DISTRIBUTED ALGORITHMS FOR SINGLE
AND MULTIPLE-METRIC LINK STATE QoS
ROUTING

BADIS H/ AL AGHA K

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud-LRI

07/2003

Rapport de Recherche N° 1365

CNRS - Université de Paris Sud
: Centre d’Orsay
LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Batiment 650
91405 ORSAY Cedex (France)

Distributed Algorithms for Single and Multiple-Metric Link State QoS
Routing

Hakim Badis"? and Khaldoun Al Aghal?
'Laboratoire de Recherche en Informatique (LRI)
Bat 490 Université Paris Sud
91405 Orsay Cedex, FRANCE
phone (33)(0)169156591; fax (33)(0)169156586

Institut National de Recherche en Informatique et en Automatique (INRIA)
Domaine du Voluceau - B.P.105
78153 Le Chesnay Cedex, FRANCE

Email: {badis,alagha}@Iri.fr

Abstract

Multimedia applications often require guaranteed quality of service (QoS) and resource reservation,
which has raised a number of challenging technical issues for routing. Nevertheless, the QoS routing
algorithm must be simple because a costly procedure does not scale with the size of the network.
In this paper, we present scalable algorithms for single and multiple-metric link state QoS routing
problem. Our routing algorithms can treat two, three and four-metrics and provides a polynomial
heuristic solution. The algorithms analysis and numerical evaluation are presented. It is shown that
our polynomial algorithms are close to the optimal solution computed by an exponential algorithm.

Résumé

Les applications multimédias exigent souvent la qualité de service (QoS) qui présente un défi dans
Internet et encore plus dans le contexte d’Internet sans fil. L’algorithme de routage avec la QoS doit
étre simple parce que le temps d’exécution d’un procédé croit exponentiellement en fonction de la taille
du réseau. Dans ce papier, nous présentons des algorithmes distribués pour les protocoles d’état des
liens afin de trouver des chemins capables de transporter divers flux (données, audio, vidéo) tout en
respectant des contraintes comme le délai de traversée, la bande passante, le coiit, le nombre de sauts
ou le taux de perte des paquets. Nos algorithmes de routage peuvent traiter deux, trois et quatre
métriques et fournissent des solutions approximatives en un temps polynomial. I.’analyse des résultats
obtenus par des simulations montre que nos algorithmes trouvent les mémes routes que celles obtenues
par des algorithmes qui demandent un temps exponentiel.

1 Introduction

To facilitate the use of multimedia applications in the Internet, new characteristics and services must
be added. New classes of service should be offered to provide better guarantees of QoS. An important
issue for that purpose is the definition of a routing architecture that considers the QoS requirements
of applications. In traditional routing, packets are delivered using a route based on their source and
destination addresses while in QoS-based routing, the traffic requirements are also taken into account
by the routing algorithm.

Routing protocols usually characterize the network with a single metric such as hop-count or delay,
and use shortest path algorithms for the path computation. It is becoming increasingly clear that such
routing protocols are inadequate for multimedia applications, such as video conferencing, which often
require guaranteed QoS. For a network to support QoS requirements, routing must explicit information
on resources available in the network so that applications can make proper resource reservation. To
achieve that, it is necessary for routing to have a more complex model of the network, taking into
account important network parameters such as bandwidth, delay and loss probability.

The complexity of the algorithm is a function of the number of metrics treated and of their compo-
sition rules. Wang and Crowcroft [1] proved that the problem of finding a path subject to constraints
on n additive and m multiplicative metrics is NP-Complete if n+m > 2. Bandwidth can be taken into
account by pruning links. Therefore, algorithms of acceptable complexity can only handle bandwidth
and one additional metric. In the literature, most of the algorithms do not try to solve this complex
problem, instead they define simpler problems. In this paper, we present algorithms based on Dijk-
stra’s shortest path algorithm and Lagrange Relaxation (LR) that provide a polynomial solution for
multiple-metrics. Lagrange relaxation is a common technique for calculating lower bounds, and finding
good solutions. First Held and Karp raised with this technique for the Traveling Salesman Problem
in [2, 3].

There are two approaches for packet forwarding: source routing and hop-by-hop routing. In the first
one, the packet header has a list of routers that must be traversed from the source to the destination
(the source chooses the route). In hop-by-hop routing, each router chooses the next hop that a packet
will follow. In link-state routing protocols, packets are forwarded hop-by-hop at each node. Each
node maintains a routing table with next hops for all destinations, and this table is usually computed
periodically in response to routing updates. When a packet is received, hop-by-hop routing requires
only a table lookup to find the next hop and send the packet to it. Link state routing can use fully
distributed computation algorithms [4], which has lower memory requirements for the routers. In this
paper we present distributed algorithms for single and multiple-metric link state QoS routing.

The remain of this paper is organized as follows. Section 2 presents previous works. In section 3,
we present the composition rules of metrics. Section 4 describes the routing protocols with a single
metric for path computation. In section b, we show the single mixed metric approach that combines
several QoS parameters (metrics) in one representative value. In section 6, we propose distributed
algorithms to find the best path with multiple constraints. In section 7, we show simulation results
of our algorithms by comparing them to an exponential algorithm. We propose in 8 to adapt the LR
based Hop (LRH) algorithm for Ad hoc networks. We conclude in 9.

2 Previous Work

There are many previous works that investigate the problem of QoS-based routing.

Wang and Crowcroft [1] consider a number of issues in QoS routing. They first examine the basic
problem of QoS routing, namely, finding a path that satisfies multiple constraints, and its implications
on routing metric selection. They present a centralized algorithm that is suitable for source routing
and two distributed algorithms that are suitable for hop-by-hop routing based bandwidth and delay
constraints.

Chen [5] proposed a heuristic algorithm for the delay-cost constrained routing problem which is NP-
Complete. The main idea of this algorithm is to first reduce the NP-Complete problem to a simpler one
which can be solved in polynomial time, and then solve the new problem by either using an extended

Dijkstra’s algorithm or extended Bellman-Ford algorithm.

