HASH CONSING IN AN ML FRAMEWORK

FILLIATRE IC

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud-LRI

09/2003

Rapport de Recherche N° 1368

CNRS - Université de Paris Sud
‘ Centre d’Orsay
LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Batiment 650
91405 ORSAY Cedex (France)

Hash consing in an ML framework

Jean-Christophe Filliatre

LRI - CNRS UMR 8623
Université Paris-Sud, France

filliatr@lri.fr

September 2000

Abstract

Hash consing is a technique to share values that are structurally equal. Beyond the
obvious advantage of saving memory blocks, hash consing may also be used to gain
speed in several operations (like equality test) and data structures (like sets or maps)
when sharing is maximal. However, physical adresses cannot be used directly for this
purpose when the garbage collector is likely to move blocks underneath. We present
an easy solution in such a framework, with many practical benefits.

Keywords: Hash consing, sharing, functional programming, data structures

Résumé

La technique du hash consing consiste & partager en mémoire des valeurs qui sont
structurellement identiques. Au dela de l'intérét immédiat d’une économie de mémoire,
cette technique peut étre également utilisée pour accélérer certaines opérations (telles
que le test d’égalité) et structures de données (telles que des ensembles ou des dictio-
nnaires) lorsque le partage est maximal. Cependant, les pointeurs ne peuvent &tre
utilisées directement & cet effet lorsque le systéme de récupération de la mémoire
(garbage collector) est susceptible de déplacer les blocs. Nous présentons une solu-

tion simple dans ce cadre précis, dont les bénéfices pratiques sont trés nombreux.

Mots clés : Hash consing, partage, programmation fonctionnelle, structures de données

1 Introduction

Hash consing is a technique to share purely functional data that are structurally equal [4].
The name “hash consing” comes from Lisp: the only allocating function is cons and shar-
ing is traditionally realized using a hash table [2]. One obvious use of hash consing is to
save memory space. ixtreme approaches even suggest ML runtimes where hash consing is
performed in a systematic way by the garbage collector [3, 5]. Yet, there is an overhead in
looking for already allocated values and this can result in a loss of performance.

When sharing is maximal, however, hash consing may also result in a gain of performance.
Indeed, physical equality (written == in this paper) can be substituted for structural equality
(written =) since we have now the following property

T=y = T==y

(Only the converse is always true in general.) Then, equality testing is now a constant time
operation, instead of requiring a time proportional to the size of the data. The property of
maximal sharing can also be used to build efficient sets and maps, using for instance binary
tries based on the pointers’ digits [5]. However, this cannot be done so easily when the
garbage collector is likely to move blocks.

In this paper, we present an implementation of hash consing in such a framework, with
many practical benefits. We will use the syntax of Objective Cam| (Ocaml for short) [1] when
giving pieces of code, but this can be translated to SML very easily.

This paper is organized as follows. Section 2 introduces some notations and our assump-
tions on hashing. Section 3 quickly presents an obvious implementation of hash consing and
discusses its drawbacks. Then Section 4 presents our solution to these drawbacks. Finally,
Section 5 makes it even more efficient by introducing a hash table specialized in hash consing.

2 Hashing

In the following, we assume that we have a type t equipped with an equality and a hash
function 4.e. we have a module H implementing the following signature:

module type HashedType = sig
type t
val equal: t x t — bool
val hash: t — int

end

The hashing function is supposed to be consistent with the equality function i.e. that we
have (hash z) = (hash y) as soon as equal (z,y) holds. Then we get an implementation of
hash tables over type H.t by instantiating the functor provided in Ocaml’s standard library
module Hashtbl:

module HashTable = Hashtbl.Make (H)

The resulting module HashTable implements the following signature!:

sig
type a t
val create : int — o t
val add : ¢« t - H.t - «a — unit
val find : ot - H.t — «
end

!Other functions are provided by the module Hashtbl, but they are not relevant in this paper.

where « t is the type of hash tables mapping elements of type H.t to values of type «;
create returns a new hash table with a given initial size; add inserts a new binding in a
table, hiding any previous binding for the same key; and find looks for the value associated
to a given key, raising the predefined exception Not_found if there is no such binding.

