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Abstract

For a graph G, let 02(G) denote the minimum degree sum of two nonad-
jacent vertices (when G is complete, we let 02(G) = oo0). In this paper, we
show the following two results: (i) Let G be a graph of order n > 4k + 3
with 09(G) > n and let F be a set of k independent edges of G such that
G — F is 2-connected, then G' — F is hamiltonian or G & Ky 4+ (K2 U Kp—4)
or G = Ky + (KU K,—y); (ii) Let G be a graph of order n > 16k 4 1 with
o2(G) > n and let F be a set of k edges of G’ such that G — F is hamiltonian,
then either G'— F is pancyclic or G — I is bipartite. Examples show the first
result is best possible.

1 Introduction

In this paper, we only consider finite undirected graphs without loops and multiple
edges. For a vertex z of a graph G, the neighborhood of  in G is denoted by Ng(z),
and dg(z) = |Ng(z)| is the degree of  in G. For a subset D of V(G), the subgraph
induced by D is denoted by G[D]. For a subset F' of E(G), the subgraph with vertex
set V(G) and edge set E(G)\ I is denoted by G — F'. For a graph G, |V(G)] is the
order of (¢, §(G) is the minimum degree of G, and

02(G) = min{da(z) + do(y)|z,y € V(G), 2 # y,zy & E(G)}

is the minimum degree sum of nonadjacent vertices. (When G is a complete graph,
we define 05(G) = 00.)

One goal of this paper is to study the graph G which is still hamiltonian after
a given set F' of edges is deleted. Clearly, if G is such a graph, then G — I must
be 2-connected. Working on Ore’s classic condition for hamiltonian graphs, we will

prove the following result.
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Theorem 1 Let G be a graph of order n > 4k + 3 with 05(G) > n and let F' be a
set of k independent edges of G. If G — F' is 2-connected, then G — F' is hamiltonian
or G = I{Q + (I(g U .!T(n_4) or G = _I—(; + (1(2 U I(n_,;).

Going a step further towards the cycle structure, a graph of order n is said to be
pancyclic if it contains cycles of every length £, 3 < £ < n. In [1], Bondy suggested
the metaconjecture that almost any nontrival condition on graphs which implies that
the graph is hamiltonian also implies that the graph is pancyclic (except maybe for
a special family of graphs). Many results have been obtained in this problem. Here
we will prove the following result.

Theorem 2 Let G be a graph of order n > 16k + 1 with o5(G) > n and let F be a
set of k edges of G such that G — F' is hamiltonian, then either G — F' is pancyclic
or G — I' is bipartite.

As a consequance of Theorems 1 and 2, we get

Theorem 3 Let G be a graph of order n > 16k + 1 with 03(G) > n and let F' be a
set of k independent edges of G. If G — F' is 2-connected, then G — F' is pancyclic
or G — F' is bipartite or G = Ky + (Ko U Kyy) or G = Ky + (Ko U Kpyy).

The proofs of Theorems 1 and 2 will be placed to sections 2 and 3, respectively.
Here we show some examples that demonstrate the sharpness of Theorem 1.

Example (a) Let G := Ky, + M, where M is the graph consisting of k£ 4+ 1 inde-
pendent edges. Then, 03(G) = 4k + 2 = n. For each F''C E(M) with |F| = k,
G — F is a 2k-connected non-hamiltonian graph. Hence, the low bound n > 4k + 3
in Theorem 1 is best possible even if G has very large connectivity.

(b) Let ¢ be an integer with 2 < ¢t < % and let A and B be two complete
graphs with V(A) = {21, z2,...,2:} and V(B) = {y1, ¥2,-- ., Yn-t}. Let G be the
graph obtained from A and B by adding the set of edges {ziy1, a2y2, ..., Ty} U
{viza, ..., ye—124, ex1}. Then, 02(G) = n and G — E(A) is 2-connected. However,
G — E(A) is not hamiltonian. Hence, the F' in Theorem 1 cannot be any subset of

E(G).