Al-Fawaz and Woodward [6] propose a routing algorithm to find the shortest path between one
source and one destination node while considering the criteria of multiple metric constraints. They
have three goals to achieve, 1) Sorting the QoS metrics according to the requested service, 2) Finding
the possible routes between the source and the destination and 3) Speed up the path determination by
using sliding window and hierarchical clustering technique.

In [7] authors propose and analyze the performance of a distance-vector QoS routing algorithm that
takes into account three metrics: propagation delay, available bandwidth and loss probability. Classes of
service and metric combination are used to turn the algorithm scalable and as on a two-metric scheme.

Cheng and Nahrstedt (8] give an algorithm to find a path that meets two requirements in polynomial
time. The algorithm reduces the original problem to a simpler one by modifying the cost function, based
on which the problem can be solved using an extended shortest path algorithm. The shortcoming of
this method is that the algorithm has to use high granularity in approximating the metrics, so it can
be very costly in both time and space, and it cannot guarantee that the simpler problem has a solution
if the original problem has.

The algorithms in [9, 10] are based on calculating a simple metric from the multiple requirements.
By doing so, we can use a simple shortest-path algorithm based on a single cost aggregated as a
combination of weighted QoS parameters. The main drawback of this solution is that the result is quite
sensitive to the selected aggregating weights.

3 The composition rules for metrics

Let G = (V, E) be the network with |V| = n nodes and |E| = m arcs and met;; a metric for link
(¢,7). The value of a metric over any directed path p = (¢, 7,%,...,¢,7) can be one of the following
compositions:

& Additive metrics: We say metric met is additive if
met(p) = met;; + met; + ... + metqy.

It is obvious that delay (del), delay jitter (dej), hop-count (hop) and cost (co) follow the additive
composition rule.

v Multiplicative metrics: We say metric met is multiplicative if
met(p) = met;; x met;p X ... X metg,.

The probability of successful transmission (pst) follows the multiplicative composition rule. The
composition rule for loss probability (Lp) is more complicated. met(p) = 1 — ((1 — met;;) x (1 —
met;r) x ... x (1 — mety)). Tt can be transformed to an equivalent metric pst.

= Concave metrics: We say metric met is concave if
met(p) = min{met;;, met;x, ..., mety, }.

It is obvious that Bandwidth (Bw) follows the concave composition rule.

4 Single Metric Approach

In traditional data networks, routing protocols usually characterize the network with a single metric
such as hop-count or delay, and use the shortest path algorithms for path computation.

For an additive metric such as delay, hop-count or cost, each arc (¢,7) in the path p is assigned a
number met;;. When the arc (¢, j) is inexistent, met;; = co. The routing problem is to find a path

p* between ¢ and r so that met(p) is the minimum. In such a case, we use the well-known Dijkstra
routing algorithm. Suppose that s is the source node, S the set of vertices whose shortest paths from
the source have already been determined, VV — S the remaining vertices. Let d array of best estimates
of shortest path to each vertex and previous an array of predecessors for each vertex. The Dijkstra’s
shortest path algorithm [11] is as follows:

Step 1: Initially, S = @, d[s] = 0, previous[k] = 0 and d[k] =0 forall k £s, k€ V — 5;
Step 2: Sort the vertex v in V — § that has the maximum d[u];
Step 3: S =S5U{u};

Step 4: For each vertex v which is a neighbour of w:
If d[v] < d[u] 4+ mety, then

dfv] = d[u] + mety, ; previous[v] = u;

Step 5: If V — S = @ then the algorithm is complete.
Otherwise, go to step 2.

Step 4 updates the best estimates of all the vertices, v € V, connected to a vertex, u.

For the probability of successful transmission (multiplicative metric), each arc (¢, j) in the path p is
assigned a number met;;. When the arc (3, j) is inexistent, met;; = 0. The routing problem is to find a
path px between ¢ and r so that met(p#) is the maximum. In such a case, we propose a variant-Dijkstra
routing algorithm.

Step 1: Initially, S = @, d[s] = 1, previous[k] = 0 and d[k] =0 forall k #s, k € V — 5
Step 2: Sort the vertex uin ¥V — .8 that has the maximum d[u];
Step 3: S =S5U{u};

Step 4: TFor each vertex v which is a neighbour of w:
If d[v] < d[u] x mety, then

d[v] = d[u] x met,,; previous[v] = u;
Step 5: If V — S = & then the algorithm is complete.

Otherwise, go to step 2.

For a concave metric such as bandwidth, each arc (7, §) in the path p is assigned a number met;;.
When the arc (4, j) is inexistent, met;; = 0. The routing problem is to find a path p+ between i and r
so that maximizes met(px). In such a case, we propose a variant-Dijkstra routing algorithm.

Step 1: Initially, S = @, d[s] = maz, previous[k] = 0 and d[k]=0forall k # s, ke V - 5,

Step 2: Sort the vertex u in V' — S that has the maximum d[u];
Step 3: S =5U{u};

Step 4: For each vertex v which is a neighbour of w:
If d[v] < min{d[u], met,, } then

d[v] = min{d[u], met,, }; previous[v] = u;

Step 5: If V — 5= @ then the algorithm is complete.
Otherwise, go to step 2.

The worst-case complexity of Dijkstra’s algorithm on networks with nonnegative arc length depends
on the way of finding the labeled node with the smallest distance label. A naive implementation that
examines all labeled nodes to find the minimum runs in O(n?) time [11]. The implementation using k-
ary heaps [12] runs on O(mlogn) time (for a constant k). The implementation using Fibonacci heaps [13]
runs in O(m + nlogn) time. The implementation using one-level R-hraps [12] runs in O(m + (nlogC'))
time and the one using two-level R-heaps together with Fibonacci heaps, in O(m + n/logC) time.