As a running example of a data-type on which to perform hash consing, we choose the
following type term for A-terms with de Bruijn indices:

type term =
| Var of int
| Lam of term
| App of term X term

We can equip this type with Ocaml’s polymorphic equality and hash function to get the
following implementation of module H:

1}

module H = struct
type t term
let equal (x,y) = (x = y)
let hash = Hashtbl.hash
end

3 Simple hash consing

The standard way of doing hash consing is to use a global hash table to store already allocated
values and to look for an existing equal value in this table every time we want to create a

new value. It leads to the following code:

let hashcons_term =
let table = HashTable.create 251 in
fun x —
try HashTable.find table x
with Not_found — HashTable.add table x x; x

The initial size of the hash table is clearly context dependent, and we will not discuss its
choice in this paper. (Anyway, choosing a prime number is always a good idea.) Here, the
resulting hash consing function has the following type:

val hashcons_term : term — term

If we want to get mazimal sharing—the property that two values are indeed shared as soon
as they are structurally equal—it is a good idea to introduce new “constructors” performing
hash consing:

let var n = hashcons_term (Var n)
let lam u = hashcons_term (Lam u)
let app (u,v) = hashcons_term (App (u,v))

Therefore, by applying var, lam and app instead of Var, Lam and App directly, we ensure
that all the values of type term are always hash consed. When maximal sharing is achieved,
physical equality (==) can be substituted for structural equality (=) since we have now

T=y & g==y

In particular, the equality used in the hash consing itself can now be improved by using phys-
ical equality on sub-terms, since they are already hash consed by assumption. In practice,
we define the following function

let eq_sub_term = function

| Var n, Var m — n ==m

| Lam u, Lam v — u == v

| App (ul,u2), App (v1,v2) — ul == vi & u2 == v2
| _ — false

right after the definition of type term and right before the implementation of module H,
which is now the following:

module H = struct
type t = term
let equal = eq_sub_term
let hash = Hashtbl.hash
end

Drawbacks. Given a good hash function, the above implementation of hash consing is
already quite efficient. But it still has the following drawbacks:

e There is no way to distinguish between the values that are hash consed and those which
are not, and the programmer has to take care that the true constructors are never used
directly without the surrounding call to the hash consing function. Of course, the type
could be made abstract but then we would lose the pattern-matching facility.

e Maximal sharing allows us to use physical equality instead of structural equality, which
can yield substantial speedups. If one would have access to the physical address of ML
values, one could even think of using it to build efficient data structures. It is done
by J. Goubault in [5] for sets and maps, using binary tries based on the binary digits
of the addresses. However, this cannot be done when the garbage collector is likely to
move allocated blocks underneath, which is the case of Ocaml’s collector for instance.
And we do not have access to the address anyway.

e Our implementation of the hash consing function computes twice the hash value asso-
ciated to its argument when it is not in the hash table: once to look it up and once to
add it. It is also wasting space in the buckets of the hash table by storing twice the
pointer to x. These two drawbacks could be fixed by designing an implementation of
hash tables specialized in hash consing.

In the following, we present solutions to these problems. Section 4 addresses the first two
and Section 5 addresses the last one.

4 Tagging the hash consed values

The idea is to tag the hash consed values with unique integers. First, it introduces a type
distinction between the values that are hash consed and those that are not. Second, these
tags can be used to compare hash consed values, in order to build data structures requiring
ordering, like balanced trees. For the purpose of tagging, we introduce the following record

type:

type o hash_consed = {
node : «;
tag : int }

The field node contains the value itself and the field tag the unique tag. Of course, the
introduction of this new type implies a change in the definition of types for values to be hash
consed. In our example, the definition of type term becomes

type term_node =
| Var of int
| Lam of term
| App of term X term

and term = term_node hash_consed

All the nodes of type term are now decorated with tags. The definition of eq_sub_term is
still the same, but it is now an equality over type term node. Therefore, the implementation
of module H becomes

module H : HashedType = struct
type t = term_node
let equal = eq_sub_term
let hash = Hashtbl.hash

end

module HashTable = Hashtbl.Make (H)

Then we can rewrite the function hashcons, which is now of type term_node — term. It
uses an internal counter to associate a new tag to each value that is not in the table.

let hashcons_term =
let table = HashTable.create 251 in
let gen_tag = ref 0 in
fun x —
try
HashTable.find table x
with Not_found —
let hx = { node = x; tag = !gen_tag } in
incr gen_tag;
HashTable.add table x hx;
hx

The hash consing constructors var, lam and app are still defined in the same way and still
have the expected types, that are:

val var : int — term
val lam : term — term
val app : term X term — term

Maximal sharing is now easily enforced by type checking, since a direct use of the true
constructors would build values of type term_node instead of type term. We now have the
following property:

T=Y << T==Y < r.tag =y.tag

In particular, tags can be used to build comparison functions over hash consed values. In
Ocaml, functors requiring comparison functions expect a single function of type oo — a —
int, where the sign of the returned integer is mapped to the three possible relations <, =
and >. In our example, we can introduce the following comparison over terms:

let compare_term x y = x.tag - y.tag

Then we can build sets of terms and maps over terms using the modules Set and Map from
Ocaml’s standard library in the following way:

module OrderedTerm = struct
type t = term
let compare = compare_term
end
module TermSet
module TermMap

Set .Make (OrderedTerm)
Map.Make (OrderedTerm)

The modules Set and Map are implemented using balanced trees with fairly good perfor-
mance. But since elements (resp. keys) are actually integers, we can build more efficient
data structures. Using binary tries based on bits as done in [5] is already a good idea,
but Patricia trees is an even better solution, as recently presented in an ML framework by
C. Okasaki and A. Gill [6].