2 Proof of Theorem 1

By way of contradiction, assume that Theorem 1 is false. Then, G' := G — F'is
not hamiltonian. Let G* = C,(G’) be the n-closure of G’ (i.e. the graph obtained
from G’ by recursively joining nonadjacent vertices with degree-sum at least n). By
Bondy and Chvatal’s closure theorem [2], we have

(2.1) G* is not hamiltonian.



Define
A ={v € V(G) : v is not incident with any edge of I}.

Then for each pair of nonadjacent vertices z,y in A, de(z) + der(y) = da(z) +
da(y) = 02(G) 2 n. So, G*[A] is complete.

Choose X C V(@) so that

(i) X D A and G*[X] is complete;

(ii) Subject to (i), |X| achieves the maximum.
Let X = V(G)\ X. We claim that

(2.2) uv € E(G*) U F for every two distinct vertices v and v in X1

Assume, to the contrary, that there exist two distinct vertices u and v in X such
that uv ¢ E(G*)U F. Then, uv ¢ E(G). So, da(u) + da(v) > n. Without loss of
generality, assume that dg(u) > dg(v). Then, dgi(u) > dg(u) —1 = 5 — 1. This
together with (i) implies that for every z € X

dov(u) +dar(2) 2 (5—1)+(14]=1)
= G-D+(n-2k-1)
> n—l.
iy 2

Hence, G*[X U {u}] is complete, contrary to the choice of X. So, (2.2) is true.
(2.3) G*[X] is not hamilton-connected.

Suppose (2.3) is false. Then, both G*[X] and G*[X] are hamilton-connected. Since
G* is 2-connected, G* is hamiltonian, contrary to (2.1).

It follows from (2.3) that |X| > 2. If | X| > 5, then by (2.2) we have §(G*[X]) >
1X| -2 > %q This implies that G*[X] is hamilton-connected, contrary to (2.3).
Theretfore,

(2.4) 2 < [X| < 4.
(2.5) |X| # 4.

Assume, to the contrary, that |X| = 4. By (2.2), we have §(G*[X]) > [X| -2 > %
Hence, G*[X] is hamiltonian. Let C = viv;v3v4v1 be a hamiltonian cycle of G* [X].
By the 2-connectivity of G’, we may assume that there exist two distinct vertices
u,v € X such that v,u,viv € E(G*) for some ¢ € {2,3,4}. If ¢ = 2 or 4, then there
is a a hamiltonian (vy,v;)-path Plvg,v;] in G*[X]. Let Q[v,u] be a hamiltonian
(v,u)-path in G*[X]. Then, Plvy,v;]viwQ[v,u]uvy is a hamiltonian cycle in G7,
contrary to (2.1). Hence, i = 3. Similarly, we can derive that vyvy ¢ E(G”)
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and (Ngs(v2) U Ng+(vg)) N X = (. This together with (2.2) implies vovy € F
and (Ng(v2) U Ng(va)) N X = (. Let & be any vertex of X. Since zvy ¢ E(G),
n < dg(z)+de(ve) < |(X\{z})U{v1,v3}|+3 =n. So, viz € E(G) for every z € X,
implying that Ng«[X U {v;}] is complete, contrary to the choice of X. Hence, (2.5)
is true.

(2.6) |X| # 3.

Suppose (2.6) is false. Since F' is a set of independent edges, by (2.2) and (2.3), we
may assume that X = {v;,vq,v3}, E(G*[X]) = {v1vs,v2v3} and viv3 € F. Since
G’ is 2-connected, Ng+(v;) N X # 0 for 7 = 1,3. Say viz,vsy € E(G*) for some
z,y € X. If @ # y, then zvjveusy together with the hamiltonian (y,z)-path in
G*[X] forms a hamiltonian cycle of G*, a contradiction. Therefore, Ng+(v;) N X =
Ng+(vs) N X = {z}. Let z be any vertex of X \ {@}. Then, zv,2v3 ¢ E(G*)U F.
So, n < dg(v1) + da(z) <34 |(X \ {z}) U{v2}|. This implies v,z € E(G) for every
z € X \ {z}. Since dg:(2) + dg+(v2) = |(X \ {&}) U {v1,v3}| + 2 = n, we have
zvy € E(G*). So, dg+(v2) > |X U {v1,va}| — 1 = n — 2. This together with (i)
implies that for every u € X

dae(v) + dg+(u) 2 (n — 2) + | X \ {u}| > n.
Hence, G*[X U {v,}] is complete, a contradiction. So, (2.6) is true.