5 Single Mixed Metric Approach

Using a single primitive parameter such as delay is clearly not sufficient for multimedia applications. We
need information on other resources particularly bandwidth for supporting resource reservation. One
possible approach might be to define a function and generate a single metric from multiple primitive
parameters. The idea is to mix various pieces of information into a single measure and use it as the
basis for routing decisions. For example, a mixed metric may be produced with bandwidth Bw, delay
Del and loss probability Lp using a formula f(p) = ﬁ%)p(—p) [14]. A path with a large value is likely
to be a better choice in terms of bandwidth, delay and loss probability. Find a path p* between ¢ and
r so that met(p#) is the maximum. In such a case, we propose a variant-Dijkstra routing algorithm
having the same complexity as that in Dijkstra’s shortest path routing algorithm.

Step 1: Initially, S = @, d[s] = maz, previous[k] = 0 and d[k] =0, for all k £s, k €V - 5
Step 2: Sort the vertex u in V — S that has the maximum dfu];
Step 3: S =S5U{u};

Step 4: For each vertex v which is a neighbour of u:

i B)B uv
If d[v] < (Del(u)+g§11u{.,)t:gﬂ(;;:c(u})xpsr.u,,)) then
in{ Bw(u),Bw,,
d[U:r = (D»el(u)+gle]u{.,)><El)—(pst(u})xpstLI

57 previous[v] = u;

Step 5: If V — S = @ then the algorithm is complete.
Otherwise, go to step 2.

However, a mixed metric can be used as an indicator at best, as it does not contain sufficient
information to assess whether user QoS requirements can be met or not. Another problem has to
do with mixing parameters of different composition rules. For example, suppose that a path has two
segments ab and be. If metric f(p) is delay, the composition rule is f(ab+bc) = f(ab)+ f(be). If metric
f(p) is bandwidth, the rule is f(ab+ bec) = min[f(ab), f(bc)]. However, if f(p) = —D%E%, neither of
the above are valid. In fact, there may not be a simple composition rule at all. Computing a path based
on f(p) does not guarantee each QoS parameter individually and the composition rule of this type of

measurement is complex to define as the composition rules of the different parameter are different.

6 multiple metrics approach

Multiple metrics can certainly model a network more accurately. However, the problem of finding a
path with n additive and m multiplicative metrics in NP-Complete if n + m > 2 [1]. Including a
single metric, the best path can be easily defined. Otherwise, including multiple metrics, the best path
with all parameters at their optimal values may not exist. For example, a path with both maximum
bandwidth and minimum delay may not necessarily exist.

6.1 one concave and one additive as metrics

Let us come back to delay, delay jitter, hop-count, cost, loss probability and bandwidth. It is clear
that any two or more of delay, delay jitter, hop-count, cost and loss probability in any combination as
metrics are NP-Complete. The only feasible combinations are bandwidth and one of the five additive
metrics or bandwidth and one multiplicative metric to provide a polynomial solution. In this section,
we choose the bandwidth and delay as the routing metrics. However, the algorithm presented is generic
and apply to other routing metrics with similar composition rules, for example, bandwidth and delay
jitter or bandwidth and cost.

As we have mentioned before, a path with both maximum bandwidth and minimum delay may
not necessarily exist. Thus, we must decide the precedence among the metrics in order to define the
best path. The delay has two basic components: queuing delay and propagation delay. The queuing
delay is more dynamic and traffic-sensitive, thus bandwidth is often more critical for most multimedia
applications. If there is no sufficient bandwidth, queuing delay and probably the loss rate will be very
high. So, we define the precedence as bandwidth and then the propagation delay. Our strategy is
to find a path with maximum bandwidth (a widest path), and when there is more than one widest
path, we choose the one with shortest delay. We refer to such a path as the shortest-widest path. The
widest path problem is to find a path p* between ¢ and j that maximize Bw(p*). For a given topology,
there are usually many widest paths with equal width, and loops can be formed as a result. However,
shortest-widest path is always free of loops. Intuitively, the delay metric eliminates the loops.

Theorem 1: shortest-widest paths are loop-free in a distributed computaion.

Proof: By contradiction. Suppose that node A and node B are involved in a loop for destination
C (Figure 1). Path pip, is the shortest-widest path from node A to node ' and path pip3 is the
shortest-widest path from node B to node C.

By the definition of the shortest-widest paths, we have

width(pt) < width(pips) (1)
width(pa) < width(pip}) (2)
Note that

width(pjp;) = min[width(p;), width(p;)]

p2*
p1* Pl c
P2

B

Figure 1: A loop involving node A and node B

< width(p}) 8]
Similarly,

width(p1p2) = min[width(p;), width(pz)]
< width(ps;) (4)

From (1), (3) and (4), we have

ot

width(pip3) < width(p,) (5)
Comparing (5) with (2), we have

width(pips) = width(ps) (6)
Similarly, we have

width(ps pz) = width(p3) (7)

Equation (6) shows that path pip} and path p; are equal widest paths, since path pip} is the
shortest-widest path, we have

length(ps) > length(pip3) > length(p3) (8)

Similarly, equation (7) shows that path pips and path p3 are equal widest paths, since path pips is
the shortest-widest path, we have

length(p3) > length(pyps) > length(ps) (9)
Equation (8) and (9) contradict each other. This completes the proof.

Each arc (Z,7) in the path is assigned the following values: del;;, which is the propagation delay,
Bw;;, which is the available bandwidth. When the arc (4, j) is inexistent, del;; = co and Bw;; = 0. Let
del(p) = del;j+del;x +...4+delg, and Bw(p) = min{Bw;;, Bw;, ..., Bwg, }. Let d1 array of best estimates
of widest paths and d2 the length of those paths to each vertex respectively. The shortest-widest path
algorithm based on dijkstra algorithm is as follows:

Step 1: Initially, S = @, d1[s] = maz, d2[s] = 0, previous[v] = 0, d1[v] = 0 and d2[v] = oo
forallv#£sin V — S

Step 2: Sort the vertex u in V — S that has the maximum d1[u];

Step 3: If u has more than one element, find k € u so that length(s, ..., j, k) = min;es[d2[j] + del;],
S=50U{k};

Step 4: For each vertex v which is a neighbor of v = k:
If d1{v] < min{d1[u], Bwy, } then
d1[v] = min{d1[u], Bwy, }; d2[v] = d2[u] + del,,; previous[v] = u

Step 5: If V — S5 = @, the algorithm is complete.
Otherwise, go to step 2.

