be an integer with $2 \le t < \frac{n}{2}$ and let A and B be two complete graphs with $V(A) = \{x_1, x_2, \ldots, x_t\}$ and $V(B) = \{y_1, y_2, \ldots, y_{n-t}\}$. Let G be the graph obtained from A and B by adding the set of edges $\{x_1y_1, x_2y_2, \ldots, x_ty_t\} \cup \{y_1x_2, \ldots, y_{t-1}x_t, y_tx_1\}$. Then, $\sigma_2(G) = n$ and G - E(A) is 2-connected. However, G - E(A) is not hamiltonian. Hence, the F in Theorem 1 cannot be any subset of E(G).

2 Proof of Theorem 1

By way of contradiction, assume that Theorem 1 is false. Then, G' := G - F is not hamiltonian. Let $G^* = C_n(G')$ be the *n*-closure of G' (i.e. the graph obtained from G' by recursively joining nonadjacent vertices with degree-sum at least n). By Bondy and Chvátal's closure theorem [2], we have

(2.1) G^* is not hamiltonian.

Define

 $A = \{v \in V(G) : v \text{ is not incident with any edge of } F\}.$

Then for each pair of nonadjacent vertices x, y in A, $d_{G'}(x) + d_{G'}(y) = d_G(x) + d_{G}(y) \ge \sigma_2(G) \ge n$. So, $G^*[A]$ is complete.

Choose $X \subseteq V(G)$ so that

(i) $X \supseteq A$ and $G^*[X]$ is complete;

(ii) Subject to (i), |X| achieves the maximum.

Let $\overline{X} = V(G) \setminus X$. We claim that

(2.2) $uv \in E(G^*) \cup F$ for every two distinct vertices u and v in \overline{X} .

Assume, to the contrary, that there exist two distinct vertices u and v in \overline{X} such that $uv \notin E(G^*) \cup F$. Then, $uv \notin E(G)$. So, $d_G(u) + d_G(v) \ge n$. Without loss of generality, assume that $d_G(u) \ge d_G(v)$. Then, $d_{G'}(u) \ge d_G(u) - 1 \ge \frac{n}{2} - 1$. This together with (i) implies that for every $x \in X$

$$d_{G^*}(u) + d_{G^*}(x) \ge \left(\frac{n}{2} - 1\right) + (|A| - 1)$$

$$= \left(\frac{n}{2} - 1\right) + (n - 2k - 1)$$

$$\ge n - \frac{1}{2}.$$

Hence, $G^*[X \cup \{u\}]$ is complete, contrary to the choice of X. So, (2.2) is true.

(2.3) $G^*[\overline{X}]$ is not hamilton-connected.

Suppose (2.3) is false. Then, both $G^*[X]$ and $G^*[\overline{X}]$ are hamilton-connected. Since G^* is 2-connected, G^* is hamiltonian, contrary to (2.1).

It follows from (2.3) that $|\overline{X}| \geq 2$. If $|\overline{X}| \geq 5$, then by (2.2) we have $\delta(G^*[\overline{X}]) \geq |\overline{X}| - 2 > \frac{|\overline{X}|}{2}$. This implies that $G^*[\overline{X}]$ is hamilton-connected, contrary to (2.3). Therefore,

$$(2.4) \ 2 \le |\overline{X}| \le 4.$$

$$(2.5) |\overline{X}| \neq 4.$$

Assume, to the contrary, that $|\overline{X}| = 4$. By (2.2), we have $\delta(G^*[\overline{X}]) \geq |\overline{X}| - 2 \geq \frac{|\overline{X}|}{2}$. Hence, $G^*[\overline{X}]$ is hamiltonian. Let $C = v_1 v_2 v_3 v_4 v_1$ be a hamiltonian cycle of $G^*[\overline{X}]$. By the 2-connectivity of G', we may assume that there exist two distinct vertices $u, v \in X$ such that $v_1 u, v_i v \in E(G^*)$ for some $i \in \{2, 3, 4\}$. If i = 2 or 4, then there is a hamiltonian (v_1, v_i) -path $P[v_1, v_i]$ in $G^*[\overline{X}]$. Let Q[v, u] be a hamiltonian (v, u)-path in $G^*[X]$. Then, $P[v_1, v_i]v_i v Q[v, u]u v_1$ is a hamiltonian cycle in G^* , contrary to (2.1). Hence, i = 3. Similarly, we can derive that $v_2 v_4 \notin E(G^*)$

and $(N_{G^*}(v_2) \cup N_{G^*}(v_4)) \cap X = \emptyset$. This together with (2.2) implies $v_2v_4 \in F$ and $(N_G(v_2) \cup N_G(v_4)) \cap X = \emptyset$. Let x be any vertex of X. Since $xv_2 \notin E(G)$, $n \leq d_G(x) + d_G(v_2) \leq |(X \setminus \{x\}) \cup \{v_1, v_3\}| + 3 = n$. So, $v_1x \in E(G)$ for every $x \in X$, implying that $N_{G^*}[X \cup \{v_1\}]$ is complete, contrary to the choice of X. Hence, (2.5) is true.

