e

A THEORY OF MONADS PARAMETERIZED
BY EFFECTS

FILLIATREJ C

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud-LRI

09/2003

Rapport de Recherche N° 1367

CNRS - Université de Paris Sud
Centre d’Orsay
LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Batiment 650
91405 ORSAY Cedex (France)

A theory of monads parameterized by effects

Jean-Christophe Filliatre

LRI - CNRS UMR 8623
Université Paris-Sud, France
Tilliatr@leri fr

September 2000

Abstract

Monads were introduced in computer science to express the semantics of programs
with computational effects, while type and effect inference was introduced to mark out
those effects. In this article, we propose a combination of the notions of effects and
monads, where the monadic operators are parameterized by effects. We establish some
relationships between those generalized monads and the classical ones. Then we use a
generalized monad to translate imperative programs into purely functional ones. We
establish the correctness of that translation. This work has been put into practice in
the Coq proof assistant to establish the correctness of imperative programs.

Keywords: semantics, monads, effects

Résumé

Les monades ont ét¢ introduites en informatique afin d’exprimer la sémantique des
programmes avec effets, tandis que les inférences de types et d’effets ont été introduites
pour détecter ces effets. Dans cet article, nous proposons une combinaison des notions
d’effets et de monades, ol les opérateurs monadiques sont paramétrés par des effets.
Nous établissons des relations entre ces monades généralisées et la notion classique.
Nous utilisons ensuite une monade généralisée pour traduire des programmes impératifs
vers des programmes purement fonctionnels. Nous établissons la correction de cette
traduction. Ce travail a été mis en pratique dans 'assistant de preuve Coq pour établir
la correction de programmes impératifs.

Mots clés : sémantique, monades, effets

1 Introduction

It is well known that purely functional programs are easier to reason about than imperative
ones, and one of the first advice of Kernighan and Pike’s Practice of Programming [8] is
precisely “Be careful with side effects”. When reasoning about a program, we expect expres-
sions to be substitutable and we want to manipulate variables as mathematical ones, and

this is only possible with purely functional programs. Thus, when we faced the problem of
certifying imperative programs in the Coq proof assistant (2, 3, 4], it was natural to look for
a functional interpretation of those programs.

Monads were introduced in computer science to express the semantics of programs with
computational effects, first by Moggi [10] and then by Wadler [13]. A monad introduces
a type operator u, where p 7 represents computations returning values of type 7. The
type p 7 may be seen as an abstract datatype, which is manipulated through two primitive
operations. Operation unit : 7 — u 7 creates an elementary computation from a value, and
operation star : u 7 — (7 — p 7') = p 7' composes two computations, binding the result
of the first one into the second one. The strength of monads is to be defined independently
of a particular notion of effect. Of course, for a given effect, you may have other primitive
monadic operations; in the case of a monad to handle a store, for instance, you will have
operations to create a new reference, and to get or to set its value. Monads are used in
purely functional languages, such as Haskell [1], where they can be seen as “internalized
denotational semantics”.

Unfortunately, monads appear to be useful from an operational point of view, but not
precise enough when reasoning about programs. Indeed, if a program which modifies a single
variable z is interpreted as a function over the whole store, then you will have to express
in the specification the properties of that whole store; and you will be quickly lost into
properties expressing that most of the variables are unmodified. On the other hand, if you
decide to use a monad where the store only contains the variables declared so far, then you
will not be able to reuse that interpretation — and the corresponding proof of correctness
— in a context containing additional variables. In other words, the method will not be
incremental.

The ideal solution would be to interpret an imperative program as a function taking
the necessary values as arguments and returning all the resulting values, as one does when
writing a purely functional program instead of an imperative one. Then it is easy to reason
about such interpretations, and they are easy to compose, even when the context grows. It
implies to be able to determine the variables possibly modified by a computation. Such an
inference has been a subject of research for many years now, and the most widely known
work is surely the type and effect inference of Talpin and Jouvelot [11, 12].