Step 2 finds a node with maximum width from s, if there are more than one widest path found,
step 3 chooses the one with minimum length. Step 4 updates the width and length for neighbors of
u. The time complexity of the shortest-widest path algorithm is equal to that Dijkstra’s shortest path
algorithm.

6.2 Two additive metrics

It has been proven in [1] that a routing problem is NP-Complete, if the number of additive QoS
parameters that should be minimized are more than or equal to two. We cannot hope an algorithm
that can find the theoretical optimum and runs in polynomial time. In the literature, most of the
algorithms does not try to solve this complex problem, instead they define simpler problems. In this
section, we present an algorithm to find a path that is minimal for one additive metric, and the other
additive metric of it remains under a given bound. For example, find a path that is minimal for a hop-
count or cost, and the delay of it remains under a given bound (Delay Constrained Least Hop-count
path problem (DCLH), Delay Constrained Least Cost path problem (DCLC)).

Each arc (7,7) in the path is assigned two additive values: metl and met2. The problem is to
minimize the metl of the path, while keep the met2 under a given constraint Ape2. In a formal
description, we are looking for

min{metl(p) : p € P(s,t) and met2(p) < Apmera} (10)

Where P(s,1) is the set of paths from the source node s to the destination node #. Qur heuristic is
based on the Lagrange relaxation. Lagrange relaxation is the common technique for calculating lower
bounds, and finding good solutions for this problem. First Held and Karp raised with this technique for
the Traveling Salesman Problem in (2, 3]. We neglect the constraining conditions (this is the relaxation),
and build them into the objective function. The solutions feasible to the original problem can certainly
suit the relaxation conditions as well, so we can get a lower bound of the original problem. If the path
found is not feasible to the constraining conditions, we increase the dominance of it in the modified
metricl function, enforcing the solution to approach to the optimal solution. Moreover, decrease the
difference between the obtained lower bound and the optimum of the original problem as well. This
is the base of the Lagrange relaxation [15]. First we study Lagrange relaxation for the optimization
problem with inequality constraints described by

min{f(z) : g(z) <0 and z € X C "} (a)

That is, for A € ™ we construct the problem
min{f(z) + 0, Migs(@) iz € X TR} (b)

The A; are called Lagrangians or Lagrange multipliers. Not that lagrangians are not variables
but parameters. For every A we have an optimization problem (b) in the variable x. The function
faz) == f(z) 4+ Mg(x) = f(2) + 3 Aigi(z) is called the Lagrange function to (a).

Proposition 1: If A > 0 then (b) is a relaxation of (a).

Proof: See [15].

Proposition 2: Assume that) is the optimal to (b). Then %, is optima
L g(@\) <0
2. Mgi(Z2)=0,i=1,...,m
3. A2 0.

Proof: See [15].

The presented Lagrange Relaxation based Metl (LRM) algorithm consists of the heuristic that
minimizes metly := metl 4+ X x met2 modified objective function. For a given (fixed) A, we can easily
calculate the minimal path (ps). If A = 0 and met2(pa) < Amerz we found an optimal solution for the
original problem as well. If met2(py) > Aper2 we must increase A, to increase the dominance of the
met2 in the modified objective function. So, we increase A while the optimal solution of metl, suits
the delay requirements. With the help of Lagrange relaxation we have an algorithm which can find the
optimal A for a given source destination pair. Moreover it gives an estimation for the optimal solution,
although we have no guarantee of finding the optimal solution, we always get a bound for the solution,
which tells that at most how far is it from the optimal solution. To find the value of A that gives the
best result, we use the following Claim.

Claim 1: Let L(A) := min{metly(p) : p € P(s,t)} — A x Apez. Then L(A) is a lower bound to
problem (10) for any A > 0. (11)

Proof: let p+ denote the optimal solution of (10). Then

L(A) := min{met1 (p): p € P(s,1)} — A X Aper2
< metly(px) — A X Apern
= metl(p*) + A(met2(p*) — Apetz)
< met1(p#).

Proves the claim.

To obtain the best lower bound we need to maximize the function L(A), that is we are looking for
the value

L* := mazy>oL(A), (12)
and the maximizing A*. Now, some properties of the function L(A) are given. The simple proofs are
left to the reader.

Claim 2: [is a concave piecewise linear function, namely the minimum of the linear functions
metl(p) + A x (met2(p) — Apeea) for all p € P(s,2).

Claim 3: For any A > 0 and metly-minimal path py, met2(py) is a supgradient of L in the point A.

Claim 4: Whenever A < X*, then met2(pa) > Amers and if X > A*, then met2(py) < Ajeen for each
metly-minimal path pj.

Claim 5: A value that maximizes the function L(A) if and only if there are paths ppesn and pmess
which are metl,.-minimal and for which met2(pmer1) > Amerz and met2(pmerz) < Amers. (Pmers and
Pmet2 can be the same, in this case met2(pmec2) = met2(pmert) = Amer2).

Claim 6: let 0 < \; < Ag, and py,, pa, € P(s,t) A;-minimal and Az-minimal paths. Then met1(p,,) <
metl(py,) and met2(py,) > met2(py,).

These two latter Claims together give that the A* maximizing the function L()) gives the best
modified cost function, that is A* is the smallest value for which there exists a metly.-minimal path
Pmet2 Which satisfies the metric2 constraint. The LRRM algorithm is as follows:

Step 1: pmen := Dijkstra(s, ¢, met1};

Step 2: If met2(pmec1) < Ametz then return pieirn, the algorithm is complete.

Step 3! Pmeea := Dijkstra(s, ¢, met2);

Step 4: If met2(pmet2) > Amera then return ”there is no solution”, the algorithm is complete.

Step 5 A= metl(pmesy)—metl(pmeta) .

T met2(Pmeta)—met2(pmee1) *
Setp 6: pupdate = Dijkstra(s, ¢, metl,)

Step 7: If metly(pupdate) = metlx(pmec1) then return pmer:.
Otherwise,
If met2(pupdate) < Ameea then
Pmet? ‘= PUpdate; Otherwise,

Pmetl ‘= PUpdate;

Step 8: Go to step 5.