 $(2.6) |\overline{X}| \neq 3.$

Suppose (2.6) is false. Since F is a set of independent edges, by (2.2) and (2.3), we may assume that $\overline{X} = \{v_1, v_2, v_3\}$, $E(G^*[\overline{X}]) = \{v_1v_2, v_2v_3\}$ and $v_1v_3 \in F$. Since G' is 2-connected, $N_{G^*}(v_i) \cap X \neq \emptyset$ for i = 1, 3. Say $v_1x, v_3y \in E(G^*)$ for some $x, y \in X$. If $x \neq y$, then $xv_1v_2v_3y$ together with the hamiltonian (y, x)-path in $G^*[X]$ forms a hamiltonian cycle of G^* , a contradiction. Therefore, $N_{G^*}(v_1) \cap X = N_{G^*}(v_3) \cap X = \{x\}$. Let z be any vertex of $X \setminus \{x\}$. Then, $zv_1, zv_3 \notin E(G^*) \cup F$. So, $n \leq d_G(v_1) + d_G(z) \leq 3 + |(X \setminus \{z\}) \cup \{v_2\}|$. This implies $v_2z \in E(G)$ for every $z \in X \setminus \{x\}$. Since $d_{G^*}(x) + d_{G^*}(v_2) \geq |(X \setminus \{x\}) \cup \{v_1, v_3\}| + 2 = n$, we have $xv_2 \in E(G^*)$. So, $d_{G^*}(v_2) \geq |X \cup \{v_1, v_3\}| - 1 = n - 2$. This together with (i) implies that for every $u \in X$

$$d_{G^*}(v_2) + d_{G^*}(u) \ge (n-2) + |X \setminus \{u\}| \ge n.$$

Hence, $G^*[X \cup \{v_2\}]$ is complete, a contradiction. So, (2.6) is true.

It follows from (2.4)-(2.6) that $|\overline{X}| = 2$. By (2.2) and (2.3), we may assume that $\overline{X} = \{v_1, v_2\}$ and $v_1v_2 \in E(F) \setminus E(G^*)$. Since G' is 2-connected, $|N_{G'}(v_i) \cap X| \geq 2$ for i = 1, 2. Suppose $x_1, x_2 \in N_{G'}(v_1)$. If $N_{G'}(v_2) \cap X \neq \{x_1, x_2\}$, then since $G^*[X]$ is complete, we can easily get a hamiltonian cycle of G^* . This contradiction shows $N_{G'}(v_2) \cap X = \{x_1, x_2\}$. Similarly, we have $N_{G'}(v_1) \cap X = \{x_1, x_2\}$. By the degree sum condition, we can derive that $G \cong K_2 + (K_2 \cup K_{n-4})$ or $G \cong \overline{K_2} + (K_2 \cup K_{n-4})$. This contradiction completes the proof of Theorem 1.

3 Proof of Theorem 2

By way of contradiction, assume that Theorem 2 is false. Put H := G - F. Let $C = v_1 v_2 \dots v_n v_1$ be a hamiltonian cycle of H. Since H is not pancyclic, H misses a cycle of length ℓ for some ℓ , $3 \le \ell \le n - 1$, ℓ being fixed until the end of the paper. Clearly

- (3.1) For every $i, v_i v_{i+\ell-1} \notin E(H)$, where the indices are taken modulo n.
- (3.2) There exists an $i, 1 \leq i \leq n$, such that none of $v_i, v_{i+1}, v_{i+2}, v_{i+3}, v_{i+\ell-1}, v_{i+\ell}, v_{i+\ell+1}$ and $v_{i+\ell+2}$ is incident to any edges of F.

Assume, to the contrary, that (3.2) is false. For convenience, we let $d_F(x)$ denote

the degree of x in the graph (V(G), F). Then,

$$\sum_{j=0}^{3} \left(d_F(v_{i+j}) + d_F(v_{i+j+\ell-1}) \right) \ge 1$$

for every $i, 1 \le i \le n$. So

$$16|F| = \sum_{i=1}^{n} \sum_{j=0}^{3} (d_F(v_{i+j}) + d_F(v_{i+j+\ell-1})) \ge n,$$

contrary to $n \ge 16k + 1$. Hence, (3.2) is true.

It follows from (3.2) that there exists an $i, 1 \leq i \leq n$, such that $d_F(v_i) = d_F(v_{i+1}) = d_F(v_{i+2}) = d_F(v_{i+3}) = d_F(v_{i+\ell-1}) = d_F(v_{i+\ell}) = d_F(v_{i+\ell+1}) = d_F(v_{i+\ell+2}) = 0$. This together with (3.1) implies $d_H(v_j) = d_G(v_j)$ for $j = i, i+1, i+2, i+3, i+\ell-1, i+\ell+1, i+\ell+1, i+\ell+2$ and $v_i v_{i+\ell-1}, v_{i+1} v_{i+\ell}, v_{i+2} v_{i+\ell+1}, v_{i+3} v_{i+\ell+2} \notin E(G)$. By $\sigma_2(G) \geq n$, we get

$$\sum_{j=0}^{3} (d_H(v_{i+j}) + d_H(v_{i+j+\ell-1})) = \sum_{j=0}^{3} (d_G(v_{i+j}) + d_G(v_{i+j+\ell-1})) \ge 4n.$$

So, the following statement is true.