To exploit the benefits of an effect inference, we have to refine the notion of monad.
We propose a notion of generalized monad, where the monadic operators are parameterized
by effects. The monadic operator p is now indexed by an effect, u, 7 being the type of
computations of effect ¢ and type 7. The operation unit becomes a coercion operation
unite, ¢,, which transforms a computation of effect ¢, into a computation of effect €2, a8 SOON
as €y 1s greater than €;. And star becomes an operation star,, ., to compose two computations
of respective effects €; and e;. With its single monadic operator, a classical monad may be
seen as associated to a trivial notion of effect: there is an effect or there is not.

Outline. This paper is organized as follows. Section 2 is devoted to the presentation of
generalized monads. We show their relationships with the classical ones. We also introduce
a type system with effects, and we define a canonical way to apply the monadic operator to
arbitrary types. Section 3 defines a generalized monad for references. Then it is applied to

the functional translation of imperative programs, through the usual monadic call-by-value
translation. We show the correctness of that translation. Section 4 is a brief conclusion, in
which we discuss the differences with a similar work of Wadler recently published in [14].

2 Generalized monads

This section introduces the notion of generalized monads, and some of their properties.

2.1 Definitions

First, let us recall the classical definition of a monad.

Definition 1 (monad, [10, 13]) A monad is defined by a type operator u, and two opera-

tions
unit @ T4 T

star : pTr=>(ropr)>ut

which have to satisfy the following three azioms:

(M) (star (unit z) f) = (f x)
(My) (star m Az.(unit z)) =m
(Ms) (star m Az.(star (g z) f)) = (star (star m g) f)

Then, we have to set an abstract notion of effect. Obviously, we need a particular element
to represent the absence of effect, say L. We will also need an operation to make the union
of two effects, when composing computations; let us write LI that operation. We expect it
to be commutative, associative, idempotent and to have L as a neutral element. Finally,
we have to express that an effect is more precise than another one, and it induces a partial
order relation C over effects, which could be defined by z C y iff y = x Uy. This is exactly
the structure of a semilattice.

Definition 2 (effect) An effect is a semilattice (E, 1,1, C).

The simplest effect is the lattice of booleans B, whose elements are { L, T}.

Given an effect £, a generalized monad will look like a classical one, but with three
operators u , unit and star now indexed over effects. Moreover, the operations of a generalized
monad will have to satisfy axioms similar to (M;)—(M3). The formal definition is given below.

Definition 3 (generalized monad) A generalized monad associated to an effect £ =
(E, L,U,C) is given by a type operator u. indexed over E, and two families of operations,
unite, ., indezed over {(e1,€2) € E* | €, C €2}, and star,, ., indexed over E?, whose types are:

unite, eo 0 fhey T = fhey T

: ! '
Stale e, ° M T — (T — ey T) — MHeqes T

and which satisfy the following siz identities:

(Gh) iy =7

(G9) (unit.. z) =&

(G3) (stari ez f) = (f z)

(Gy4) (Stare o 18 A {unit | w m)) = funits; quie)

(Gs5) (stare, e M Az (stare, ¢, (9) f)) = (Starque e (Stare.e, m g) f)
(Gsg) (stare, e (Unite e,) f) = (UNiteiieg eqties (Starey s = f)) given €, C ¢

The types of the operations unit and star are self-explainable. The axiom (G,) expresses
that the type of a computation with a null effect L is directly interpreted by itself. The
axiom (G) states that the coercion operation unit is the identity when no coercion is needed.
The axiom (G3) is similar to the axiom (M;). The axiom (G,) generalizes the axiom (M)
for any function coercing the result of a computation in any greater effect. Notice that it
implies that (star.. m Az.z) = m, when €; = L and with the use of axiom (G3) twice, which
is exactly the axiom (M;). The axiom (G3) is exactly the associative law stated by axiom
(M3). The axiom (Gg) states a property of commutation between unit and star: we can first
coerce a computation z from effect €; to effect €, and then apply a function f to its value, or
we can apply f to the value of z and then coerce the result from €, Les to €; Lies, equivalently.