Step 1 calculates shortest path on metly modified metricl function with Dijkstra algorithm by
setting A at 0. Dijkstra(s,¢, metl) return a metl-minimal path between the nodes s and ¢. In step 2,
if the path found meets the metric2 requirement A2, this is the optimal path, and the algorithm
stops. Otherwise, step 3 calculates the shortest path on the metric 2. If the obtained path suits
the metric 2 requirements (A,,.:2), a proper solution exists. Otherwise, there is no suitable path
from s to ¢ that can fulfill the metric 2 requirement, so the algorithm stops. In step 5, by using
the claim 5, we can calculate A because pmet1 and pmerz are metly-minimal. In this case, the only

possible A is A := xﬁéﬁiiﬁtfiﬁigglﬁﬁ After in step 6, we find a metly-minimal path pupdate. If
metly (pupdate) = Metly (Pmert) then pmesr and pmers are metly-minimal, so the optimal path is ppets.

Otherwise, we replace either pmet1 OF Pmetz With pupdace according the metric 2 constaints.

Theorem 3: The final path constructed by LRM for a given source s and destination t does not contain
any loops.

Q/\I‘
()

Iigure 2: A loop involving node a and node b

Proof: By contradiction. Let s-a-b-t the optimal path found by LRM the optimal A (Figure 2).
s-a-b-1 is the shortest path in term of met, i.e.,

Vp # (s-a-b-t) € P(s,t) metly(p) > metly(s-a-b-t) (13)

We have met1(s-a-t) < metl(s-a-b-t) and met2(s-a-t) < met2(s-a-b-t). So,
met1(s-a-t)+Ax (met2(s-a-t) —Apmerz) < metl(s-a-b-t)4+ A x (met2(s-a-b-t) — Amec2) (14)
Equation (13) and (14) contradict each other. This completes the proof.

Theorem 4: The LRM algorithm terminates after O(mlog3m) iteration, so the running time of the
algorithm is O(m*log*m) (Dijksta algorithm runs on O(mlogn) time and n << m).

Because there are only finite number of different path, the algorithm finds the optimal A in a finite
number of steps. The LRM algorithm can not find the optimal solution if there are several path the
same metly at the optimal A (Figure 4), therefore the LRM cannot decide which path is the optimal
on the base of metl,.

P1(5,2)

Figure 3: A network of four paths from s to t

mell;L

Figure 4: Sevral paths with the same metl,

If we run the LRM algorithm in the network of Figure 3 (Ap,ee2 = 4), we first calculate shortest

path on metl, modified metricl function with Dijkstra algorithm by setting A at 0. We obtain the path
p4. We have met2(pg) = 5 > Anera = 4. We calculate the shortest path on the metric 2. We obtain
p1. We have met2(p1) = 2 < Apez = 4. So, there is a solution. A = 1 is given by the step 5 of the
LRH algorithm. Now, we calculate Pypdae with Dijkstra algorithm by setting A at 1. We obtain four
paths with the same metly =3 (p1: 54+1%(2—-4)=3,p2: 4+1x(3—-4) =3, p3: 3+1x (4—4) =3,
pa: 2+ 1 x (5—4) = 3). One solution possible of this problem is to take the path P, so that met1(p) is
the minimum and met2(p) < A0,

6.3 Two additive and one concave metrics

It is clear that two additive and one concave metrics problem is NP-Complete. In this case, we take
hop-count and delay as additive metrics and bandwidth as concave metric. We consider the Delay and
Bandwidth Constrained Least Hop path problem (DBCLH).

Given two constants, the minimum bandwidth Apandwiden and the maximum delay Agerqy. The
Delay ‘and Bandwidth Constrained Least Hop path problem (DBCLH) is to find a path p from i to r
minimal for a hop-count, satisfying del(p) < Ageiay and Bw(p) > Apandwidaen. The formal description is:
min{hop(p) : p € P(s,t) and del(p) € Agetay and Bw(p) > Apandwidaen}, where P(s,t) is the set of paths
from the source node s to the destination node ¢, and hop(p) is the hop-count. Our heuristic is based
on the Lagrange Relaxation. As we have mentioned before, we define the precedence as bandwidth and
then the propagation delay.

Theorem 5: A path has a width no less of Avandwiath, if and only if each link in the path has a
bandwidth no less than Apandwidin.

Proof: if each link in p has a bandwidth no less than Aps,guiden, it is obvious that width(p) >
Abandwiden. Suppose that width(p) > Apandwidaen but there is alink (7, j) with Bw; less than Apapdwideh-
We then have width(p) = Bwi; < Asandwidth, which contradicts the assumption that width(p) >
Abandwidth-

Theorem 5 implies that any links with a bandwidth less than Apg,gwiqen are not parts of the path
we want. Hence to find paths satisfying Bw(p) 2 Apandwidtn, we eliminate any links with a bandwidth
less than Apapdwiaeh so that any paths in the resulting graph satisfy width(p) > Apandwidaeh- The LR
algorithm for the DBCLH problem is as follows:

Step 1: Set del;; = co and hop,rj = 00, if Bw;; < Apandwidth;

Step 2: pqe := Dijkstra(s, 1, del);

Step 3: If del(pge1) = co then return ”there is no solution”; the algorithm is complete.
Step 4: If del(phop) < Agel then return pyp; the algorithm is complete.

Step 5: pga := Dijkstra(s, ¢, del);

Step 6: If hop(pge) > Age then return ”there is no solution”, the algorithm is complete.

Step 7: A = 1ob(Pues)—del(pua),

 del(paei)—del(phop) ?

Setp 8: pupdate := Dijkstra(s, ¢, hop,);

Step 9: If hop, (pupdate) = hop, (Phop) then return phop.
Otherwise,
If del(pupdate) < Agel then pye 1= PUpdate;
Otherwise, puop = PUpdate;

Step 10: Go to step 7.

