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Abstract

We present the design and implementation of the new version of the Coq proof
assistant. The main novelty is the isolation of the critical part of the system, which
consists in a type checker for the Calculus of Inductive Constructions. This kernel
is now completely independent of the rest of the system and has been rewritten in a
purely functional way. This leads to greater clarity and safety, without compromising
efficiency. It also opens the way to the “bootstrap” of the Coq system, where the kernel
will be certified using Coq itself.
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Résumé

Nous présentons la conception et la réalisation de la nouvelle version de ’assistant
de preuve Coq. La principale nouveauté réside dans I'isolation de la partie critique
du systéme, qui consiste en un vérificateur de type pour le Calcul des Constructions
Inductives. Ce noyau est désormais complétement indépendant du reste du systeme et
a €té réécrit de maniére purement fonctionnelle. Il en résulte une plus grande clarté
et une plus grande sécurité, sans perte d’efficacité. Ceci ouvre également la voie & un
possible bootstrap du systéme Coq, ol le noyau serait certifié par Coq lui-méme.

Mots clés : Assistant de preuve, calcul des constructions inductives, Coq

1 Introduction

In the design of reliable proof assistants, we can distinguish two main approaches:

o The LCF-approach, where theorems belong to an abstract data type and are built
using a (small) set of correct functions;

e The proof-checking approach, where derivations can be obtained by any means, but
are checked by a small piece of code implementing the rules of the logic.



We are not going to compare the advantages and drawbacks of these approaches in this paper;
this is already discussed, with many other aspects of machine-checked proofs, by R. Pollack
in [11]. We only notice that both approaches rely on a trusted piece of code. Hence the
design and implementation of a proof assistant must be done with care to guarantee the
greatest possible reliability.

The Coq system [2] is a proof assistant belonging to the second category. It provides mech-
anisms to write definitions, statements and to do formal proofs. It can be used interactively
or as a batch checker. Its logical formalism is the Calculus of Inductive Constructions (CIC
for short), an extension of the original Calculus of Constructions [3] with universes [4, 8] and
inductive definitions [10]. The CIC is a typed A-calculus where, following the Curry-Howard
isomorphism, types are seen as propositions and terms as proofs. The proof engine builds
terms by means of tactics written in ML. The safety of the Coq system is a consequence of
the following two facts:

o The CIC is consistent (a proof of strong normalization is given in [13]);

e Once a proof is completed, it is type checked by a trusted piece of code implementing
the typing rules of the CIC.

"The typing rules of the CIC are given in appendix. The reader can check that they are not
so numerous. Therefore, it should not be (too) complicated to implement them correctly.
However, a proof assistant must also satisfy real world requirements, which include:

e an wnteractive system, which means some imperative state somewhere;
e an undo mechanism;

e an extensible system, where the user can write tactics in ML, add tables to be used by
these tactics, etc;

e efficiency, which means that tactics should not spend all their time doing type checking.

During fall 1999, the author designed and implemented a new architecture for the Coq system
reconciling a safe and independent kernel with all the above requirements. Then several other
people in the Cog team started working on this new basis. In particular, H. Herbelin and
D. Delahaye improved several parts of the system. This paper, however, only concentrates
on the new architecture of the kernel, whose design and partial re-implementation is the
work of the author.

This paper is organized as follows. Section 2 presents the global architecture of the
system, and how the kernel forms part of this design. Section 3 presents the design of the
kernel itself. Section 4 gives some implementation details. Pieces of code quoted in this
paper are given in Objective Caml syntax [9].

2 The big picture

The first implementation of the Calculus of Constructions was realized by G. Huet and
T. Coquand in 1984. The first public implementation of the Coq system, version 4.10, was
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released in 1989. It was written in Caml, a dialect of ML developed at INRIA. Inductive types
were then added by C. Paulin in 1991. In 1993, D. de Rauglaudre ported the Coq system
to Caml Light, a new implementation of Caml by X. Leroy and D. Doligez. In 1994-95,
C. Murthy designed and implemented a completely new architecture centered on high-level
library management, released as version 5.10. Co-inductive types were introduced in this
version by E. Giménez [7]. It was ported the next year to Objective Caml [9], the current
implementation of Caml. The basic architecture of Coq has not changed since Murthy’s
reorganization.
The new version of Coq, presented in this paper, is the version 7 of the system.