2.2 Relationship with classical monads

We expect the classical monads to be a particular case of generalized monads, and it is
indeed the case. Let My = (ug, unity, starg) be a classical monad. We can define from M, a
generalized monad associated to the boolean effects B, where the element L will represent
the absence of effect, and the element T the presence of effect. We define the type operator

1t by:
i, =240 and LT = o

We define the operation unit by:
unity . = Uity = #d and unit; T = unitg

We define the operation star by:

stary,, T2 (roT7)=> 7 = MAL(f x)

staryr T (T peT) = po T = M Af(F &)

starr . T = (T—=7) = pet = Az.Af.(starg z Av.(unity (f v))
starr T ¢ poT = (T = peT) = w7 = star

Proposition 1 The operations (p, unit, star) defined above from a classical monad (g, unity, starp)
form a generalized monad associated to the lattice of booleans i.e. satisfy the identities (G,)-

(Gg).

Conversely, given a generalized monad G = (u, unit,star) associated to an effect £ =
(E,1,U,C), and given a particular element ey € F, we can define the following operators:

Ho = He
ORity: = - Ufity 4
starp = starg.,

Proposition 2 The operations (o, unit stary) defined above form a classical monad i.e. sal-
isfy the identities (M;)—(Ms).

The two propositions above are proved straightforwardly, by a simple equational reason-
ing. The proofs are given in [4], pages 43-45.

2.3 Type systems with effects

Once a notion of effect is given, it is natural to define a type system with effects, and to do
type and effect inference at the same time, as it is done for instance by Talpin and Jouvelot
for references [11] or by others for exceptions [6, 7]. From now on, we consider a call-by-value
semantics, to the end of the paper. Then there is a generic way to incorporate effects within
the functional part of a type system, but also a canonical way to extend some operations of
a generalized monad to complex types.

To present a type system with effects, it is convenient to distinguish between types of
values 7 and types of expressions k, where an expression produces an effect and computes a
value. Given base types ¢, such a type system looks like:

T = L|Tok
g m= [nE)
The type of a function has the shape 7 — (7', €), where 7 is the domain, 7’ the range, and ¢
the effect resulting from the application of the function. Such a type is often written 7 < 7/,
and we will use that notation in the following. The presentation as 7 — & better illustrates
the fact that a function takes a value and returns a computation.
There is a canonical way to extend the partial order relation C over effects to the types
7 and k. It is the least reflexive and transitive relation such that:
T —+ K1 79— Ko iff o A K C Ky
(11, €1) C (72, €2) it 7 Cm A g Cep

There is also a canonical way to extend the type operator u of a generalized monad to
the types 7 and &, in the following way:

ot = i
p (T = K) L (1)

pire = p(ur)

o

Then the coercion operation unit of a generalized monad may be lifted from the level of
effects to the level of types, giving an operation unit,, ,, : (7)) — p(r) for 7, C 7 and an
operation unity, ., : pt(k1) = (ko) for k1 C ky. Those operations are defined recursively by:

unit; , = XD
Uity ry e Af Az (unity, o, (f (unity, .,)))

- def : :
UNiter o) (miez) = AZ.(Stare, e, T Av.(Unity e, (uUnity, -, v)))

Such operations express that any object of type 7, (resp. ;) may be considered as an object
of type 72 (resp. k2) as soon as 7 C 7, (resp. k; C k), i.e. that an object may always be
considered as having more effects than it really has.

3 Functional translation of imperative programs

This section defines a purely functional interpretation for an imperative programming lan-
guage, which is rather simple without being too naive. That translation uses a generalized
monad for references, which tries to give a functional expression as close as possible as a
hand-written functional program from the imperative program. Such a monadic translation
is not new — it is defined by Moggi in [9] and we only add the effects component — but
contrary to other works, we make the monad explicit to get a purely functional translation
of imperative programs.