Theorem 6: The final path constructed by LR algorithm for the DBCLH problem does not contain any
loops.

proof: see the proof of the theorem 3.

The LR algorithm for the DBCLI problem has the same complexity as the LRM algorithm described
before. The step 2 runs in O(m) time. The other steps in O(m2log*m) time.

6.4 Four-Metrics Heuristic

There is no routing algorithm in literature that treat four-metrics. We consider the Delay, Bandwidth
and Loss probability Constrained Least Hop path problem (DBLCLH). Here, we use the single mixed
concept. This single mixed metric combines delay and loss probability, but uses the absolute value of
the logarithmic transmission-success probability function (slog) instead of the loss probability to avoid
complex composition rules. slog(p) = |log(1 — loss(p))|. Furthermore, we assume that routes cannot
have more than 90% of loss probability, that is, 0 < slog(p) < 1. As ms unit is appropriate [16] to
represent delay, we assume that delay is integer. As a consequence, we have a simple single-metric
representation of delay and loss, where the integer part is delay and the decimal part represents loss.
Each arc (4, j) in the path is assigned the value sm;; = slog;; 4 del;;. When the arc (4, j) is inexistent,
then sm;; = co. Let sm(p) = smy; +smjg + ... +smg,. Given three constants, The minimum bandwidth
Apandwiden, The maximum delay A gerqy and the maximum logarithmic transmission-success probability
Ajuccess; where the maximum single mixed metric is A,y = Agetay + Asucees. The Delay, Bandwidth
and Loss probability Constrained Least Hop path problem (DBLCLH) is to find a path p from i to »
that is minimal for a hop-count, satisfying sm(p) < Ay, and Bw(p) > Apandwiarn. The DBLCLH’s
formal description is: min{hop(p) : p € P(s,t) and sm(p) < A,y and Bw(p) > Asandwiden}. The
DBLCLH problem is NP-complete. The LR algorithm for the DBLCLH problem is as follows:

Step 1: Set sm;; = oo and hop,; = 00, if Bwij < Avandwidth;

Step 2: psm = Dijkstra(s, ¢, sm);

Step 3: If sm(psm) = oo then return ”there is no solution”; the algorithm is complete.
Step 4: If sm(pnop) < Agm then return phgp; the algorithm is complete.

Step 5: pey = Dijkstra(s,t, sm);

Step 6: If hop(psm) > Asm then return "there is no solution”; the algorithm is complete.

Step T: A= hop(Puop)=sm(psm)

T sm(Psm)—5M(Phop, ’

Setp 8: pupdate := Dijkstra(s,, hop,);

Step 9: If hop, (pupdate) = hopy (Phop) then return phop.
Otherwise,
If Sm(pUpdate) < Agp then pgy = PUpdate;

OtherWise: Phop ‘= PUpdate;

Step 10: Go to step 7.

proof: see the proof of the theorem 3.

The LR algorithm for the DBLCLH problem has the same complexity as the LRM algorithm de-
scribed before. There are two cases, when the algorithm cannot find the optimal solution. In the first
case, if there is no suitable path p* from s to t that can fulfill the bandwidth requirement. Here, we
use the best effort or distributing traffic among multiple routes. In the second case, the algorithm finds
several paths with the same hop, at the optimal A, therefore the algorithm can not decide which path
is the optimal on the base of hop,. Here we propose an algorithm that can be used to make decisions
in situations involving multiple and prioritized constraints.

6.5 Four-Metrics routing decision

When multiple constraints are important to a routing algorithm, it is too difficult to choose between
alternatives. We propose an algorithm that can be used to make decisions in situation invelving multiple
and prioritized constraints. Similar problems can be found in the operations research area. For example,
Thomas saaty’s analytic hierarchy process (AHP) is a well-known technique in such cases [17]. In our
case, for example the priority order is bandwidth (1), delay (2), loss probability (3) and hop-count (4).
The algorithm is as follow:

Step 1: [Iind the nominated paths that satisfy the all QoS constraints;
Step 2: Generate priority normalized weights, pw,, i € {1, 2,3};

Step 3: Calculate the normalized path scores nsp,; for each path j on each metric i

Step 4: Calculate the total normalized score of path tnsp; = Z?=1 pw; X nsp;;, for each path j;

Step 5: Choose the path with the highest total score.

We consider a network with seven paths from a source (s} to a destination () illustrated in Table 1.
path py did not meet the bandwidth constraint (10 < 20), p4 did not meet the hop-count constrain
(10 > 8), ps did not meet the delay constraint (30 > 25), pe did not the loss probability constraint
(30e — 6 > 20e — 6). Suppose that for this example, the generated priority normalized weights are

represented in Table 2.
The normalized scores of each path on each metric are given in Table 3.
Computing each path’s total score, we obtain

¥ py total score = 0.260999
1= ps3 total score = 0.407021
sF p7 total score = 0.331958

We choose the path with the highest total score. So, the path pa is selected.

Path | Bw | del | Lp | hop
1 40 | 10 | 2e-6 b}
2 10 | 20 | 10e-6 | 6
3 60 | 15 | He-6 7
4 40 | 22 | 8e-6 | 10
5 25 | 30 | 15e-6 | 5
6 30 | 14 | 30e-6 | 4
T 30 | 18 | 10e-6 | 2

REQ | 20 | 25 | 20e-6 | 8

Table 1: Paths with QoS constraints

Priority Bw del Lp hop
pw 0.465819 | 0.27714 | 0.16107 | 0.0959699

Table 2: Priority normalized weight

Path Bw del Lp hop
1 0.30769 | 0.23255 | 0.11764 | 0.35714
3 0.46153 | 0.34883 | 0.29411 | 0.50000
7 0.23076 | 0.41860 | 0.58823 | 0.14285

Table 3: Normalized path scores on each metric

7 Simulation Results

We used simulation for our evaluation of the performance of the LR method in case of two, three and
for metrics. We built 3 random networks with 100 nodes (Figure 5).