5 A specialized hash table

As explained at the end of Section 3, our implementation of the hash consing function is not
very efficient for two reasons:

e First, it wastes space by storing twice the same value in the hash table buckets;

e Second, it wastes time by computing twice the hash key of the given value, once to
look for it and once to insert it.

These two problems have an easy solution, that is to design a hash table specialized in hash
consing. The interface of such a specialized module is the following:

module type S = sig

type key

type t

val create : int — t

val hashcons : t — key — key hash_consed
end

and its implementation is a functor having the following type:
module Make(H : HashedType) : (S with type key = H.t)

The implementation of this functor is immediate: a hash consing table is an array of lists
containing hash consed values (i.e. of type H.t hash_consed). Thus we define

type key = H.t
type t = key hash_consed list array

The creation of an empty hash consing table is just the creation of an array of empty lists:
let create n = Array.create n []

Given a hash consing table t, hash consing a value v is performed by calling hashcons t v,
where hashcons is defined in the following way:

let gen_tag = ref 0

let hashcons t v =
let i = (H.hash v) mod (Array.length t) in
let rec look_and_add = function
I 00 —
let hv = { tag = !gen_tag; node = v } in
t.(1) « hv :: t.(i);
incr gen_tag;
hv
| hd :: t1 —
if H.equal (hd.node,v) then hd else look_and_add tl

1}

in
look_and_add t. (i)

First, we compute the hash index of v, in the variable i. Then we traverse the list t. (i)
looking for an already hash consed value hd equal to v. If we find such a value we just return
it. Otherwise we reach the end of the list and we create a new hash consed value hv that we
add to the list t.(i). Then we increment the counter gen_tag and we return hv.

In practice, our implementation of hash consing tables also provides functions to clear
tables and to iterate over the entries, but this is not relevant in this paper. We also started
from a more efficient implementation of hash tables, where the array is enlarged when the

number of collisions becomes too important. The hash keys are stored in the buckets to
avoid their recomputations when the table is resized?.

Another optimization is to define the hashing function H.hash using the tags of the sub-
terms—remember that these sub-terms are already hash consed. It is particularly efficient
since it avoids traversing the terms to compute their hash keys and since the tags are, by
definition, distinct integers.

6 Conclusion

We have presented an implementation of hash consing in ML with many practical benefits.
In particular, it introduces a type distinction between hash consed values and normal values,
that statically enforces invariants of the code. It also allows the construction of efficient set
and maps of hash consed values, even in contexts where blocks can be moved by the garbage
collector.

In practice, we applied this hash consing implementation in the context of a state of the
art decision procedure, where structural equality between terms and maps over terms were
heavily used. We got a substantial speedup (between 2 and 3, depending on the nature of
inputs).

However, our implementation has the slight drawback of using extra space to store the
tags associated to the hash consed values. On the other hand, hash consing is also saving
space by sharing. And it also trades space for time, by allowing a more efficient imple-
mentation of some operations. Therefore, the pertinence of hash consing can be discussed
depending on the application.

Another drawback concerns garbage collection: once a value is hash consed, it is alive for
ever as far as garbage collection is concerned because it persists in the hash consing table,
unless we clear or throw away the table at some point. This issue has a solution when hash
consing is performed by the garbage collector itself, as done in [3] or [5].

The implementation of the module Hashcons presented in Section 5 is freely available at
http://www.lri.fr/"filliatr/software.en.html, together with implementations of sets
and maps using Patricia trees following [6].

References
[1] The Objective Caml language. http://caml.inria.fr/.
(2] John Allen. Anatomy of Lisp. McGraw-Hill Book Compagny, 1978.

[3] Andrew W. Appel and Marcelo J. R. Goncalves. Hash-consing Garbage Collection.
Technical Report CS-TR-412-93, Princeton University, February 1993.

[4] Eiichi Goto. Monocopy and associative algorithms in extended Lisp. Technical Report
TR 74-03, University of Tokyo, May 1974.

2Qcaml’s standard hash tables do not use that optimization but SML ones do.