3.1 A simple imperative language and its effect typing

We consider a simple imperative programming language with higher-order functions and
references, whose expressions are defined by the following grammar:

e u= c|lz|dze|(ee)|recxaz=el|letz=cine|ifethenecelsee|refe]| lz |z =

c stands for constants, and we assume that we have at least a type bool of booleans and a
type unit with a single value void. The expression rec f = e defines a recursive function f,
with f and z bound in e. A new reference is created by ref e, dereference by !z and assigned
with z := e. Notice that operations of dereference and assignment only operate on variables
L.e. named references, and not on anonymous expressions. We have local references, using
the let in construction, and procedures, as functions taking references as arguments. Such a
programming language may be seen as a ML kernel with references, or a core Pascal, if we
omit higher-order features.

A type system for the above language would contain base types ¢, function types and a
type construction ref 7 for references containing values of types 7, that is:

© u= w|rTF|refr

but we prefer to give directly a type system with effects. An effect ¢ is here composed of two
sets of variables, a first set p containing the variables the program may access, and a second

one w containing the variables it possibly modifies. We impose that w C p. The empty effect
(0,0) is still written L. The sup of two effects is defined by (p1,w1) U (p2,wa) = (p1Upg,wy U
wy). The order relation over effects is defined by (p1,w1) T (p2,ws) iff p; C py Awy C wy.
The type system with effects is the following:

Tou= t|(miT) = k|refr
K= (3%

The argument of a function of type 7 — & is given a name when it is a reference, since it
may appear in effects contained in &, where it is then bound. A typing environment T' is a
list of bindings of a type of value 7 to a variable. The typing judgment associates, in a given
environment I, a type of expression k to an expression e, and is written ' e : k. The
typing rules are given in Figure 1.

Exclusion of aliases. Since we want to determine for each sub-expression its sets of
variables possibly accessed or modified, we should immediately face the well-known problem
of aliases. As you may have noticed, they have been subtly excluded by some restrictions
on the syntax and the typing rules. Aliases resulting from a let binding are excluded by
the typing rule (VAR), which does not allow to manipulate a reference z anywhere else than
in lz, z := e and (e z). And aliases resulting from an application of a function twice to
the same reference are excluded by the typing rule (APPREF), which checks that a reference
passed to a function does not already appear in the effect resulting from the application,
even after further applications. Notice that is does not exclude at all the call-by-variable.

The exclusion of aliases is the price to pay when we want to reason easily about pro-
grams; dealing with aliases would make specifications and proofs of correctness really more
complicated — even if it is possible, using for instance a static analysis based on regions.
However, the programming language we chose appeared to be powerful enough in practice
to write (and prove correct) quite complex algorithms.

3.2 Definition of the translation

The target language of our translation is a typed-lambda calculus, with the same base types ¢
than the source language, and a fix-point operator still written rec. We choose for the target
language the same call-by-value semantics than the programming language, where arguments
are evaluated before functions, and where no reduction is done under abstractions. (It is
Important, since we can write non-terminating programs in the target language.) We also
assume that the target language comes with a primitive notion of records, whose types are
written {z, : 7y;...;2, : 7»} and elements {z; = v;...;T, = v,}. If 5 is such a record,
then s.z stands for the value of its field z. We also assume that it is possible to abstract
a term with respect to a label, and to apply such an abstraction to a given label, with the
expected substitution. (This is not very realistic, and we explain in [4] how to manage with
anonymous tuples instead; however, it simplifies the current presentation, without lost of
generality.) The target language only contains two notions of reduction, which are the j-
reduction and the field access reduction. We will write > the union of those two reductions,
and >* its transitive closure, as usual.

We have defined the lattice of effects in the previous section. Then we have to define the
assoclated generalized monad. If I' is an environment containing some references z; : ref 7;,
and if € = (p,w) is an effect well-formed in that environment, say p = {zp) |i=1,..., K}
and w = {wyi) |4 =1,...,m}, then the monadic operator p, 7 is defined by:

def

#(p,w)("") = {$¢(1} 5 T¢(1); % sy xqb(k) 2 T¢(k)} — {55'4,(1) : Tw(l); e xw(m) : Tw(m)} XT
Stated more simply, it expresses that we interpret a program as a function taking as argument
a record containing the values of the references involved in the computation, and returning
another record with the possibly modified values, together with the result itself.