Network1 Network3

continental link N

v

Network2

Figure 5: Topology model

A random generator was used to create links interconnecting the nodes [18]. The output of this
random generator is always a connected network in which each node’s degree is at least 2. We adjust
the parameters of the random generator carefully to obtain realistic network topologies with an average
node degree of 4, which is close to the average node degree of current internetworks. For the LRM

method, we consider that met1 as the cost and met2 as the propagation delay. The cost value on links
varies from 1 to 30 based on uniform distribution. The propagation delay on links is selected from three
ranges to resemble delay characteristics of nationwide network e.g. in the US. The first range (1-8 ms)
represents shortest local links; the second range (8-12 ms) represents longer local links, while the third
range (20-30 ms) represents continental links. On each network, 20% of nodes have longer local links
and 2% have continental links.

7.1 Average Cost

Figure 6 shows the average cost of the paths found by the LRM algorithm compared with the Con-
strained Bellman-Ford (CBF) [19] algorithm that gives the optimal solution between a source and a set
of destination nodes, but the running time is exponential.

40
36 +

LRM with GVL in [1,20] —— |
LRM with CVL in [1,25] —*--
LRM with CVL in [1,30] ~=---- |
CBF with GVL in [1,20] —s—
CBF with GVL in [1,25] —--
CBF with CVL in [1,30] --o-- 1

32 +
28
24

Average Cost
nN
o

0 10 20 30 40 50 60
Delay constraint {ms)

Figure 6: Average cost

Based on uniform distribution, the Cost Value on Links (CVL) varies from 1 to 20, 1 to 25, and 1 to
30. The LRM algorithm found almost the same paths as CBF. For Ageqy < 15, it is impossible to find
short paths for all source destination pairs with a small Adelay, thus the cost of them are also small.
As the delay bound increases the algorithm find more and more (longer) paths, therefore the average
of cost of the paths increases. At Agerqy = 15, the algorithm can find path for all source destination
pairs. For Ageqy > 15, the LRM algorithm is able to find the paths with lower costs and higher delay.
So, the average cost of the paths will decrease with the delay bound.

7.2 Average Number of setps

We use the average number steps to measure the running time of the algorithm. The number of steps
represents the events when the algorithm changes the contents of the heap. The curve of the Figure 7
is obtained by varying the CVL from 1 to 20.

For Ageray < 15, as the LRM algorithm finds more and more paths, the number of Dijkstra execcu-
tions increases. After Ageray > 15, the LRM algorithm can find the optimal solution after the execution
of the first Dijkstra because the minimum cost paths computed can more and more satisfy the delay
bounds.

8 Future work: DBCLH problem in QOLSR. protocol

Most routing protocols for Mobile Ad hoc NETworks (MANETSs) [20], such as OLSR [21], are designed
without explicitly considering QoS of the routes they generate. The number of hops is the most common
criterion adopted by such proposed routing protocols. It is necessary to take into account important
network parameters such as bandwidth and delay. To achieve that, we have developed the QOLSR
protocol (OLSR based QoS) [22] that propagates MPR’s delay and bandwidth information to each

1400

1200

1000

800 |

600

400

Average number of steps

200 |

] 10 20 30 40 50 60
Delay constraint {ms)

Figure 7: Average number of step

node in the network. Now, we propose to adapt the LR based Hop (LRH) algorithm for link-state
protocols.

OLSR protocol is an optimization over the classical link-state protocol, tailored for Mobile Ad hoc
NETworks (MANETS). The key concept used in the protocol is that of multipoint relays (MPRs). The
idea of MPR is to minimize the overhead of flooding messages in the network by reducing duplicate
retransmission in the same region. In route calculation, The MPRs are used to form the route from a
given node to any destination in the network.

Let G = (V, E) be the network with |V| nodes and |E| arcs and p = (i, j, k, ...,q,7) a directed path.
When the arc (i, 7) is inexistent or j is not a MPR of ¢ (due to the OLSR routing mechanism}, then
del;; = 0o (sm;; = o), hop;; = co and Bw;; = 0 for the DBCLH problem (DBLCLH problem). The
application of LRH algorithm will be only over the MPR nodes.

9 Conclusions

QoS routing provides better QoS guarantees to applications and improves the network resource utiliza-
tion. Nevertheless, routing algorithms have to be carefully designed or the complexity will compromise
their implementation. There are no routing algorithms in literature that treat four-metrics in polyno-
mial time. Our routing algorithms can treat two-metrics, three-metrics and four-metrics and provides a
polynomial heuristic solution. For a single metric approach, we use Dijkstra shortest path algorithm and
its variants. For a multiple metric approach, we have proposed algorithms that provide a polynomial
loop-free solution. We have compared the performance of the LRM algorithm with the CBF algorithm.
The LRM algorithm is close to the optimal solution in a polynomial time. We have proposed to adapt
our algorithms for link-state protocols in Ad hoc networks to satisfy the end-to-end QoS requirement.
An ad

References

(1] Z. Wang and J. Crowcroft, “Quality of service routing for supporting multimedia applications,”
IEEE Journal on Selected Areas in Communications, vol. Vol.14, no. 7, pp. 1228-1234, September
1996.

[2] M. Held and R. Karp, “Quality of service routing for supporting multimedia applications,” Oper-
ation Research 18, vol. pp. 1138-1162, 1970.

(3] R. Karp and M. Held , “The traveling salesman problem and minimum spanning trees, Part IIT,”
Mathematical Programming 6, vol. pp. 62-88, 1971.

[4] J. Garcia-Luna-Aceves, “A Unified Approach to Loop-Free Routing Using Distance Vectors or Link
States,” In Proc. Sigcomm’89, Texas, USA, September 1980.

[5] S. Chen, “Routing Support for Providing Guaranteed End-to-End Quality of Service,” PhD, in
Engineering Collage. Urbana, 1999,

[6] M. Al-Fawaz and M. E. Woodward, “Fast Quality of Service Routing Algorithms with Multiple
Constraints,” 8th IFIP Workshop on ATM&IP, Tikely, UK, 2000.

(7] L.H. Costa, S. Fdida and M. B. Duarte, “Distance-vector QoS-based Routing with Three Metrics,”
NETWORKING, pp. 847-858, 2000.