[5] Jean Goubault. Implementing Functional Languages with Fast Equality, Sets and
Maps: an Exercise in Hash Consing. In Journées Francophones des Langages Appli-
catifs (JFLA’93), pages 222-238, Annecy, February 1993.

[6] Chris Okasaki and Andrew Gill. Fast Mergeable Integer Maps. In Workshop on ML,
pages 77-86, September 1998.

e
1345
1346

1347

1348

1349
1350
.1351
.1352

113563

1356

1357
1358
1359
1360
1361

1362

1363

RAPPORTS INTERNES AU LRI

Nom

FLAN.D-F-l-i-I_\i"E“ ”

LI H
WEI B

BARTH D
BERTHOME P
LAFOREST C

VIAL S

FLANDRIN E
LI H
MARCZYK A
WOZNIAK M

AMAR D
FLANDRIN E

GANCARZEWICZ G

WOJDA A P

FRAIGNIAUD P
GAURON P

FAIK T
SACLE J F

FAVARON O
HENNING M A

HU Z
LI H

JOHNEN C
TIXEUIL S

PETITJEAN E

BERTHOME P
DIALLO M
FERREIRA A

FAVARON O
HENNING M A

JOHNEN C
PETIT F
TIXEUIL S

FRANOVA M

HERAULT T
LASSAIGNE R
MAGNIETTE F
PEYRONNET S

HU Z
LI H

DELAET S

DUCOURTHIAL B

TIXEUIL S
YAO J Y

ROUSSEL N
EVANS H
HANSEN H

' ASUFFICIENT CONDITION FOR

Titre

PANCYCLABILITY OF GRAPHS

SOME EULERIAN PARAMETERS ABOUT
PERFORMANCES OF A CONVERGENCE
ROUTING IN A 2D-MESH NETWORK

A CHVATAL-ERDOS TYPE CONDITION FOR
PANCYCLABILITY

| BIPARTITE GRAPHS WITH EVERY MATCHING |

INACYCLE

THE CONTENT-ADDRESSABLE NETWORK D2B
SOME b-CONTINUOUS CLASSES OF GRAPH
TOTAL DOMINATION IN CLAW-FREE GRAPHS

WITH MINIMUM DEGREE TWO
WEAK CYCLE PARTITION INVOLVING DEGREE

'SUM CONDITIONS

ROUTE PRESERVING STABILIZATION

DESIGNING TIMED TEST CASES FROM REGION
GRAPHS

GENERALIZED PARAMETRIC
MULTI-TERMINAL FLOW PROBLEM

PAIRED DOMINATION IN CLAW-FREE CUBIC
GRAPHS '

AUTO-STABILISATION ET PROTOCOLES
RESEAU

LA "FOLIE" DE BRUNELLESCHI ET LA
CONCEPTION DES SYSTEMES COMPLEXES

APPROXIMATE PROBABILISTIC MODEL
CHECKING

ANOTE ON ORE CONDITION AND CYCLE
STRUCTURE

SELF-STABILIZATION WITH r-OPERATORS IN
UNRELIABLE DIRECTED NETWORKS

RAPPORT SCIENTIFIQUE PRESENTE POUR
L'OBTENTION D'UNE HABILITATION A DIRIGER
DES RECHERCHES

MIRRORSPACE : USING PROXIMITY AS AN
INTERFACE TO VIDEO-MEDIATED
COMMUNICATION

- ANNEE 2003

Nbre de Date parution

L
16 PAGES

30 PAGES

12 PAGES

26 PAGES

26 PAGES

14 PAGES

14 PAGES

14 PAGES

28 PAGES

14 PAGES

18 PAGES

16 PAGES

26 PAGES

26 PAGES

18 PAGES

10 PAGES

24 PAGES

72 PAGES

10 PAGES

112003

01/2003

01/2003

01/2003

01/2003
01/2003
01/2003
02/2003
03/2003
03/2003

03/2003

03/2003

03/2003
04/2003
01/2003
04/2003
04/2003

07/2003

07/2003

RAPPORTS INTERNES AU LRI - ANNEE 2003

N° Nom | Titre .~ Nbre de Date parution
B S fo e e o LTSGR] = pages |
1364 GOURAUD S D GENERATION DE TESTS AL'AIDE DOUTILS 24 PAGES 07/2003
' COMBINATOIRES : PREMIERS RESULTATS
| EXPERIMENTAUX _
1365 BADIS H | DISTRIBUTED ALGORITHMS FOR SINGLEAND 22 PAGES 07/2003

AL AGHA K MULTIPLE-METRIC LINK STATE QoS ROUTING