To define the operations unit and star, we need some operations over records. The first
one is used to suppress some fields — which should be made implicit in presence of sub-
typing. Formally, if s is a record containing at least the fields {;, we define (8]{1,,...0n} @S the
record {l; = s.ly;...;l, = s.,}. The second operation is used to “update” some record
s with another one s', giving a record with all the fields of s and s’, and with the values
of s’ for all the fields appearing in §'. Formally, if s = {z; = wi;...;2, = u,} and s’ =
{117 = v1;...;Um = vp} then s ® s’ stands for the record {z1 = wy;...; 2, = wi} where
{zi}iz=1.6 = {@i}iz=1.0 U {¥i }i=1...m and where w; = v; if 2; = y; and w; = u; if z; = z; and

2z ¢ {y;}

Then the two operations unit and star are defined in the following way:
Nt o) (a0 E s let (,0) = (m [s],,) in (s ® Lun, v)

and
Star(py) onwn) M [E As. let (s',v1) = (m [s],,) in
let (5", v2) = (f v1 [s® §'],,) in
([S ®s & S"]WIUWZJ U'Z)
You can notice that the inclusion w C p is really needed in the definition of unit, since the
returned values which do not come from the evaluation of m are taken in the input state s.

We can now define the translation of types, written 7* and x*, by:

7 = 4

(ref 7)* = ¥ since 7 is purely functional
((z:7) =2)" = 7 =K

(7, E)* = pe(7)

This is exactly the canonical extension of i to the types given by (1), with an additional case
for the type constructor ref. We use here the fact that values of type ref 7 are necessarily new
references to interpret them directly as the values they contain. If z; : 7; are the variables of
a typing environment [which are not references, then we define the translated environment
by M=y s s i il S S

The translation of programs is given in Figure 2. The effects involved in the translation
are the ones appearing in the typing rules of Figure 1. The following property is easily
established by a structural induction over expression e.

Proposition 3 The types are preserved by the translation i.e.

If IP'Feir then TP e :p5f

3.3 Correctness of the translation

To justify our translation, we have to show that e and e* compute the same values, and
it implies to define first a formal semantics for the imperative programs. We chose to
follow a small steps reduction semantics introduced by Wright and Felleisen in [15] to give
a formal semantics to the core of SML with references. The reduction rules are summarized
in Figure 3. For simplicity, we assume here that constants have only base types. —* will
denote the reflexive transitive closure of the reduction relation —s.

Since semantical values may be references, we have to interpret them correctly. In the
translation, we chose to interpret a new reference as its value, and therefore the interpretation
of a value v in a store 6, written val(f,v), is defined by:

val(0,7) % 0(z) if z € dom(6)
val(6,v) ¥ v otherwise

Then we can express the semantical correctness of the translation. Notice that it is not
enough to state that if e evaluates to v then e* applied to the same store will give the same
value. Indeed, e may not terminate on some stores, while e* does. That is why the following
theorem is made of two assertions, which really express the semantical equivalence between
e and e*.

Theorem 1 (correctness of the translation) Let T be a typing environment, whose ref-
erences are Ty i ref Ty,...,x, ref 7,, and let e be an expression such that T + e : (7, (p,w)).
Then for any store & mapping values to the variables x;, we have

Vo' v. Be—r 0 = (e 0(p)) o* (§'(w), val(#,v)")

and
Vs, up. (e* 8(p)) o* (s'w) = 3I,v.80er—*0u

where 0({x1,...,z,}) o dmi= i) Te o s 180 = Bl b

The proof is made by induction over the length of the derivation —* and by case analysis
over e. (For the second assertion, we reason ad absurdurn and we show that the evaluation
of e* needs at least as many reduction steps as the evaluation of e.) The complete proofs
of the above theorem, and of all the necessary lemmas, are given in [4], pages 32-35, 52-53
and appendix A.