2.1 Architecture of versions 5.10 and 6.x

The architecture of the previous implementation of the Coq system (versions 5.10 and 6.x)
is due to C. Murthy. This implementation satisfies all the “real world requirements”’. In
particular, the undo mechanism is implemented as follows. Any kind of object can be de-
clared to the system, with methods' to perform its effect on the system, interactively or
when loading it from the disk. Global tables can be registered with methods to freeze and
unfreeze their contents. Then the system keeps a stack of all operations and provides undo
by unfreezing previous states and redoing operations up to the backtrack point.

In this context, terms of the CIC are just a particular kind of objects. But this design
is unsafe: it is possible to delete, to modify or to add constants without any check—at the
ML level only, not in the interactive system. Moreover, the type checker code is not clearly
isolated. First, there is no data type for typing environments, since CIC objects are spread
among all other objects on the stack of operations. Second, the type checker does not come
first, since its code relies on all the backtracking mechanism code (to access definitions in
the environment).

2.2 An ideal kernel

The critical part of the Coq system consists of the type checker for the CIC. Indeed, once
the proof of a lemma p is completed, the corresponding A-term ¢ is type checked and a
new constant p := ¢ is added in the environment. To guarantee the consistency of the
environment, the type checking of this definition has to be correct. Therefore, the kernel of
the system should ideally provide an abstract data type for well formed typing environments,
together with functions to insert new elements in a safe way. The signature of such a kernel
would look like

type safe_env

val empty : safe_env

val push_var : safe_env — identifier x constr — safe_env

val add_constant : safe_env — constant_declaration — safe_env

11t is not implemented in an object oriented way, strictly speaking, since Caml did not support object
oriented programming by the time of this implementation. However, C. Murthy’s code is really simulating
objects, using records containing functions.



val lookup_var : safe_env — identifier — constr

where constr is the data type of CIC terms. Notice that the kernel does not have to provide
a typing function: typing is done internally when insertion functions are called. Only the
invariant of having a well formed typing environment is needed, and this can be maintained
if the above data type is abstract.

2.3 Coq version 7: a reconciliation

In Coq version 7, we provide the best of both worlds: an ideal kernel on one hand, as
described in the previous section, and Murthy’s general backtracking mechanism on the
other. We proceed as follows:

1. First, we write a purely functional type checker for the CIC;

2. Second, we introduce the backtracking mechanism, but CIC terms are no longer a
particular kind of object;

3. Finally, we reconcile both of them by declaring a reference on the current typing
environment as a global table.

If Safe is the kernel module implementing the signature sketched in Section 2.2, then the
code realizing the connection looks like

let r = ref Safe.empty

Safe.push_var !r (id,c)
Safe.add_constant !r d

|
H
[}

let push_var (id,c) =
let add_constant cd

1]
H
I

let lookup_var id = Safe.lookup_var !r id

In order to have the typing environment correctly backtracked during undo operations, we
declare the above reference r as a global table. This is particularly simple, since typing
environments are implemented with a purely functional data type: freezing and unfreezing
the value of r is then immediate.

let freeze () = Ir
let unfreeze f = r := £
let _ = declare_table "typing env" freeze unfreeze

For all the rest of the system, there is no visible difference with respect to previous
implementations. Whatever the implementation of the typing environment is, an imperative
environment is still provided with the following signature:



val push_var : identifier X constr — unit
val add_constant : constant_declaration — unit

val lookup_var : identifier — constr
And indeed, all the upper parts of the system were reestablished almost “as is”.

3 Design of the kernel

As we explained in the previous section, we succeeded in isolating the critical part of the Coq
system, that is a type checker for the CIC. For greater clarity and safety, it is implemented
in a purely functional way, following the signature sketched in Section 2.2.

3.1 Architecture of the kernel

The typing rules for CIC are given in appendix. If we try to implement them in a direct
(and naive) way, we immediately face a problem of circular dependency:

Adding a term in an environment requires to type check it (rule Push)

and
Type checking a term requires to lookup in the environment (rule Var)

With definitions and inductive types, the definition of the convertibility also needs access
to the environment, hence introducing another circularity issue. Defining the environment
operations, the conversion and the typing function in a mutually recursive way would not be
a good design. It would result in a single module with thousands of lines of code. Instead,
we choose the following three steps solution:

1. First, we define a data type env for typing environments. This type is “unsafe”: it
may contain values that do not represent well formed environments, since it does not
perform type checking on the elements which are inserted.