[8] S. Cheng and K. Nahrstedt, “On finding multi-constrained paths,” ICC’98, Atlanta, Georgia, 1998.

[9] H. NEVE, P. Mieghem , “A multiple quality of service routing algorithm for PNNI > IEEE ATM’98
Workshop, Fairfaz, Virginia, pp. 306-314, 1998.

[10] L. Guo and I. Matta, “Search Space Reduction in QoS Routing,” Technical Report NU-CCS-98-09,
October 1998.

[11] E. W. Dijkstra, “A Note on Two Problems in Connection with Graphs,” Numer. Math., 1:269-271,
1959.

[12] T. H. Cormen, C. E. Leiserson and R. L. Rivest, “Introduction to algorithms,” MIT Press, Cam-
bridge, MA, 1990.

(13] M. L. Fredman and R. E. Tarjan, “Fibonacci Heaps and Their Uses in Improved Network Opti-
mization Algorithms,” J. Assoc. Comput, 34:596-615, Mach 1987.

(14] Z. Wang and J. Crowcroft , “Bandwidth-Delay Based Routing Algorithms,” IEEE GlobeCom’95,
Singapore, November 1995,

[15] M. Guignard, “Lagrange Relaxation,” Belgian Journal of Operation Research, Special Issue Fran-
coro, Vol. 35 (3-4), 1995.

[16] A. Fei, G. Pei, R. Liu and L. Zhang, “Measurements on delay and hop-count of the Internet,”
IEEE GlobeCom’98- Internet Mini-Conference, 1998.

[17] W. L. Winston, “Operations research: Applications and Algorithms,” 3rd edition: International
Thomson Publishing, 1994.

[18] H. Salama, “Multicast Routing for Real-time Communication on High-Speed Networks,” PhD
thesis, North Carolina State University, Department of Electrical and Computer Engineering, 1996.

[19] R. Widyono, “The Design and Evaluation of Routing Algorithms for Real-time Channels ,” Tech-
nical Report TR-94-024, University of California at Berkeley, June 1994.

[20] “http://www.ietf.org/html.charters/manet-charter.html.”

[21] T. Clausen P. Jacquet, A. Laouiti, P. Minet, P. Muhlethaler, A. Qayyum and L. Viennot, “Op-
timized Link State Routing Protocol,” In IETF Internet Draft, draft-ietf-manet-olsr-09.txt, April
2003.

[22] H. Badis, A. Munaretto, K. Al Agha and Guy pujolle, “QoS for Ad hoc Networking Based on
Multiple-Metric: Bandwidth and Delay,” MWCN’03, Singapore, October 2003.

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

RAPPORTS INTERNES AU LRI - ANNEE 2003

Nom

FLANDRIN E
LI H
WEI B

BARTH D
BERTHOME P
LAFOREST C

VIAL S

FLANDRIN E
LI H
MARCZYK A
WOZNIAK M

AMAR D
FLANDRIN E

GANCARZEWICZ G

WOJDA A P

FRAIGNIAUD P

GAURON P

FAIK T
SACLE J F

FAVARON O
HENNING M A

HU Z
LI H

JOHNEN C
TIXEUIL S

PETITJEAN E

BERTHOME P
DIALLO M
FERREIRA A

FAVARON O
HENNING M A

JOHNEN C
PETIT F
TIXEUIL S

FRANOVA M

HERAULT T
LASSAIGNE R
MAGNIETTE F
PEYRONNET S

HU Z
LI H

DELAET S

DUCOURTHIAL B

TIXEUIL S
YAO J Y

ROUSSEL N
EVANS H
HANSEN H

Titre

A SUFFICIENT CONDITION FOR
PANCYCLABILITY OF GRAPHS

SOME EULERIAN PARAMETERS ABOUT
PERFORMANCES OF A CONVERGENCE
ROUTING IN A 2D-MESH NETWORK

A CHVATAL-ERDOS TYPE CONDITION FOR
PANCYCLABILITY

BIPARTITE GRAPHS WITH EVERY MATCHING
INACYCLE

THE CONTENT-ADDRESSABLE NETWORK D2B

SOME b-CONTINUOUS CLASSES OF GRAPH

TOTAL DOMINATION IN CLAW-FREE GRAPHS
WITH MINIMUM DEGREE TWO

WEAK CYCLE PARTITION INVOLVING DEGREE
SUM CONDITIONS

ROUTE PRESERVING STABILIZATION

DESIGNING TIMED TEST CASES FROM REGION
GRAPHS

GENERALIZED PARAMETRIC
MULTI-TERMINAL FLOW PROBLEM

PAIRED DOMINATION IN CLAW-FREE CUBIC
GRAPHS

AUTO-STABILISATION ET PROTOCOLES
RESEAU

LA "FOLIE" DE BRUNELLESCHI ET LA
CONCEPTION DES SYSTEMES COMPLEXES

APPROXIMATE PROBABILISTIC MODEL
CHECKING

A NOTE ON ORE CONDITION AND CYCLE
STRUCTURE

SELF-STABILIZATION WITH r-OPERATORS IN
UNRELIABLE DIRECTED NETWORKS

RAPPORT SCIENTIFIQUE PRESENTE POUR
L'OBTENTION D'UNE HABILITATION A DIRIGER
DES RECHERCHES

MIRRORSPACE : USING PROXIMITY AS AN
INTERFACE TO VIDEO-MEDIATED
COMMUNICATION

Nbre de
pages

16 PAGES

30 PAGES

12 PAGES

26 PAGES

26 PAGES

14 PAGES

14 PAGES

14 PAGES

28 PAGES

14 PAGES

18 PAGES

16 PAGES

26 PAGES

26 PAGES

18 PAGES

10 PAGES

24 PAGES

72 PAGES

10 PAGES

Date parution

01/2003

01/2003

01/2003

01/2003

01/2003

01/2003

01/2003

02/2003

03/2003

03/2003

03/2003

03/2003

03/2003

04/2003

01/2003

04/2003

04/2003

07/2003

07/2003