4 Discussion

In this paper, we have combined existing materials, namely monads and effects, and only
the combination of both of them as generalized monads is really new. Then we have defined
a particular generalized monad and applied it to the translation of imperative programs,
which resulted in a very natural translation. For instance, the following program (in which
a loop is a special case of recursive function and a sequence a special case of let)

while In > 0do s :=ls+!n; n := In—1 done

is translated, after some reductions, into the following function
rec f{s;n} =ifn>0then f {s+mn;n— 1} else {s;n}

where {s;n} stands for a two fields record containing the values s and n. The function above
is exactly what one would have written, and it is easy to establish logical properties on such
interpretations.

Related work. To our knowledge, the only similar work is a paper of Wadler [14], which
have been developed independently. In that paper, Wadler combines the effect discipline of
Talpin and Jouvelot [12] and the notion of monads, proposing a translation from the first
to the second, its proof of correctness and type reconstruction algorithms. The monadic
operator appears as parameterized with an effect, but the generality with respect to an
abstract notion of effect is not clearly stated, nor the axioms the operators should satisty.
Above all, Wadler proposes a translation whose target is the monadic language, while we
propose a translation into purely functional programs using the monadic operations, which
are unfolded immediately. Therefore, we never have to type monadic expressions, which
would require dependent types. Wadler argues that monads with effects could be used
directly to refine the ST monad in Haskell [1], but no detail is given about the way to do it,
which is not obvious at all without dependent types.

A modular translation. One of the greatest advantage of generalized monads over clas-
sical ones is to permit a modular translation. Contrary to the classical notion where the
effect is set once for all, we can translate a first program in a given context, then extend
that context with additional references and translate a second program that uses the first
one without retranslating it. We can also introduce a new kind of effects, as exceptions for
instance, and, provided that the new monadic operator is conservative over the first one, we
can still reuse previous translations.

Theory and practice. The translation we proposed has been put into practice in the
Coq proof assistant [2] to define a method to establish the total correctness of imperative
programs [3, 4]. The programming language is a bit more complete than the one presented
here, with a simple form of polymorphism, arrays, syntax for loops and sequences, and a
large set of predefined constants including arithmetics and boolean connectives. The logical
part of that work is beyond the scope of that article but is described in [3, 4]. (It mainly
consists in adding some logical informations inside the translation.) It has been applied to
the proof of correctness of non-trivial algorithms, such that Knuth-Pratt-Morris or in-place
heapsort [4, 3].

Acknowledgments. I wish to thank John C. Reynolds for his help in finding the right set
of axioms for generalized monads, and Christine Paulin for many stimulating discussions.

10

References

[1]

2l
[3]

(6]

[7]

8]

9]

[10]

[11]

[12]

[13]

(14]

[15]

Haskell 1.4, a non-strict, purely functional language. Technical report, Yale University,
April 1997.

Coq. The Coq Proof Assistant, 2001. http://coq.inria.fr/.

J.-C. Fillidtre. Proof of Imperative Programs in Type Theory. In International Work-
shop, TYPES °98, Kloster Irsee, Germany, volume 1657 of Lecture Notes in Computer
Science. Springer-Verlag, March 1998.

J.-C. Fillidtre. Preuve de programmes impératifs en théorie des types. Thése de doctorat,
Université Paris-Sud, July 1999.

J.-C. Filliatre and N. Magaud. Certification of sorting algorithms in the system Coq.
In Theorem Proving in Higher Order Logics: Emerging Trends, 1999.

J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Java Series. Sun
Microsystems, 1996.

J. Guzman and A. Sudrez. An Extended Type System for Exceptions. In Record of the
fifth ACM SIGPLAN workshop on ML and its Applications, June 1994. Also appears
as Research Report 2265, INRIA, BP 105 - 78153 Le Chesnay Cedex, France.

B. W. Kernighan and R. Pike. The Practice of Programming. Addison-Wesley, 1999,

E. Moggi. Computational lambda-calculus and monads. In IEEE Symposium on Logic
in Computer Science, 1989.

E. Moggi. Notions of computations and monads. Information and Computation, 93(1),
1991.

J.-P. Talpin and P. Jouvelot. Polymorphic Type, Region and Effect Inference. Journal
of Functional Programming, 2(3), 1992.