(3.3) There exist four consecutive vertices in C that have degree sum in H at least 2n and none of which is incident to any edges of F.

Without loss of generality, we can choose v_n, v_1, v_2 and v_3 as consecutive vertices in C that satisfies (3.3). Then,

$$(3.4) d_H(v_n) + d_H(v_1) + d_H(v_2) + d_H(v_3) \ge 2n.$$

By (3.4), we may assume, without loss of generality, that $d_H(v_n) + d_H(v_1) \ge n$. We will use the following Theorem.

Theorem 4 (Schmeichel and Hakimi [4]). Let H be a graph with a hamiltonian cycle $C := v_1 v_2 \cdots v_n v_1$ with $n \geq 3$. Suppose $d_H(v_n) + d_H(v_1) \geq n$, then

- (i) H is pancyclic or
- (ii) H is bipartite or
- (iii) H contains cycles of all lengths except an (n-1)-cycle. Moreover, if (iii) holds, then $d_H(v_{n-2}), d_H(v_{n-1}), d_H(v_2), d_H(v_3) < \frac{n}{2}$.

By our assumption, case (iii) occurs. So $d_H(v_2)+d_H(v_3) < n$. On the other hand, since H contains no (n-1)-cycle, we have $\{i: 1 \le i \le n, v_{i-2}v_n \in E(H)\} \cap \{i: 1 \le i \le n, v_iv_1 \in E(H)\} = \emptyset$. So, $d_H(v_n)+d_H(v_1) \le n$. This together with (3.4) implies $d_H(v_2)+d_H(v_3) \ge n$, a contradiction. Hence, Theorem 2 is true.

References

- [1] J.A. Bondy, Pancyclic graphs: Recent results, Colloquia Mathematica Societatis János Bolyai (1973), 181-187.
- [2] J.A. Bondy and V. Chvátal, A method in graph theory, Discrete Math. 15 (1976), no. 2, 111-135.
- [3] O. Ore, Note on hamilton circuits, Amer. Math. Monthly 67 (1960), 55.
- [4] E.F. Schmeichel and S.L. Hakimi, A cycle structure theorem for hamiltonian graphs, J. Combin. Theory **B** 45 (1988), 99-107.

RAPPORTS INTERNES AU LRI - ANNEE 2003

N°	Nom	Titre	Nbre de pages	Date parution
1345	FLANDRIN E LI H WEI B	A SUFFICIENT CONDITION FOR PANCYCLABILITY OF GRAPHS	16 PAGES	01/2003
1346	BARTH D BERTHOME P LAFOREST C VIAL S	SOME EULERIAN PARAMETERS ABOUT PERFORMANCES OF A CONVERGENCE ROUTING IN A 2D-MESH NETWORK	30 PAGES	01/2003
1347	FLANDRIN E LI H MARCZYK A WOZNIAK M	A CHVATAL-ERDOS TYPE CONDITION FOR PANCYCLABILITY	12 PAGES	01/2003
1348	AMAR D FLANDRIN E GANCARZEWICZ G WOJDA A P	BIPARTITE GRAPHS WITH EVERY MATCHING IN A CYCLE	26 PAGES	01/2003
1349	FRAIGNIAUD P GAURON P	THE CONTENT-ADDRESSABLE NETWORK D2B	26 PAGES	01/2003
1350	FAIK T SACLE J F	SOME b-CONTINUOUS CLASSES OF GRAPH	14 PAGES	01/2003
1351	FAVARON O HENNING M A	TOTAL DOMINATION IN CLAW-FREE GRAPHS WITH MINIMUM DEGREE TWO	14 PAGES	01/2003
1352	HU Z LI H	WEAK CYCLE PARTITION INVOLVING DEGREE SUM CONDITIONS	14 PAGES	02/2003
1353	JOHNEN C	ROUTE PRESERVING STABILIZATION	28 PAGES	03/2003
1354	PETITJEAN E	DESIGNING TIMED TEST CASES FROM REGION GRAPHS	14 PAGES	03/2003
1355	BERTHOME P DIALLO M FERREIRA A	GENERALIZED PARAMETRIC MULTI-TERMINAL FLOW PROBLEM	18 PAGES	03/2003
1356	FAVARON O HENNING M A	PAIRED DOMINATION IN CLAW-FREE CUBIC GRAPHS	16 PAGES	03/2003
1357	JOHNEN C PETIT F TIXEUIL S	AUTO-STABILISATION ET PROTOCOLES RESËAU	26 PAGES	03/2003