2. Then we define the conversion =, and the typing rules over this data type env. These
functions make assumptions about the well formedness of the typing environments they
take as arguments.

3. Finally, in a single module Safe, we define the type of typing environment safe_env,
we write the type checking algorithm and we define the operations over type safe_env
so that they perform type checking. Internally, the type safe_env is defined as equal
to the type env but it is abstract (its identity to env is not exported in the interface
of module Safe) and therefore we maintain the invariant that all the values of type
safe_env are well formed. In other words, any value I' of type safe_env is such that

WZF(T') holds.



To summarize, the kernel has the following structure:

1. Data type for terms

2. Data type for environments

3. Typing rules / Conversions

4. Safe environments (module Safe)

In the next section, we give implementation details about the various parts of the kernel.

3.2 Implementation of the kernel

Terms. Terms of the CIC are encoded using explicit names for global objects (constants,
inductive types and constructors) and de Bruijn’s indices for bound variables. The type
constr for CIC terms is an abstract type, for easier modifications of this type. A view [12]
on type constr is provided to allow pattern matching on values of this type?.

Universes. Coq implements the Extended Calculus of Constructions with universes (ECQ),
following the work initiated by T. Coquand [4] and studied in the Ph.D. of Z. Luo [8]. The
typing rules given in the appendix assume that explicit universes are statically assigned in-
dices. However, this would be a drawback in practice, since this would often necessitate a
repositioning of indices each time type checking requires the insertion of a new universe sort
between two existing ones. Therefore, Coq uses instead “floating universes”: new universes
are created when needed and inserted in a dependency graph which is checked to be acyclic.
(If necessary, universes indices as used in the typing rules could be retrieved at any time
using a topological sort of the universes graph.) The data types for universes and universes
graphs are functional and abstract. In order to save space and time, three universes are
statically created which are a type for Set and Prop, a type for this type and a type for this
latter type. Hence we get the following signature:

type universe

val prop_univ : universe

val prop_univ_univ : universe

val prop_univ_univ_univ : universe
val new_univ : unit — universe

type universes
val initial_universes : universes

For efficiency of the type checking, we do not introduce relations between universes one by
one in graphs, but we use sets of constraints.

type constraint_type = Gt | Geq | Eq
type constraint = universe X constraint_type X universe

?Ocaml does not support views but this is achieved using subtleties of abbreviation and abstraction in
the Ocaml type system.



type constraints
val empty_constraints : constraints
val add_constraint : constraint — constraints — constraints

Then constraints over universes are merged into graphs using the following function merge_constraint
It raises the exception UniverseInconsistency if a cycle occurs.

exception Universelnconsistency
val merge_constraints : constraints — universes — universes

The functional implementation of universes graphs and the introduction of sets of constraints
constitute a novelty of Coq version 7.

Typing environments. The data type env for typing environments is purely functional.
It contains mappings from names (explicit names for constants or de Bruijn indices) to their
types and/or values and a universes graph. It uses efficient data structures for dictionaries
from the Ocaml standard library (balanced trees). The type env is kept abstract, so that its
implementation can be easily changed. The main point is that it is reused in many other
parts of the system, as well as many functions over it like reduction functions, where safety
1s not involved. Therefore, most of the operations of the system are efficient, yet using the
same data type as the safe kernel.
The signature of the module Env implementing typing environments looks like:

type env

val empty : env

val push_var : env — identifier X constr — env

val add_constant : env — constant_declaration — env

val lookup_var : env — identifier — constr

val push_constraints : env — constraints — env

Notice that this signature is similar to the expected signature for the kernel itself: the
only (big) difference is that values of type env do not necessarily represent well formed
environments.

Reductions and conversions. Reductions are functions from constr to constr taking
an environment as argument. Indeed, the environment is needed to expand definitions or
to find information related to inductive definitions. Therefore, reduction functions have the

following profile:

type reduction_function = env — constr — constr
Examples of such functions are for instance

val whd_betadeltaiota : reduction_function

val nf_betaiota : reduction_function
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Conversion functions, implementing =, and <., do not simply return a boolean but a set of
constraints; Indeed, enforcing the convertibility of two terms may generate relations between
some universes. Therefore, conversion functions have the following type:

type conversion_function = env — constr — constr — constraints
Then =, and <, are implemented with the above profile:

val conv : conversion_function
val conv_leq : conversion_function

Typing rules and typing algorithm. A data type judgment is introduced to represent a
term with its type. Then typing rules are implemented as functions taking an environment,
some judgments and returning a new judgment together with a set of constraints. The
interpretation is that, if the environment is well formed and the given judgments derivable
in this environment, then the new judgment is derivable in the environment extended with
the new constraints. Notice that the typing rules are introduced at that point independently
of the typing algorithm.