J.-P. Talpin and P. Jouvelot. The Type and Effect discipline. Information and Compu-
tation, 111(2):245-296, 1994,

P. Wadler. Monads for functional programming. In M. Broy, editor, Program Design
Calculi, NATO ASI Series. Springer Verlag, 1993.

P. Wadler. The marriage of effects and monads. In International Conference on Func-
tional Programming, pages 6374, Baltimore, September 1998. ACM.

A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Information
and Computation, 115:38-94, 1994,

11

T = ; - T e
ype(c) =7 (CONST) z:7€el T # ref (VAR) T,eori erm
'l gi(r.L) T w1y L) 'k Aze:((z:7) > k1)

(FUN)

D'Foey:(n 5 7,6) T'F e :(n,e) T 7 ref _
['F (exe1): (1, eaUe Ue)

(APP)

I'Fe:((z:refr) =7, e) r:refm el ré¢(m,e)
I'F (er): (rz + r],ea U ez + 7))

(APPREF)

DfitTokz:ThHe:k
F'Frecfaz=e:(r—k 1)

(REC)

I'Foe:(m,6a) 71 # ref _ Dyz:m b ey :(m,6)

. (LET)
IF'Fletz=e ines: (72,6 Ues)
I'F e (ref ,€) F,m-: ref F ey :(7,¢€) Tz ¢ T(LETREF)
['Fletz=eines: (7,6 Ue\z)
F'Foegs (bo?l,el) 'k oep: (7€) 'k oey:(r, 63)(COND)
I' = if e; then eq else e : (7, €1 U € L €3)
'+ e: iona > o oref r
e: (7,¢€) T purely functlonml(REF) z:refr € (DEREF)
[' - ref e: (ref 7,¢) I' =% {2], 0)

z:refrel I'Fe:(r(pw))
I'Fz:=e: (unit,({z} Up, {z} Uw))

(ASSIGN)

Figure 1: Typing rules

12

C*

T*

(Az.e

)
(rec f z =¢)

*

*

>*

(e2 €1)
(e27)"
(let z =e; in)"
)

(let z =e; in ey)”

(if ey then e, else e3)*

(ref €)

(if)*
)

(z :=e)*

*

c
z

Aig®

fég f 2 =e*

stare, c,ue €1% Az.(star, ea* Af.(f z))
stare, efwer] €2° Af.(f T)

stare, ¢, €1° Az.ex*

stare, e\z €1° Av.As.(let (8,0") = (e2* s ® {z = v}) in ([s']up\a, V)
when e; : ref 7

Stare, eyue; €1% Ab.(if b then (unite, e, €2%) else (Unite, cue, €3%))
o

As. s.x

As.let (s',v) = (e* s) in (&' @ {z = v}, void)

Figure 2: Translation of programs

13

eTPTessions e =
values v
stores B mm= Al vy
(Az.ev) —>
letz=vine —
(rec fz=ev) —>
if true then e, else e, —
if false then e; else e, —
(refv) —
f.lr —
.z :=v —
.0.e —

E =

v|(ee)|letz=cine|fe|ifethenecelsee|refe|lz |z =€

n= gy | Awe ez g=¢

(z,v)}
elz v (8)
e[z + v (let)
(Az.e[f < rec fz =¢] v) (rec)
el (if-true)
€2 (if-false)
{lmyn) }w x fresh (ref)
v (z,v) €8 (deref)
6 U {(z,v)}.void z € dom(0) (assign)
Ul . e (merge)