It follows from (2.4)-(2.6) that |X| = 2. By (2.2) and (2.3), we may assume that
X = {vy,v;} and v;v; € E(F)\ E(G*). Since G’ is 2-connected, |Ng:(v;) N X| > 2
for ¢ = 1,2. Suppose 1,22 € Ngi(v1). If Nor(v2) N X # {zy, 22}, then since G*[X]
is complete, we can easily get a hamiltonian cycle of G*. This contradiction shows
Ngi(v2) N X = {z1,x,}. Similarly, we have Ngi(v) N X = {21, 2,}. By the degree
sum condition, we can derive that G = Ky + (KU K,_4) or G = K+ (KU K,_yq).
This contradiction completes the proof of Theorem 1. O

3 Proof of Theorem 2

By way of contradiction, assume that Theorem 2 is false. Put H := G — F. Let
C' = v1va...v,v; be a hamiltonian cycle of H. Since H is not pancyclic, H misses a
cycle of length £ for some £, 3 < { <n — 1, { being fixed until the end of the paper.

Clearly

(3.1) For every 7, v;vipe—1 ¢ E(H), where the indices are taken modulo n.

(3.2) There exists an ¢, 1 < ¢ < n, such that none of v;, Vi1, Viya, Vit3, Vige—1, Vites
Vitet1 and v;pe42 is incident to any edges of F.

Assume, to the contrary, that (3.2) is false. For convenience, we let dp(2) denote
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the degree of  in the graph (V(G), F'). Then,

3

Z (dF(vi—[—j) i dF(Ui+j+e_1)) |

§=0

for every i, 1 <7< n. So

16F] = 303 (dr(visg) + dr(vigsai-t)) 2,

=1 7=0

contrary to n > 16k 4+ 1. Hence, (3.2) is true.

It follows from (3.2) that there exists an ¢, 1 < i < n, such that dp(v;) = dp(vig1) =
dp(vig2) = dr(vips) = dp(vite—1) = dr(vite) = dr(Viger1) = dp(viger2) = 0. This
together with (3.1) implies dy(v;) = dg(v;) for j = 4,¢ + 1,0 4+ 2,7 + 3, + £ —
Li4 €04+ €4 1,5+ £+ 2 and vvipe—1, Vig1Vite, VigaViper1, Vigaviperz € E(G). By
oo(G) > n, we get

> (di(vigs) + di(vipire—1)) = D _(da(virs) + da(vitire-1)) = 4n.

j:O j‘:0

So, the following statement is true.

(3.3) There exist four consecutive vertices in C' that have degree sum in H at least
2n and none of which is incident to any edges of F'.

Without loss of generality, we can choose v,,v1, v and v3 as consecutive vertices in

C that satisfies (3.3). Then,
(34) dH('U.n) -+ dH(Ul) -+ dH(Ug) + dH('U3) > 2n.

By (3.4), we may assume, without loss of generality, that dy(v,) + dm(v1) = n. We
will use the following Theorem.

Theorem 4 (Schmeichel and Hakimi [f]). Let H be a graph with a hamiltonian
cycle C := vyvy - - - vav; with n > 3. Suppose dp(vy) + dg(vy) > n, then

(i) H is pancyclic or

(ii) H is bipartite or

(iii) H contains cycles of all lengths excepl an (n — 1)-cycle.
Moreover, if (iii) holds, then dg(vn_2),dr(vn-1),dn(v2), dn(va) < 5.

By our assumption, case (iii) occurs. So dpr(v2)+dp(vs) < n. On the other hand,
since H contains no (n — 1)-cycle, we have {1 : 1 <1 <n,vi_ov, € E(H)}N{1:1 <
i < n,vvy € E(H)} = 0. So, dig(vy) +du(vi) < n. This together with (3.4) implies
dp(ve) + di(vs) > n, a contradiction. Hence, Theorem 2 is true. O
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