Then we can implement the typing algorithm itself in a separate module having the
following signature:

val typecheck : env — constr — judgment X constraints

Main module. Finally, a last module Safe realizes the signature given in Section 2.2, in
the following way:

type safe_env = Env.env
let empty = Env.empty

let push_var e (id,c) =
let (_,cst) = typecheck e c in 7
Env.push_var (Env.push_constraints e cst) (id,c)

let add_constant e d =

Notice how the Ocaml type system is used. Internally to module Safe, the type definition
type safe_env = Env.env introduces safe_env as an alias for type Env.env. Hence func-
tions over type Env.env, like Env.push_var, can be used in the definition of functions over
type safe_env. But the abbreviation safe_env = Env.env is not exported in the interface
of module Safe. Therefore, the type safe_env appears externally as a “new” abstract data
type.



| Part | Description | Modules | Lines of code

Lib Utility libraries i 15 1700
Kernel Type checker for CIC 18 7800
Library Undo mechanism and modules 14 2000
Pretyping | Translation from AST to terms i 2000
Parsing Parsing and pretty-printing L1 3700
Proofs Proof engine 11 4000
Tactics Basic tactics and tacticals 14 4000
Toplevel | Assembling layer 8 2900
| | Total | 103 | 28100 |

Figure 1: The main parts of Coq version 7

4 Implementation details

The Coq system is written in Objective Caml [9], a dialect of ML developed at INRIA.
This language provides functional, imperative and object oriented programming styles and
is equipped with a powerful module calculus which offers true separate compilation. Two
compilers are available: one producing portable bytecode, allowing fast development and
easy debugging, and one producing fast executables in native code. Coq heavily uses the
rich and portable standard library of Ocaml. Cogq also uses the Camlp4 tool [5], which
provides data types for dynamic grammars, thus allowing a user-extensible grammar.

The code of Coq is documented using a literate programming tool, Ocamlweb [6]. A
single human-readable document is produced from the code, which describes the design and
all the interfaces (types, functions with their specifications, exceptions, etc.). This document
is 110 page long—but several modules are not yet fully documented—and a 30 page long
index is automatically appended by Ocamlweb, giving the definition and use points of all the
identifiers of the code.

The total redesign and (partial) re-implementation of the system was realized in less
than four months. The whole code is roughly 30,000 lines long, 10,000 being dedicated to
the kernel and the undo mechanism. The main parts of Coq version 7 are given in Figure 1.
For each, the number of Ocaml modules and the number of lines of code is given. These
parts are presented in the order of linking.

5 Conclusion

We have presented the new implementation of the Coq system. It combines the efficiency
and safety requirements in a completely new design, where the critical part of the system, a
type checker for the CIC, is clearly isolated.

This type checker is now written is a purely functional way. It uses efficient functional
data structures and is even slightly faster than the previous type checkers that were partly
lmperative. Being functional, this critical kernel is now easier to maintain and to reason



about. One can now think of formally certifying it. Following the work of B. Barras [1], it
could even be “bootstrapped” i.e. certified by Coq itself.

Anyhow, we believe that this new implementation already constitutes the safest of the

popular proof assistants.
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Appendix: Typing rules for the ECC

Although the Coq system implements the full CIC with definitions, (co)inductive types and
definitions are omitted here for the simplicity of this paper—the reader must be aware, how-
ever, that positivity of inductive types and guardedness of (co)recursive definitions constitute
a nontrivial part of the actual kernel. Thus we give here the typing rules for the Extended
Calculus of Constructions [8]. Sorts, terms and typing environments obey the following
grammar:

Sorts (S) s u= Set | Prop | Type(i)
Terms it w= s lelEmitl| | 1)
Environments T == []|[,z:¢

Typing rules are given in Figure 2. The convertibility between terms, written =, is here
the cf-equivalence. In the general case, it is the a8di-equivalence, § being the unfolding of
definitions and ¢ the reduction associated to inductive types.
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Figure 2: Typing rules for the Extended Calculus of Constructions
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