JI(Ev)|(eE)|letz=FEine|if Etheneelsee |6.E |ref E |z := FE
Ele] — El[€]

iff e—¢€

Figure 3: Semantics for programs

14

1345
1346
1347
1348

1349
1350
‘1351
1352

1353

1356

1357
1358
1359
1360
1361

1362

1363

RAPPORTS INTERNES AU LRI - ANNEE 2003

Nom

FLANDRIN E
Ll H
WEI B

BARTH D
BERTHOME P
LAFOREST C

VIAL S

FLANDRIN E
LI H
MARCZYK A
WOZNIAK M

AMAR D
FLANDRIN E

GANCARZEWICZ G

WOJDA A P

FRAIGNIAUD P

GAURON P

FAIK T
SACLE J F

FAVARON O
HENNING M A

HU Z
LI H

JOHNEN C
TIXEUIL S

PETITJEAN E

BERTHOME P
DIALLO M
FERREIRA A

FAVARON O
HENNING M A

JOHNEN C
PETIT F
TIXEUIL S

FRANOVA M

HERAULT T
LASSAIGNE R
MAGNIETTE F
PEYRONNET S

HU Z
LI H

DELAET S

DUCOURTHIAL B

TIXEUIL S
YAOC J Y

ROUSSEL N
EVANS H
HANSEN H

ASUFFICIENT CONDITIONFOR

Titre

PANCYCLABILITY OF GRAPHS

SOME EULERIAN PARAMETERS ABOUT
PERFORMANCES OF A CONVERGENCE
ROUTING IN A 2D-MESH NETWORK

A CHVATAL-ERDOS TYPE CONDITION FOR
PANCYCLABILITY

BIPARTITE GRAPHS WITH EVERY MATCHING
INACYCLE

THE CONTENT-ADDRESSABLE NETWORK D2B
SOME b-CONTINUOUS CLASSES OF GRAPH

TOTAL DOMINATION IN CLAW-FREE GRAPHS
WITH MINIMUM DEGREE TWO

WEAK CYCLE PARTITION INVOLVING DEGREE
SUM CONDITIONS

ROUTE PRESERVING STABILIZATION

DESIGNING TIMED TEST CASES FROM REGION
GRAPHS

GENERALIZED PARAMETRIC
MULTI-TERMINAL FLOW PROBLEM

PAIRED DOMINATION [N CLAW-FREE CUBIC
GRAPHS

AUTO-STABILISATION ET PROTOCOLES
RESEAU

LA "FOLIE" DE BRUNELLESCHI ET LA
CONCEPTION DES SYSTEMES COMPLEXES

APPROXIMATE PROBABILISTIC MODEL
CHECKING

ANOTE ON ORE CONDITION AND CYCLE
STRUCTURE

SELF-STABILIZATION WITH r-OPERATORS IN
UNRELIABLE DIRECTED NETWORKS

RAPPORT SCIENTIFIQUE PRESENTE POUR
L'OBTENTION D'UNE HABILITATION A DIRIGER
DES RECHERCHES

MIRRORSPACE : USING PROXIMITY AS AN
INTERFACE TO VIDEO-MEDIATED
COMMUNICATION

~ Nbre de
R L <

16 PAGES

30 PAGES

12 PAGES

26 PAGES

26 PAGES
14 PAGES
14 PAGES
14 PAGES
28 PAGES
14 PAGES

18 PAGES

16 PAGES

26 PAGES

26 PAGES

18 PAGES

10 PAGES

24 PAGES

72 PAGES

10 PAGES

Date parution

01/2003

01/2003

01/2003

01/2003

01/2003
01/2003
01/2003
02/2003
03/2003
03/2003

03/2003

03/2003

03/2003
04/2003
01/2003
04/2003
04/2003

07/2003

07/2003

RAPPORTS INTERNES AU LRI - ANNEE 2003

Ne Nom | Titre _ Nbre de Date parution
R 5 R =l ,_ At BEHES
1364 GOURAUD S D GENERATION DE TESTS A L'AIDE D'OUTILS 24 PAGES 07/2003
' COMBINATOIRES : PREMIERS RESULTATS
' EXPERIMENTAUX .
1365 BADIS H 'DISTRIBUTED ALGORITHMS FOR SINGLEAND 22 PAGES 07/2003

AL AGHA K MULTIPLE-METRIC LINK STATE QoS ROUTING

